
1

The Significance of CMP Cache Sharing on
Contemporary Multithreaded Applications

Eddy Z. Zhang, Yunlian Jiang, Xipeng Shen

Abstract—Cache sharing on modern Chip Multiprocessors (CMP) reduces communication latency among co-running threads, but
also causes inter-thread cache contention. Most previous studies on the influence of cache sharing have concentrated on the design
or management of shared cache. The observed influence is often constrained by the reliance on simulators, the use of out-of-date
benchmarks, or the limited coverage of deciding factors.
This paper describes a systematic measurement of the influence with most of the potentially important factors covered. The
measurement shows some surprising results. Contrary to commonly perceived importance of cache sharing, neither positive nor
negative effects from the cache sharing are significant for most of the program executions in the PARSEC benchmark suite, regardless
of the types of parallelism, input datasets, architectures, numbers of threads, and assignments of threads to cores. After a detailed
analysis, we find that the main reason is the mismatch between the software design (and compilation) of multithreaded applications and
CMP architectures. By performing source code transformations on the programs in a cache-sharing-aware manner, we observe up to
53% performance increase when the threads are placed on cores appropriately, confirming the software-hardware mismatch as a main
reason for the observed insignificance of the influence from cache sharing, and indicating the important role of cache-sharing-aware
transformations—a topic only sporadically studied so far—for exerting the power of shared cache.

Index Terms—Shared cache, Thread scheduling, Parallel program optimizations, Chip multiprocessors

✦

1 INTRODUCTION

Most modern Chip Multiprocessors (CMP) feature on-
chip cache sharing. On a system with multiple chips, the
sharing further shows non-uniformity: Cores on different
chips typically do not share cache as the cores in a chip
do.

The sharing is a double-edged sword. It may cause de-
structive cache contention: Data accesses by co-runners
(processes or threads running on sibling cores) may
conflict in the shared cache, causing cache thrashing. On
the other hand, it may be constructive: Co-runners may
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• This article is an extended version of a paper that received the Best Paper
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in three aspects. First, we introduce a set of statistical techniques into
the analysis of the performance measurement (Appendix A, and part of
Appendices B.1 and B.2 including Figures 7 and 11). By addressing the
sometimes large fluctuations of the measured running times, these tech-
niques filter out most random factors in the measurement, offering more
conclusive results than before. Meanwhile, the results suggest that using
average running times, as most existing studies do, is not rigorous enough
for many parallel program performance analyses—the statistic analysis
should be adopted, especially when the performance varies considerably
across repetitive executions. Second, we extend the evaluation of the cache-
sharing–aware transformations with a further investigation in the relation
between intra-thread optimizations and inter-thread transformations (Sec-
tion 4.1.2), and the application of the transformation to a new benchmark
(Section 4.4). Third, we add Appendix D, which, based on a careful
examination of an example program, streamcluster, investigates issues
related to the automation of cache-sharing-aware transformations, includ-
ing the principles, challenges, the capabilities the automatic optimizers
ought to have, and the possible roles of programmers for the optimization.
In addition, we add some extra results (e.g., Table 5, Figure 10(c,d)) and
enhance the presentation throughout the paper.

directly communicate through shared cache with lower
latency than cross-chip communications, and one thread
may access the data that other threads have brought into
the shared cache, forming synergistic prefetching.

The importance of using shared cache effectively has
recently drawn much attention. For example, cache-
sharing-aware scheduling in operating systems (OS)
research has shown that a suitable assignment of co-
running processes to cores may alleviate the cache con-
tention among co-runners. Considerable performance
improvements have been observed on sets of indepen-
dent jobs [10], [11], [25], [29] as well as parallel threads
inside certain classes of single applications [28].

However, in this work (Section 2 and 3), through a
systematic measurement, we find that contrary to the
commonly perceived significant effects, cache sharing
has very limited influence, neither positive nor negative,
on the performance of the applications in PARSEC—
a modern benchmark suite that “focuses on emerg-
ing workloads and was designed to be representative
of next-generation shared-memory programs for chip-
multiprocessors” [3]. Our experiments show that for
those programs, no matter how the threads are placed
on cores (they may share the cache in various ways or do
not share cache at all), the performance of the programs
remains almost the same.

This surprising finding comes from a systematic mea-
surement that consists of thousands of runs and covers
various potentially important factors of programs (num-
ber of threads, parallel models, phases, input datasets),
OS (thread binding and placement), and architecture
(types of CMP and number of cores). It is derived from
the measured running times, and confirmed by the low-
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level performance reported by hardware performance
counters.

A detailed analysis uncovers the fundamental reason
for the observed insignificance: The development and
the currently standard compilation of the programs are
oblivious to cache sharing, hence causing a mismatch
between the generated programs and the CMP cache
architecture. The mismatch exhibits in three aspects.
First, the data sharing among threads in those programs
is typically uniform, that is, the amount of data a thread
shares with one thread is typically similar to the amount
it shares with any other thread. The uniformity mis-
matches with the non-uniform cache sharing on CMPs,
explaining the insensitivity of the program performance
to the placement of threads. Second, the accesses to
shared cache lines are limited for most of the programs
because of the uniform partition of computation and
data among threads, explaining the small constructive
effects from shared cache. Finally, the working sets of
the programs are typically much larger than the shared
cache. The difference between the sharing and non-
sharing cases in terms of cache size per thread is not
enough to make significant changes in cache misses.
Hence, cache contention shows no obvious effects either.

The second part of this paper (Section 4) explores
the implications of the observed insignificance. At the
first glance, it seems to suggest that exploitation of
cache sharing is unimportant for the executions of the
multithreaded applications, but a set of experiments
demonstrates the exact opposite conclusion. Exploiting
cache sharing has significant potential, but to realize
the potential, it is critical to apply cache-sharing-aware
transformations.

In the experiments, we increase the amount of shared
data among sibling threads (the threads sharing the
same cache) through certain code transformations. The
transformations yield non-uniform data sharing among
threads, matching with the non-uniform cache shar-
ing on the architecture. The influence of cache sharing
becomes much more significant than on the original
programs. Appropriate placement of threads on cores
reduces cache misses by over 50% and improves per-
formance by up to 36%, compared to other placements
and the original programs.

In the third part of this paper (Appendix D), based on
a careful examination of an example program, streamclus-
ter, we investigate issues related to the automation of
cache-sharing-aware transformations. This includes the
principles, challenges of optimizing cache performance,
as well as the capabilities the automatic optimizers ought
to have, and the possible roles of programmers for the
optimization.

