
Adaptive Speculation in Behavior-Oriented Parallelization

Yunlian Jiang Xipeng Shen
Computer Science Department

The College of William and Mary, Williamsburg, VA, USA
{jiang,xshen}@cs.wm.edu

Abstract

Behavior-oriented parallelization is a technique for par-
allelizing complex sequential programs that have dynamic
parallelism. Although the technique shows promising re-
sults, the software speculation mechanism it uses is not
cost-efficient. Failed speculations may waste computing re-
source and severely degrade system efficiency. In this work,
we propose adaptive speculation to predict the profitabil-
ity of a speculation and dynamically enable or disable the
speculation of a region. Experimental results demonstrate
the effectiveness of the scheme in improving the efficiency
of software speculation. In addition, the adaptive specu-
lation can also enhance the usability of behavior-oriented
parallelization by allowing users to label potential parallel
regions more flexibly.

1 Introduction

It is often challenging to parallelize a sequential program
with dynamic high-level parallelism, due to the code com-
plexity, input-dependent behavior, and the uncertainty in
parallelism. We recently proposedbehavior-oriented par-
allelization (BOP) [3] to address that problem. The goal
of BOP is to improve the (part of) executions that contain
coarse-grain, possibly input-dependent parallelism. Unlike
traditional code-based approaches that exploit the invari-
ance holding in all cases,BOPutilizes partial information to
incrementally parallelize a program for common cases. As
a software speculation technique,BOP guarantees the ex-
ecution correctness by protecting the entire address space.
The high overhead and the uncertain dependences, however,
may make a speculation useless, in which case, the spec-
ulation forms a waste of computing resource. This waste
can degrade system efficiency severely when the input to
the program causes dependences for many instances of the
speculated regions. The currentBOP system blindly spec-
ulates everypossibly parallel region(PPR), thus is cost-
inefficient.

To reduce the waste caused by failed speculations, this
work proposes adaptive speculation. The goal is to make
BOP able to conduct only profitable speculations and au-
tomatically disable unprofitable ones. Besides improving
computing efficiency, adaptive speculation providesBOP
users greater flexibility in labelingPPRs. A user will be
able to label more regions asPPRs as the adaptive scheme
can automatically select profitable ones for speculation.

It is challenging to predict speculation profitability
through program code analysis because the profitability de-
pends on program inputs and runtime behavior. This work
treats the problem as a statistical learning task. We de-
velop an adaptive algorithm that recognizes the profitabil-
ity patterns of aPPRby online learning from the previous
instances of thePPR. A complexity in the learning is that
the profitability of the earlier instances are not always un-
veiled: If aPPRinstance is not executed speculatively,BOP
cannot determine its profitability. The algorithm manages
to learn from the partial information and adapt to the dy-
namic changes in profitability patterns. It yields over 86%
prediction accuracy for five of sixPPR patterns and saves
up to 162% computation cost compared to the originalBOP
system.

2 Review of BOP

In BOP, multiplePPRinstances are executed at the same
time. A PPR is labeled by matching markers:BeginPPR(p)
andEndPPR(p). Figures 1 and 2 show the marking of pos-
sible loop parallelism and possible function parallelism re-
spectively.

Figure 3 illustrates the run-time setup. Part (a) shows
the sequential execution of threePPR instances,P , Q, and
R. Part (b) shows the speculative execution. The execution
starts as theleadprocess. When the lead process reaches the
start marker ofP , mb

P , it forks the first speculative process,
spec 1, and then continues to execute the firstPPRinstance.
Spec 1 jumps to the end marker ofP and executes from
there. When spec 1 reaches the start ofQ, mb

Q, it forks the

...
while (1) {
get work();
...
BeginPPR(1);
work();
EndPPR(1);
...
}

Figure 1. possible
loop parallelism

...
BeginPPR(1);
work(x);
EndPPR(1);
...
BeginPPR(2);
work(y);
EndPPR(2);
...