To the best of our knowledge, this work is the first that
systematically examines the influence of cache sharing in
modern CMP on the performance of contemporary mul-
tithreaded applications. Many previous explorations [10],
[11], [12], [25], [29] are concentrated on co-runs of in-
dependent programs, on which, cache contention is the

single main influence by shared cache. The studies on
multithreaded programs have been focused on certain
aspects of CMP, rather than a systematic measurement
of the influence from cache sharing. For instance, many
of them have used simulators rather than real ma-
chines; some [30] have used old benchmark suites (e.g.,
SPLASH-2 [31]), or have concentrated on a specific class
of applications, such as server programs [28]; some [16]
have used old CMP machines with no shared cache
equipped. These limitations may not be critical for the
particular focus of the previous research—in fact, some-
times they are unavoidable (e.g., using simulators for
cache design). However, they may cause biases to a
comprehensive understanding of the influence of cache
sharing on program performance—the plausible reason
for the departure between the observations made in this
work and the previous.

Similar to the observation made by Sarkar and
Tullsen [20], we have found only a small number of
studies [15], [17], [20] on exploiting program transforma-
tions for the improvement of shared cache usage (a clear
contrast to the large body of work in OS and architec-
ture areas). The importance of program transformations
demonstrated in this work will hopefully spur more
research efforts in this direction.

2 EXPERIMENT DESIGN

This section introduces the benchmark suite, the factors
we study and the rationales, the measurement schemes,
and the statistic techniques for data analysis.

2.1 Benchmarks

The selected benchmark suite is PARSEC v1.0, a suite
released in 2007 for CMP research [3]. It includes emerg-
ing applications in recognition, mining and synthesis, as
well as systems applications that mimic large-scale mul-
tithreaded commercial programs. Studies [2], [3] have
shown that the suite covers a wide range of work-
ing set sizes, and a variety of locality patterns, data
sharing, synchronization, and off-chip traffic, making
it appealing over some old parallel benchmark suites
such as SPLASH-2 [31]. Table 1 lists the 10 programs
we use and their working set sizes (on simlarge inputs).
Programs dedup and ferret are both pipelining applica-
tions with a dedicated pool of threads for each pipeline
stage. Programs facesim, fluidanimate, and streamcluster
have streaming behaviors. Other programs are data-
level parallel programs with various synchronizations
and inter-thread communications. All the programs use
Pthreads API, and employ standard Pthreads schemes
(locks and barriers) for synchronizations. An exception
is canneal, which uses an aggressive synchronization
strategy based on data race recovery. We exclude two
other programs, vips and freqmine, because their non-
Pthread implementations cause difficulties for our tool
to bind their threads with processors.
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TABLE 1
Benchmarks

Program Description Parallelism Working
Set

Blackscholes Black-Scholes diff-
eqtn

data 2MB

Bodytrack body tracking data 8MB
Canneal sim. annealing unstruct. 256MB
Dedup stream compression pipeline 256MB
Facesim face simulation data 256MB
Ferret image search pipeline 64MB
Fluidanimate fluid dynamics data 64MB
Streamcluster online clustering data 16MB
Swaptions portfolio pricing data 512KB
X264 video encoding pipeline 16MB

∗: see [3] for detail.

TABLE 2
Dimensions covered in the measurement

Dimension Variations Description
benchmarks 10 from PARSEC
inputs 4 simsmall, simmedium, simlarge,

native
# of threads∗ 4 1,2,4,8
parallelism 3 data, pipeline, unstructured
binding 2 yes, no
assignment∗ 3 thread assignment to cores
platforms 2 Intel Xeon & AMD Opteron
subset of cores 7 the cores a program uses
∗: Dedup and Ferret have more threads and assignments (see Section B.3).

2.2 Factors

To achieve a comprehensive understanding on how
much cache sharing influences the performance of mul-
tithreaded applications, our experiments include a num-
ber of factors that are potentially important for the
influence. This section briefly introduces these factors
and the rationale for selecting them. The next section
elaborates on the treatment of these factors in the sys-
tematic measurement.

As shown in Table 2, the considered factors come from
the program, OS, and architecture levels. (The boldface
words correspond to the dimensions in Table 2.)

• Program Level The major factors in this level in-
clude the input datasets to the program, the number
of threads, and the parallel models. The first two
factors determine the working set of a thread and
the intensity of cache contention. We use four input
datasets coming with PARSEC. Table 2 lists them
in increasing order of size. The number of threads
varies from one to eight. The third factor, parallel
models, determines the patterns of data sharing and
computation.

• OS Level The main effect from the OS is thread
scheduling, which determines the co-runners on a
chip. To examine the potential of the scheduling, we
avoid using any particular scheduling algorithms.
Instead, we experiment with different thread-core
assignments to cover various co-running scenarios,
as detailed in Section 3. Because the experiment
needs binding threads to cores, we examine the

TABLE 3
Machine configurations

CPU L1 L2 L3 Memory
Intel Xeon E5310

1.6GHz quad-core
32KB 2x4MB,

shared
None 8GB

AMD Opteron 2352
2.1GHz quad-core

64KB 512KB 2MB,
shared

8GB
cc-
NUMA

effects of binding by comparing to non-binding
cases (Section B.4).

• Architecture Level The types of machines we use
include a Dell PowerEdge 2950 server hosting 2
quad-core Intel Xeon E5310 processors, and a Dell
PowerEdge R80 hosting 2 AMD Opteron 2352 pro-
cessors. They represent two typical CMP architec-
tures on the market. The Intel machine is based
on Front-Side-Bus (FSB) with an inclusive cache
hierarchy; the AMD machine is a Cache Coher-
ent None-Uniform Memory Access (ccNUMA) CMP
with HyperTransport links and an exclusive cache
hierarchy1. Both machines run Linux 2.6.22 with
GCC4.2.1 installed. Table 3 reports their detail.
When the number of threads is smaller than the total
number of cores in a machine (8 in our experiments),
the threads may be assigned to different subsets
of cores. We experiment with up to 7 (depending
on the number of threads) different sets to cover
most representative sharing scenarios. In the case of
2 threads on the Intel machine, for instance, the sets
of cores we use include 2 sibling cores that share
cache, 2 non-sibling cores on a single chip which
share the same memory-processor bus, and 2 cores
residing on different chips. The 4-thread case has 3
corresponding sets. The 8-thread case has only 1 set,
the set of all cores.

Program phase changes may affect the measurement
results, especially on the measured potential of thread
scheduling. Appendix B.2 will show how this factor is
examined in our experiments.

2.3 Measurement Schemes

Our measurement concentrates on running times, cache
miss rates, and shared-data accesses. We use the built-in
utility HOOKS in the PARSEC suite to measure running
times, and employ the Performance Application Pro-
gramming Interface (PAPI) library [4] to read memory-
related hardware performance counters, including cache
miss rates, memory bus transactions, and the reads to
cache lines in a “shared” state for every thread. (As re-
quired by PAPI for thread-level measurement, we set the
pthread scheduling scope to “system” in the hardware
performance monitoring.)

Each instance of the set of factors listed in Table 2
determines a setting of a run. We call such an instance a

1. The latest Intel CMP, Nehalem, resembles this AMD architecture
but with an inclusive cache hierarchy.
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configuration. For each configuration, we conduct 5 to 10
repetitive runs. Besides using the average performance
of the repetitive runs, we employ the statistical analysis
(described in Appendix A) to prevent measurement
noise from causing possibly biased conclusions.

3 MEASUREMENT AND FINDINGS

In this section, we summarize some major findings of
our systematic measurements. Appendix B contains the
details.

We find that, contrary to commonly perceptions, cache
sharing has insignificant (either constructive or destruc-
tive) influence on the performance of the programs.
The main reasons are the large working sets and the
limited inter-thread data sharing of the multithreaded
programs. Furthermore, we reveal that adjusting the
placement of threads on cores has limited potential for
performance enhancement of the programs. It is because
of the uniform relations among parallel threads, which
mismatches with the non-uniform cache sharing on CMP
machines. These conclusions, drawn from the extensive
measurements, appear to hold across inputs, number of
threads, sets of cores, and architectures.

4 PROGRAM-LEVEL TRANSFORMATION

Although the previous section reports insignificant in-
fluence of cache sharing for the performance of PARSEC
programs, we maintain that the results do not suggest
that cache sharing is a factor ignorable in the optimiza-
tion of the execution of those programs. The implication
is actually the opposite: Cache sharing deserves more
attention especially in program transformations.

The conclusion comes from a set of experiments, in
which, we transform several programs to make them
better match the non-uniform cache sharing on CMPs.
The transformations are manual; Appendix D discusses
the automation of such transformations.

Our experiments concentrate on four representative
programs. The transformations on them share a sin-
gle theme: to increase the data sharing among sibling
threads but not other threads. This section uses stream-
cluster as an example to explain the transformations in
detail, and then reports the results on other programs.

4.1 Streamcluster

The program, streamcluster, is a data-mining program
that clusters a stream of data points. One part of the pro-
gram takes a chunk of array points and calculates their
distances to a center point. This calculation occurs many
times and accounts for a major part of the program’s
running time.

4.1.1 Transformation

To highlight the transformation, we use the simplified
pseudo-code in Figure 1 for the explanation, and assume
there are 2 cores per chip.

The original version of the program is outlined in
Figure 1(a). Each of the threads computes the distances
of a chunk of data to the center points. The variables
T1 start, T1 end represent the start and end of the data
chunk assigned for Thread 1, T2 start, T2 end for Thread
2. The outer loop iterates over every candidate cluster
center, and the inner loop iterates over every data point
in a chunk. The function cal dist computes the distance
between a point and a candidate center.

Figure 1(b) illustrates a transformation for improving
the matching between the program and CMP shared
cache. It tries to enhance the data sharing among sibling
threads by letting them compute the distances from
the same chunk of data points (e.g., thread 1 & 2 on
data from T1 start to T2 end) to two different center
points. The chunk size becomes twice as large as before.
The computed distances are stored into two temporary
arrays for later uses. (The use of temporary arrays is
necessary to circumvent some loop-carried dependen-
cies2.) With this transformation, the data sharing among
threads becomes non-uniform: For instance, thread 2
shares substantially more data with thread 1 than with
thread 3. When sibling threads co-run on a CMP proces-
sor, they would form synergistic prefetching with one
another. One thread can use the data point brought into
the shared cache by the other thread.

We notice that one may improve data locality inside
a thread using traditional unroll-and-jam transforma-
tion [1]. The transformed code is shown in Figure 1(c).
(In our implementation, the inner loop is staged to
circumvent loop carried dependencies.) In one iteration
of the inner loop, each thread computes the distances
between a point and two centers, increasing the reuse of
the loaded data points. The increase of data reuse is simi-
lar to the previous transformation, except that it is inside
a thread rather than between threads. The intra-thread
and inter-thread transformations are complementary to
each other. They can be applied to a program at the
same time. In the next section, we report how the inter-
thread transformation benefit the program both without
and with the intra-thread optimizations.

4.1.2 Performance

Figure 2 shows the speedup brought by the transfor-
mations on the Intel machine. In all these runs, we
assign sibling threads to adjacent cores with L2 cache
shared. Even though both the inter-thread and intra-
thread transformations add extra store operations to the
temporary arrays, the results show that their benefits

2. Inside the inner loop, after cal dist, there is an update to a
data structure corresponding to the point P[j], which is then used
in the computation following the inner loop, causing loop carried
dependencies
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(a) Original Version (cache-sharing-oblivious)

(b) Cache-sharing-aware transformation. Data sharing increases between sibling threads (e.g. threads 1 & 2),
but not across sibling pairs (e.g. threads 2 & 3).

(c) Traditional unroll-and-jam (cache-sharing-oblivious). Intra-thread data locality increases.

Fig. 1. Simplified pseudo-code illustrating the original and optimized versions of the function pgain() in streamcluster.
It is assumed that two threads constitute a sibling group that share cache.

outweigh the overhead substantially. An examination of
the source code shows the reason. Each point involved
in the distance calculation is of 128 dimensions. As a
result, the temporary arrays weight only a small portion
of the entire working set.

One may notice that the benefits from the inter-thread
transformation is not as significant as those from the
intra-thread transformation3. It is because the intra-
thread transformation increases the hits in L1 cache,
while the inter-thread transformation only benefits L2
usage. However, it is important to note that these two
transformations are not competitors. As the ”both-share”
bars in Figure 2 show, based on the code optimized
through the intra-thread transformation, the inter-thread
transformation further improves the performance by
23%, demonstrating the complementary relations be-
tween these two kinds of transformation.

Figure 3 reports the normalized L2 cache miss rates
and the numbers of memory bus transactions. The per-
formance of the original program is the baseline. In
each group of bars, the “inter-share” and “both-share”
bars correspond to the cases when the inter-thread
transformation is applied without and with the intra-
thread transformations respectively. In both cases, the
transformation reduces L2 cache miss rates and memory
bus transactions substantially, confirming the benefits
of the transformation for data locality enhancement
despite whether intra-thread optimizations are applied.

3. This result differs from our previous observations [32] because we
reimplement the transformation, during which, we manage to remove
some inefficiency in the intra-thread transformed code, including the
elimination of stores of some intermediate results and some references
to assistant data structures.
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Fig. 2. Speedup by inter-thread, intra-thread, and
combined transformations on the Intel machine. Sibling
threads share L2 cache.