Figure 2. pos-
sible function
parallelism

P

Q

R

mb
P

me
P

mb
Q

me
Q

mb
R

me
R

P

Q

Q

R
(partial)

R

mb
P

me
P

mb
Q

me
Q

me
P

me
Q me

R

spec 1 starts

spec 2 starts

spec 1
commits

(b) A successful parallel execution, with

lead on the left, spec 1 and 2 on the right.

Speculation starts by jumping from the

start to the end marker. It commits when

reaching another end marker.

(a) Sequential

execution of PPR

instances P, Q, and

R and their start and

end markers.

(

(

(

(

(

(

(

(

(

(

(

(

(

spec 2 finishes first
and aborts understudy

(parallel exe. wins)

(

(

(

(

spec 2
commits

mb
R

understudy
branch

starts

lead process

next lead

Figure 3. An illustration of the sequential and
the speculative execution of three PPR in-
stances

second speculative process,spec 2, which jumps ahead to
execute from the end ofQ.

At the end of P , the lead process starts anunder-
studyprocess, which reexecutes the following codenon-
speculatively. The lead process itself then waits for spec
1 to finish, checks for conflicts; if no conflict is detected, it
commits its changes to spec 1, which assumes the role of
the lead process so later speculation processes are handled
recursively in a similar manner. Thekth spec is checked and
combined after the firstk − 1 spec processes commit.BOP
employs a set of techniques to efficiently detect conflicts for
execution correctness [3].

One of the important features ofBOP is that the under-
study and the speculative processes execute the samePPR
instances. The understudy’s execution is part of a sequen-

tial execution of the program and thus is absolutely correct;
on the other hand, the speculative execution starts earlier
but contains more overhead and is subject to possible de-
pendence violations. They form a sequential-parallel race.
If the speculation completes earlier correctly, the parallel
run wins and the parallelism is successfully exploited; oth-
erwise, the understudy’s run guarantees the basic efficiency
of the program. In the latter case, the speculative processes
abort, and their execution becomes a waste of computing
resource.

3 Adaptive Speculation

To avoid the waste caused by failed speculative execu-
tions, we develop a statistical predictor that learns from
prior instances of aPPR and predicts the profitability of
its future instances. The output of the predictor is a binary
value, indicating whether aPPR instance is profitable to be
speculatively executed.

This prediction task resembles branch prediction, but dif-
fers in two aspects. First, in branch prediction, the correct-
ness of a prediction can always be determined immediately
after the branch is resolved, whereas, in adaptive specula-
tion, the profitability of aPPRinstance cannot be uncovered
unless the instance is speculatively executed. So, if aPPR
instance is predicted as not beneficial and is not specula-
tively executed, the correctness of the prediction will remain
unknown. The adaptive speculation, therefore, has to learn
from the partial information. The second difference is that
branch prediction is usually implemented on hardware with
strict constraints on both space and time, whereas, adaptive
speculation is a software scheme, permitting more sophisti-
cated algorithms.

The adaptive algorithm to be presented focuses on loop
parallelism; it learns from prior iterations of a loopPPR. For
the purpose of clarity, the following description assumes the
speculative depth to be 1—that is, there is at most one spec-
ulation process at any time.

Figure 4 shows the adaptive algorithm. In this algorithm,
the array elementgain[i] records the exponentially decayed
average of the speculation success rate ofPPRi. Thedecay
factor is γ (0 ≤ γ ≤ 1); the higher it is, the faster the in-
fluence of a past speculation decays. The elementquota[i]
records the number of the instances ofPPRi that have been
executed without speculation since the previous failed spec-
ulation. The factorβ is theaggressiveness factor; the higher
it is, the less quota is needed for resuming the speculative
execution. Thegain threshold, G TH (0 ≤ G TH ≤ 1), de-
termines the tolerance of the adaptive scheme to speculation
failures; the higher it is, the more likely occasional failures
of speculative execution will disable the speculation of the
next severalPPRinstances.

gain[i] = 1;

quota[i] = 0;

gain[i] +

quota[i] *β

< G_TH?

quota[i] ++;

execute without

speculation

quota[i] = 0;

execute with

speculation

speculation

succeeds?