TABLE 4
Streamcluster Running Times

Factor of Reuse 4 8 16 32 64
Intra-thread opt. (s) 15.8 12.5 10.7 10.9 11.5
Combined opt. (s) 11.3 10.5 10.0 10.1 10.7

* machine: Intel; input: 10 20 128 100000 20000 5000

We stress that the application of the transformations
requires the cooperation from thread schedulers. The
“inter-noshare” and “both-noshare” bars in Figure 3
shows the result when sibling threads are placed on
non-sibling cores. The clear contrast with the other
bars demonstrates that the shared-cache-aware program
transformation creates opportunities to better exert the
power of thread co-scheduling or clustering.

The better performance by the combined transforma-
tion comes from the extra data reuses it creates in the
shared L2 cache. It is tempting to think that the intra-
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Fig. 3. The reduction of L2 cache miss rates and memory
bus contention on the Intel machine. In each bar group,
the first two correspond to inter-thread transformations,
and the next two for the combined transformation. In each
pair, the two bars correspond to the cases when sibling
threads share L2 cache or not.

thread transformation of a factor of four yields the same
amount of data reuse, and hence may produce similar
performance as the combined transformation. Experi-
ments show that the two transformations indeed pro-
duce similar performance on some inputs, but the com-
bined transformation still excels on some other inputs,
as exemplified in the second column of Table 4. In fact,
on all reuse levels listed in Table 4, the combined trans-
formation all outperforms the intra-thread optimization.
Hardware performance counters show that the code
from combined transformations yields 27–50% fewer L1
cache misses and 8–32% fewer L2 cache misses than
that from the corresponding intra-thread transformations
does. Source code analysis reveals that in the processing
of one data point, the intra-thread transformations entail
references to as much as twice of data centers and
temporary arrays over the corresponding combined case,
hence the significantly more L1 cache conflicts (note,
each data point is a 128-dimension vector).

4.2 Blackscholes

The program, blackscholes, is a financial application. It
calculates the prices for a portfolio of European options
analytically with the Black-Scholes partial differential
equation. Because there is no close-form expression for
the equation, the program uses numerical computa-
tion [3].

The input data file of this benchmark includes an array
of options. The program computes the price for each of
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Fig. 4. The reduction of L2 cache misses due to cache-
sharing-aware transformation. The Intel machine is used.

the options based on the five input parameters in the
dataset file. The upper bound of the outermost loop in
the program controls the number of times the options
need to be priced. There are no inherent dependencies
between two iterations of the loop. In the original pro-
gram, the parallelization occurs inside the loop. In each
iteration, the options are first evenly partitioned into n
(n for the number of threads) chunks. Each chunk is
then processed by one thread, which prices the options
in the chunk one after one by solving the Black-Scholes
equation.

The transformation we apply is similar to the one on
streamcluster. After the transformation, sibling threads
process the same chunk at the same time; their execu-
tions correspond to a number of adjacent iterations of
the outermost loop.

We observe that the transformation significantly re-
duces the number of misses on the shared cache on
the native input, as shown in the left part of Figure 4.
However, the program running times have no consid-
erable changes. The document of the benchmark (the
README file in the package) mentions that “the limiting
factor lies with the amount of floating-point calculation
a processor can perform.” Through reading the program,
we confirm that the program is a compute-bounded
application—after reading an option data, the program
conducts a significant amount of computation to solve
the Black-Scholes equation with only local variables ref-
erenced. For further confirmation, we artificially reduce
the amount of computation of the kernel in both the orig-
inal and optimized programs. The optimized program
starts showing clear speedup.

4.3 Bodytrack

The program, bodytrack, tracks the 3D pose of a hu-
man body through an image sequence using multiple
cameras. The algorithm uses an annealed particle filter
to track the body pose using edges and foreground
segmentation as image features, based on a 10 segment
3D kinematic tree body model.

The program processes frame by frame, and every
frame consists of multiple camera images. The program
has mainly two parallelized kernels CreateEdgeMap and
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CalcWeights. We make sibling cores share workload of the
same image and non-sibling cores on different images in
the procedure CreateEdgeMap, resulting in a 15% speedup
with 8 threads processing the native input on the Intel
machine. We also increase the chance of true data sharing
for the CalcWeights by redistributing the comparison
workload for edge maps and foreground segment maps,
resulting in a 5% speedup with 8 threads on the Intel
machine. The last level cache misses are significantly
reduced. We provide the normalized last level cache miss
reduction in the middle part of Figure 4.

4.4 Ferret

The program, ferret, is a pipeline program, implementing
a search engine for image searching. Our transformation
concentrates on the most memory intensive stage, the
fourth stage. Appendix C describes a two-step trans-
formation we apply. This transformation creates a non-
uniform relation among threads: Sibling threads share
similar data accesses in the same database section, but
non-sibling ones do not. As shown in the right part
of Figure 4, the transformation eliminates most shared-
cache misses, and yields a speedup of as much as 1.53.

Overall, the experiments demonstrate that after the
transformations, cache sharing starts to show its influ-
ence, and the placement of threads on cores becomes im-
portant for the programs performance. The observations
suggest the importance of program-level transformations
for improving the usage of shared cache. They further
confirm that the uniform relation among threads in the
original programs is one of the main causes for the
limited influence of cache sharing on performance.

In the experiments, all transformations are manual.
Appendix D provides a discussion on the challenges and
potential solutions for automating the transformations.

5 RELATED WORK

Cache sharing exists in both SMT (Simultaneous Mul-
tithreading) and CMP architectures. Its presence has
drawn lots of research interest, especially in architecture
design and process/thread scheduling in OS.

In architecture research, many studies (e.g., [6], [18],
[19], [22], [27]) have proposed different ways to design
shared cache to strike a good trade-off between the
destructive and constructive effects of cache sharing.
These studies, although containing some examination
of the influence of shared cache, mainly focus on the
hardware design. Their measurements are on simulators
and cover limited factors on the program or OS levels.

In OS research, the main focus on shared cache has
been job co-scheduling and thread clustering. Many job
co-scheduling studies [7], [10], [11], [12], [25], [26], [29],
[33], [34], are on multiprogramming environments, at-
tempting to alleviate shared-cache contention by placing
independent jobs appropriately. Some of them include

parallel programs in the job set, but the main focus
is on inter-program cache contention rather than the
influence of shared cache on parallel threads. Tam and
others [28] propose thread clustering to group threads of
server programs through runtime hardware performance
monitoring. Ding and others [9] have proposed the use
of OS support for cache partitioning to alleviate the
contention in shared cache.

Some studies on workload characterization and per-
formance measurement are relevant to this current work.
Bienia and others [2], [3] have shown a detailed explo-
ration of the characterization of the PARSEC benchmark
suite on CMP. Because their goal is to expose architecture
independent, inherent characteristics of the benchmarks,
their measurement runs on simlarge input only, and uses
a CMP simulator rather than actual machines. Liao and
others [16] examine the performance of OpenMP appli-
cations on a machine with private cache only. Tuck and
Tullsen [30] have measured the performance of SPLASH-
2 when 2 threads corun on a SMT processor.

Our work is distinctive in that it examines the influ-
ence of cache sharing in CMP on multithreaded pro-
grams in a comprehensive manner by exploring the
manifold factors and employing modern machines and
contemporary multithreaded benchmarks. The system-
atic examination of the various facets of the problem is
vital for avoiding biases.

There are only a few studies that exploit program
transformations for improving shared cache usage.
Tullsen and others [15], [20] have proposed compiler
techniques based on traditional cache-concious data
placement [5] to reduce cache conflicts among indepen-
dent programs. Nikolopoulos [17] has examined a set
of manual code and data transformations for improv-
ing shared cache performance on SMT processors. We
recently investigate the benefits of cross-thread array
regrouping for locality enhancement in CMP [13]. Some
recent studies [8], [14], [21] start to extend traditional
locality models—such as, reuse distance—to characterize
data references in CMP platforms.

6 CONCLUSION

In this work, we conduct a series of experiments to sys-
tematically examine the influence of cache sharing on the
performance of modern multithreaded programs. The
experiments cover a series of factors related to shared
cache performance on various levels. The multidimen-
sional measurement shows that on two representative
CMP architectures and for all the thread numbers and
inputs we use, shared cache on CMP has insignificant
influence on the performance of most multithreaded
applications in the benchmark suite. The implication,
however, is not that cache sharing has no potential to
be explored for the execution of such multithreaded
programs, but that the current development and com-
pilation of parallel programs must evolve to be cache-
sharing-aware. The point is reinforced by three case stud-
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ies, showing that significant potential exists for program-
level transformations to enhance the matching between
multithreaded applications and CMP architectures, sug-
gesting the need for further studies on cache-sharing-
aware program development and transformations.
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Fig. 5. Statistical analysis for performance comparison.

APPENDIX A
STATISTICAL ANALYSIS

As well known, the running time of a program is subject
to many random factors in the running environments
and software execution stacks, which lead to sometimes
significant variations in execution times of repetitive
runs. A solution often adopted in previous studies is
to repeat the execution and use the average running
time. This solution works only when the variation is
small. Executions of parallel programs, however, often
exhibit large variations, especially when they run on
a platform equipped with distributed memory like the
AMD machine used in this study. Five repetitive runs of
streamcluster under a single configuration, for instance,
have running times ranging from 376s to 446s.

We employ statistical hypothesis testing to address
this problem. As an example, suppose our objective is
to determine whether two configurations, A and B, of
a program differ significantly in their performance. In
statistics, the objective is equivalent to checking whether
the real mean running times of the two configurations
are different. The real mean differs from average run-
ning times: The former is the statistical expectation
of all possible running times, reflecting the inherent
performance of the program; while the latter is just
the average of some observed running times. In the
following explanation, we use Sa = {a1, a2, · · · , an} and
Sb = {b1, b2, · · · , bm} to represent the sets of observed
running times of the two configurations respectively.

The hypothesis testing starts with a null hypothesis,
which is to assume that the two configurations have
the same mean running time. Under the assumption, the
statistical variable,

T =
ā − b̄

s
√

1

n
+ 1

m

,

obeys a Student distribution, where, s is the pooled stan-
dard deviation of all observed running times, and ā and b̄
are the average running times of the two configurations.
Let T ′ be the value of T computed from Sa and Sb. From
the probability distribution function of T , illustrated in
Figure 5(a), it is easy to compute the probability that the
observed value of T could be as large or larger than T ′

by chance under the null hypothesis. This probability is
called the p-value. The smaller the p-value is, the more
unlikely the null hypothesis holds. A common practice
in statistics is to reject the null hypothesis if the p-value
is smaller than a significance level, which is typically 0.05.

Besides the p-value, the hypothesis testing produces a
confidence interval, CI = [l, h], which is an interval the
true difference in the means falls into with probability
as high as (1-significance level). If the interval spans over
zero, the two means are not considered to be signifi-
cantly different. This criterion is equivalent to the one
mentioned on p-value.

In addition to the quantitative results from the hy-
pothesis testing, boxplots visualize the significance of the
differences. The two boxplots in Figure 5(b) illustrates
the distributions of Ta and Tb computed from their
observed running times. The large overlap between the
value ranges of the boxplots suggests that the difference
between the mean performance of the two configurations
is unlikely to be significant. In the following sections, we
will show that these statistical techniques successfully
prevent some noises from blurring the analysis of the
effects of cache sharing.

APPENDIX B
DETAILS OF MEASUREMENT AND FINDINGS

In this section, we report the detail of the experiments,
the measurement results, and findings. As the focus of
this work is on the performance influence from cache
sharing, our experiments center on the comparisons
between the sharing and non-sharing cases—that is,
when the threads are bound to sibling or non-sibling
cores respectively, as shown in Section B.1. To prevent
thread scheduling from affecting the comparison, for
the sharing case, we also examine the performance
difference caused by different assignments of threads
to cores, as reported in Section B.2. We describe the
results of dedup and ferret separately in Section B.3. They
are two pipeline programs with task-level parallelism
and several pipeline stages. Each stage is handled by
a pool of threads. Unlike other programs, the interac-
tions among the threads in these two programs exist
both within and between stages, requiring a different
set of measurements. The other pipeline program, x264,
behaves like a data-parallel program, with each thread
working on an image frame. So we report its results
together with the non-pipeline programs.

B.1 Sharing Versus Non-Sharing

To study the influence of cache sharing, we compare
the sharing case where the threads are bound to sibling
cores, and the non-sharing case where the threads run
on non-sibling cores. Let a be the number of threads
per chip in the sharing case. The average cache size per
thread in the sharing case is 1/a of the size in the non-
sharing case. The reduced size is part of the effects of
cache sharing. We will see that the resulting influence
on performance is insignificant for most programs.

We use two and four threads in the experiments. (We
did not use 8 threads as there would be no interesting
non-sharing case to compare.) On the AMD machine,
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Fig. 7. Statistical analysis of the eight AMD configurations
that have arrows on top in Figure 6 (left-to-right). Each
boxplot shows the distribution of the running times of five
repetitive runs of a configuration, with the sharing case
on the left, and the non-sharing case on the right. The
table reports the p-values, the confidence intervals (CI),
and the analysis result—whether the difference between
the sharing and non-sharing is statistically significant.
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Fig. 6. The running time of each program in the sharing
case normalized to its running time in the non-sharing
case. The bars with an arrow on top are those whose
height departs from 1 by over 5%.

because of the quad-core sharing, the two 4-thread cases
actually both have some degree of cache sharing: In the
4-thread sharing case, all four threads run on one chip,
thus share one cache; In the 4-thread non-sharing case,
there are two threads per chip.

When there are more than one way to assign the
threads to cores, we pick the most straightforward way.
For instance, in the case of 4-thread sharing case on
the Intel machine, we assign threads 0 and 1 to two
sibling cores and threads 2 and 3 to the other two sibling
cores on a chip. Section B.2 will show that other ways
of assignments produce similar results.

Figure 6 presents the comparison of the average run-
ning times. Each bar in the figure shows the running time
(averaged over five runs) of the program in the sharing
case normalized to the time in the non-sharing case. So,
a bar higher than 1 means that the contention on the
shared cache and memory bus causes slowdown to the

program in the sharing case; a bar lower than 1 indicates
that the constructive sharing improves the performance
of the program. On the Intel machine, only three bars
show over 5% departure from 1; all are of streamcluster.
On the AMD machine, eight bars have over 5% distance
from 1.

Some repetitive runs in this experiment show large
variations in their running times (e.g., 2.7s to 3.9s for one
simlarge configuration of Facesim on the AMD machine).
As mentioned in Section A, for such cases, average
values are not enough for performance comparison.

We apply the statistical techniques described in Sec-
tion A to all the configurations whose average running
times depart from 1 by over 5%, which are highlighted
by arrows on top of the corresponding bars in Figure 6.
The boxplots in Figure 7 show the distribution of the
running times, and the table below the graphs reports
the p-values and confidence intervals. The bottom row of
the table indicates that three of the eight configurations,
contrary to what their average values show, do not
show significant differences between the running times
of their respective sharing and non-sharing cases. Take
the second configuration (canneal on the simlarge input
with 4 threads running on the AMD machine) as an
example. Its confidence interval, [-0.2, 0.4], containing
0, suggests that the null hypothesis (the two cases have
the same mean running time) cannot be rejected in the
significance level (5%). Its p-value (0.3; greater than 0.05)
gives the confirmation. The second graph in Figure 7
visualizes the insignificance of the difference by showing
that there is substantial overlap between the ranges of
the running times of the sharing and non-sharing cases.

The same statistical analysis shows that the three con-
figurations on the Intel machine marked in Figure 6 all
indeed have significant differences between the running
times of their sharing and non-sharing cases.

The slowdown in the sharing cases of streamcluster on
the simlarge input (especially on the Intel machine) is the
most remarkable case among all the cases that have sig-
nificant differences. The main reason for the slowdown is
the cache and bus contention. The slowdown, however,
becomes minor or even turns into small speedup for
its runs on the native input. This change is because the
larger size of the native input causes the working sets to
grow so much that the L2 cache miss rates in the sharing
and non-sharing cases become similar (as to be shown
in Figure 8).

Overall, the sharing shows insignificant influence for
the performance of most of the programs. The measured
cache miss rates further confirm the result. Figure 8
plots the cache accesses and misses averaged over the
threads on the Intel machine for the 2-thread cases on
native inputs. The cache misses are similar in the sharing
and non-sharing scenarios for most programs, consistent
with the running time results shown in Figure 6.

The reasons for the insignificance of the influence
come from two aspects. First, the small amount of inter-
thread data sharing determines the limited constructive
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Fig. 9. Shared L2-cache reads in 2-thread cases on Intel,
normalized by the total number of L2-cache accesses.

effects from shared cache. Figure 9 shows the portion
of all the reads on shared cache that happen to access
a cache line with a “shared” state (i.e., more than one
cores have been reading the data in the cache line.)
The larger the portion is, the more data that the co-
running threads may prefetch for each other, and hence
the more constructive effects cache sharing may impose.
The portions are less than 7% for all the programs.
Analysis of the source code of the programs confirms the
finding. Take the program canneal as an example. Each
of its threads operates on randomly picked two nodes
in a network in every iteration. Because of the large size
of the network and the randomness in node selection, it
is no surprise to see the small amount of references on
shared data blocks.

Second, because the working sets of the programs,
as shown in Table 1, are typically much larger than
the shared cache on a processor, the difference of the
cache size per thread between the sharing and non-
sharing cases is not enough to make significant changes
in cache misses. The cache sharing therefore shows no
clear negative effects either. The working set of the

program blackscholes is smaller than the shared cache
on the Intel machine, but it has very few L2 cache line
reuses, as shown in Figure 8. So the cache sharing has
little influence on it either.

B.2 Comparisons Among Sharing Cases

The threads in a parallel program usually have certain
differences among one another. Threads in a data-level
parallel program may compute on different sections of
data, resulting in different working sets. Threads in
pipeline programs may execute different tasks. In both
types of programs, there may be non-uniform commu-
nication and data sharing across threads.

In light of the non-uniform cache sharing, the differ-
ences among threads may offer opportunities for per-
formance improvement through appropriate placement
of threads on cores. The sharing cases considered in
the previous subsection contain just one thread-core
assignment for each scenario. This section examines the
impact that different assignments may have by binding
threads to cores in various ways.

For 4-thread cases, we permutate the thread-core as-
signments and exhaust distinctive co-running combina-
tions. For example, when the 4 threads are assigned to
two pairs of sibling cores residing on two AMD chips,
the assignments we examine include {(T0,T1), (T2,T3)},
{(T0,T2), (T1,T3)}, (T0,T3), (T1,T2)}, where, each pair of
parentheses contain two threads assigned to two sibling
cores.

For 8-thread cases, we use three representative thread
assignments in both the Intel and AMD architectures.
We place the threads in such a way that threads whose
indices differ by a given distance are assigned to sibling
cores. For example on Intel machine, with the distance
set to 1, every two consecutive threads reside on two
sibling cores. We vary the distance from 1 to 2 to 4.

Table 5 shows the maximum performance difference
caused by the different assignments when the simlarge
and native inputs are used. As the table shows, 6 of the 8
benchmarks have less than 4% maximum difference. For
the 6 configurations (highlighted by boldface numbers)
that show over 4% differences, we apply the statistical
analysis introduced in Section A to each of them, and
report the results in Figure 11. The clear overlap of
the data ranges in most of the boxplots suggests the
insignificance of the performance differences. The ta-
ble below the boxplots gives quantitative confirmations.
Among all the six configurations, only the third one, 4-
thread of Canneal on the native input, shows significant
difference between the running times of its two thread-
core assignments. This result is a clear contrast against
the over 4% differences observed on the average running
times, which underscores the necessity of the statistical
analysis.

Overall, the different thread-core assignments do not
show considerable effects on the program performance.
There are two possible reasons. First, the threads in those
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Fig. 10. Temporal traces of the L2 cache miss rates of
four programs. Each has 4 threads running on the Intel
machine. The threads are in three different co-running
configurations.

1.05

1.1

1.15

0.75
0.8

0.85
0.9

0.95

50

60

(1) (2) (3)

23
24
25
26
27

2.8
3

3.2
3.4
3.6

2

2.5

3

(4) (5) (6)

config 1 2 3 4 5 6
p-value 0.1 0.09 0.04 0.2 0.2 0.2

CI high -0.1 -0.2 -11 -2.9 -0.7 -1.2
low 0.01 0.01 -0.2 0.6 0.17 0.3

significant N N Y N N N

Fig. 11. Statistical analysis of the significance of the
differences highlighted in Table 5. The first four graphs
correspond to the highlighted configurations of canneal
from left to right in Table 5; the rest correspond to Facesim
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TABLE 5
Maximal performance differences (%) caused by different

bindings of threads to a given set of cores

Intel AMD
simlarge native simlarge native

Benchmarks 4-t 8-t 4-t 8-t 4-t 8-t 4-t 8-t
Blackscholes 0.04 0.08 0.02 0.03 0.1 0.3 0.05 0.04
Bodytrack 0.54 0.43 0.10 0.84 0.9 0.3 2.50 1.69
Canneal 3.69 5.01 1.94 3.0 2.1 7.9 9.08 4.62
Facesim 0.48 0.11 0.09 1.21 8.8 15 1.42 2.39
Fluidanimate 1.31 2.04 1.33 3.97 0.7 1.1 0.28 1.21
Streamcluster 0.49 0.22 0.12 0.08 0.1 0.3 1.14 0.04
Swaptions 0.40 0.76 0.09 0.46 0.9 0.9 0.21 0.65
X264 0.52 0.65 0.08 0.31 0.8 3.3 0.54 1.04

programs may have similar interactions (communica-
tions, synchronizations, etc.) with one another, that is, for
each thread, its relations with any other threads may be
similar. The second possible reason is program phases.
It could be that even though the interactions among
threads are not similar among one another, but the
interactions show different patterns in different phases
of the execution so that no particular assignments work
well for all the phases.

We conduct a more detailed experiment to determine
the exact reason. We collect the cache miss rates of
every 100 million instructions (a typical interval gran-
ularity used in phase detection [23], [24]) when the
program runs in different thread-core assignments. The
three curves in each graph in Figure 10 represent the
temporal traces of the L2-cache miss rates of a program
when it runs on the Intel machine with threads placed
on two pairs of sibling cores in three different ways,
corresponding to three sharing cases. The four programs
show different phase patterns, but the three sharing
cases all show similar L2-cache miss rate curves. Similar
phenomena are seen on other programs, indicating that
the uniform interplay among threads rather than phase
changes is the reason for the observed insignificance of
the influence of thread-core assignments.
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As a side note, the insignificant influence seems to
suggest little potential of thread co-scheduling (or thread
clustering) for improving the performance of these pro-
grams, a contrast to previous results on independent
jobs [11], [25] and server programs [28]. However, Sec-
tion 4 will show that program transformations may lead
to an opposite conclusion.

B.3 Pipeline Programs

Unlike data-parallel programs, typical pipeline programs
contain several concurrent computation stages, and the
interactions among the threads exist both within and
between stages. In PARSEC, ferret and dedup are two
such programs. When changing thread-core bindings,
we sometimes observe significant performance varia-
tions. However, the reason for the difference is not the
effects from the shared cache, but the load balance across
stages, as detailed in our previous paper [32].

B.4 Effects of Binding vs. Non-Binding of Threads

As many of the measurements shown earlier bind
threads with cores, in this part, we examine the effects
of the binding. In the binding cases, we bind each
thread to a particular core by inserting an invocation of
the system function “pthread setaffinity np” into each
benchmark at the point where threads are created. In the
non-binding case, we rely on the default Linux sched-
uler to schedule the threads; the scheduler periodically
migrates threads to maintain load balance if necessary.
As mentioned in Section 2.2, in both binding and non-
binding cases, we explicitly specify the set of cores to
use (through the “taskset” command in Linux or the
“pthread setaffinity np” function) when the number of
threads is smaller than the total number of cores in a
machine.

The results indicate that binding makes the programs
perform much more stably than non-binding, reducing
performance variations by as much as a factor of 122.
Furthermore, most running times of non-binding cases
are either similar or longer than the corresponding bind-
ing cases [32], showing that binding threads to cores
typically does not worsen the program performance on
CMP, and thus is a valid way for the study of the
influence of cache sharing.

Short Summary This section has shown that due to the
large working sets and the limited inter-thread data shar-
ing of the multithreaded programs, cache sharing has in-
significant (either constructive or destructive) influence
on the performance of the programs. Furthermore, we
reveal that adjusting the placement of threads on cores
has limited potential for performance enhancement of
the programs. The main reason is the uniform relations
among parallel threads, which mismatches with the non-
uniform cache sharing on CMP machines. These conclu-
sions, drawn from the extensive measurements, appear
to hold across inputs, number of threads, sets of cores,
and architectures.

APPENDIX C
OPTIMIZING Ferret
The program, ferret, is a pipeline program. It implements
a search engine for finding a set of images that best
match a query image by analyzing their contents. The
program contains 6 concurrent pipeline stages. The first
and final stages are for initialization and completion with
only one thread in each. The other four stages have the
same number of threads. The number is specified in the
program input.

The fourth stage of the pipeline is the most memory
intensive phase of the program. During that stage, the
features of a query image extracted by the first three
stages are compared against the feature database to iden-
tify the top K images closest to the query image. In the
original program, each thread processes one query each
time. Every query will look up some part of the database
according to the locality sensitive hashing (LSH) that
maps similar items to the same buckets in the hash table.
The part of database that is traversed is much larger than
the size of the last-level cache we experiment with, not
to mention the size of the whole database.

We apply a two-step transformation to examine the
potential of shared-cache–aware program optimizations.
First, we split the database into m sections evenly (m
equals the number of shared caches in the machine).
The threads running on the ith shared cache compare
the queries against only the ith database section. As a
result, each query is processed by m threads (one on each
shared cache). A post step is added to merge the results
together. For example, there are eight threads with the
first four running on the first chip and the second four
on the other chip (assuming one shared cache per chip).
After the transformation, the database is split evenly
into two sections, owned by each chip. At most four
queries can be processed at one time with threads 0 and 4
processing the first query, threads 1 and 5 processing the
second and so on. In the second step, based on their data
addresses, we reorder the queries and assign them to
the corresponding threads so that nearby queries for the
same database section are processed by sibling threads
within a short time interval.

This transformation creates a non-uniform relation
among threads: Sibling threads share similar data ac-
cesses in the same database section, but non-sibling ones
do not. Besides the synergistic prefetching among sibling
threads, an additional benefit is that shared cache can
be used more efficiently: Rather than keeping multiple
copies of a database entry in multiple shared caches as
the original program entails, the transformed program
ensures that different shared caches store different parts
of the database. The transformation is insensitive to
database size as data reuses are enhanced in an inter-
thread level within short time intervals. As shown in
the right part of Figure 4, the transformation eliminates
most shared-cache misses, and yields a speedup of as
much as 1.53.
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double pgain(long x, Points *points, double z, long int *numcenters, int pid, pthread_barrier_t* barrier){

    // i  [k1, k2], the range of points the current thread operates on

    R: is_center[i], *numCenters;   W: center_table[i];

    P0:  W: gl_cost_of_openning_x, gl_number_of_centers_to_close;

    R: is_center[i];   W: center_table[i], switch_memship[i];

    for ( i = k1; i < k2; i++ ) { // inner loop

    float x_cost = dist(points->p[i], points->p[x], points->dim)* points->p[i].weight; // candidate references

              points->p[i].assign, points->p[i].cost, center_table[i];             switch_membership[i];          

    }

    R: center_table[i], is_center[i];

    P0: R, W: gl_cost_of_openning_x,  gl_number_of_centers_to_close;

    R: points->p[i].assign, points->p[i].corrd, points->p[i].weight, center_table[i], is_center[i], 

       gl_cost_of_openning_x, switch_membership[i];    W: points->p[i].cost, points->p[i].assign, is_center[i];

    P0: W: *numberCenters, gl_cost_of_openning_x,  gl_number_of_centers_to_close;

    R: gl_cost_of_openning_x;

}

float dist(Point p1, Point p2, int dim){
  float result=0.0;

  for (i=0;i<dim;i++)

    result += (p1.coord[i] - p2.coord[i])*
                   (p1.coord[i] -p2.coord[i]);

  return result;
}

float pFL(Points *points, int *feasible, int 
numfeasible, float z, long *k, double cost, long 

iter, float e, int pid, pthread_barrier_t* barrier){

    ... ...
    for (i=0; i< iter; i++) { // outer loop

         x = i%numfeasible; // a possible center

         change += pgain (feasible[x], points, z, k,   
                          pid, barrier);

}
... ...

}

R: W: 

Fig. 12. The sketch of part of the actual code of streamcluster. All procedures shown are executed by every thread.
(W: the data that are written; R: the data that are read; P0: thread 0; line segments: barriers.) The two loops in boldface
correspond to the nested loop shown in Figure 1(a).

APPENDIX D
DISCUSSION ON THE AUTOMATION OF CACHE-
SHARING-AWARE TRANSFORMATIONS

How to automate cache-sharing-aware transformations
is a challenging problem beyond the scope of this paper.
This section examines the manual transformations we
have conducted in a further depth to expose some
insights for the development of such optimizers.

Cache-sharing-aware transformation consists of two
steps. The first is to identify data references to optimize
based on the frequency, and the potential influence on
cache performance of all major data objects in a program.
Both static and profiling approches may facilitate this
process.

The second step, code transformation, is more compli-
cated than the first. The principle of the transformation
is to change the way the candidate data structures are
referenced so that a large amount of data are shared
among sibling threads, but little among non-siblings. The
main approach to such changes is loop transformations
as exemplified in Figure 1.

However, automating such loop transformations in
real code is much more complex than what the simplified
code in Figure 1 shows. Figure 12 outlines the sketch of
the real code of some functions in streamcluster. The two
levels of the nested loop shown in Figure 1(a) correspond
to the two loops in boldface in Figure 12.

Compared to the simplified code in Figure 1, the code
in Figure 12 has some complexities worth mentioning.
First, the two levels of the nested loop lie in two proce-
dures, pFL() and pgain() respectively, with a considerable
amount of code existing both before and after the inner
loop. In addition, the procedure pgain() uses some point-
ers whose targets are not easy to resolve through existing
pointer analysis techniques. The implication to automatic
optimizers is that they must have the capability for

loop analysis across procedures, and for handling the
inaccuracy in the analysis of aliases and pointers.

Second, some data references, both outside and in-
side the inner loop, carry true dependences across the
iterations of the outer loop. For example, the value of
points->p[i].assign loaded through a statement inside the
inner loop may come from an update by the previous
iteration of the outer loop. Similar dependences exist
on the references to *numCenters, is center, and points-
>p[i].cost. These dependences make it infeasible to di-
rectly conduct the unrolling transformation of the outer
loop, an important step in the optimization illustrated
in Figure 1(b). In our manual transformation, we ad-
dress this problem based on the observation that despite
all those dependences, the candidate references in the
inner loop (highlighted by boldface comments) carry
no true dependences across the iterations of the outer
loop. Therefore, if we can extract the related statements
into a new procedure and invoke it before pgain(), the
transformations shown in Figure 1(b) would become
possible. To do so, the optimizer must be able to deter-
mine the validity of the transformation by checking two
properties: No dependences in pgain() are invalidated,
and no errors are introduced by the resulting changes to
the timing that is originally set by the many barriers in
pgain(). These requirements suggest another two capabil-
ities that the automatic optimizer must have: They must
be able to detect data dependences both inside and cross
procedures, and handle various parallel-programming
constructs, including barriers, synchronizations, locks,
and so on.

It is worth mentioning that between the two ex-
tremes, complete manual transformations and fully au-
tomatic optimizations, there is a spectrum of degrees of
combination between them. Manual transformations are
powerful, but time consuming, and error-prone. More
importantly, they are subject to hardware changes: In
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many cases, the transformations have to hard code the
thread-core assignments to attain a deterministic sib-
ling relations among threads, so that they can realize
the suitable non-uniform data sharing. The optimized
program would be difficult to adapt to other systems
that have different core layouts. On the other hand,
automatic optimizations are free of those drawbacks but
are constrained by the various program complexities as
mentioned in the previous paragraphs.

An appropriate integration of programmer’s knowl-
edge in the automatic optimizer may help get best of
both worlds. The design of the interface between them is
an interesting research problem. Ideally, it should allow
easy input from the programmer to help resolve the pro-
gram complexities, but impose no hardware-dependent
constraints to the transformation. Detailed studies are
out of the scope of this paper.