g = 1 g = 0

run to BeginPPR(i)

N

Y

N

Y

gain[i] = γ *g + (1- γ)*gain[i]

Figure 4. Adaptive algorithm

In the algorithm, both a successful speculation and a
non-speculative execution (also called a skipped specula-
tion) of a PPR instance contribute to the sum that triggers
the next speculation (the white diamond box in Figure 4).
The contribution from a successful speculation ranges from
γ ∗ (1−G TH) to γ, and a skipped speculation contributes
β. Intuitively, a non-speculative execution should not be
more encouraging than a successful speculation. Therefore,
β should usually be smaller thanγ ∗ (1 − G TH) (and
greater than 0).

The adaptive algorithm has three important features.
First, the number of consecutive skips is limited by a con-
stant upperbound,G TH/β. This property preventsBOP
from skipping a whole parallelizable phase that follows a
long unprofitable phase (i.e., pattern 2 followed by pattern
1 in Figure 5). Second, the algorithm learns from not only
recent failures but also long-term speculation success rate.
This property is useful for the algorithm to tolerate occa-
sional abnormal events. Meanwhile, the use of decay helps
the algorithm respond quickly to phase changes. The third
property is that the aggressiveness in trying a speculationis
a tunable factor (β) separated from the tolerance to specu-
lation failures (G TH), enabling more flexible control.

In the integration of the algorithm intoBOP, the lead
process conducts all the operations of the algorithm except
those in the grey boxes in Figure 4. The answer to the ques-
tion in the grey diamond box comes from the winner of the
race between the understudy and the spec process. The new
lead process (i.e., the winner of the race) conducts the oper-
ations in the two grey rectangle boxes.

(1)

(2)

(3)

Figure 5. Basic patterns of speculation prof-
itability. (|: profitable; ¦: non-profitable.)

4 Evaluation

This section first presents the accuracy of profitability
prediction of the adaptive algorithm, and then reports the
improvement of the computation efficiency ofBOPsystem.

4.1 Prediction Accuracy

To comprehensively evaluate the adaptive schemes, we
test the algorithm on a series of profitability patterns. The
three basic patterns are showed in Figure 5. The first pat-
tern is when unprofitable speculations are rare; the second is
when the profitable speculations are rare; the third is when
unprofitable and profitable speculations are evenly mixed.
The pure randomness of the third pattern determines that no
algorithms can predict the instances in the pattern with an
accuracy consistently higher than 50%. Therefore, we fo-
cus on the first and the second patterns. In addition, we use
their combined patterns to test the capability of the adaptive
algorithm in handling pattern changes. A combined pat-
tern consists of a number of equal-length subsequences of
the two basic patterns that interleave with each other. For
each (basic or combined) pattern, we create a biased ran-
dom sequence composed of 200,000 elements. An element
is either 0 or 1, respectively standing forPPRinstances that
are profitable or unprofitable to be executed speculatively.
The two basic patterns respectively contain 10% and 90%
dependences. We use 4 combined patterns; the length of
a subsequence in them is respectively 10, 100, 1000, and
10000.

The prediction accuracy is defined as follows:

accuracy =
|Spec ∩ Prof | + |Spec ∩ Prof |

|Prof ∪ Prof |
,

where,Specis the set ofPPR instances that are executed
speculatively, andProf is the set ofPPR instances that are
profitable to be speculated. Thus, the denominator in the
criterion is the total number of opportunities for (successful
and non-successful) speculation, which is equal to half the
total number ofPPRinstances; the numerator is the number
of correct predictions for both profitable and non-profitable
PPRinstances.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

γ

A
cc

ur
ac

y
(%

)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

G_TH

A
cc

ur
ac

y
(%

)

10
−3

10
−2

10
−1

10
00

20

40

60

80

100

β

A
cc

ur
ac

y
(%

)

(a) Decay factor (b) Gain threshold (c) Aggressiveness factor

Figure 8. The effect of each individual parameter in the adap tive algorithm. The seminal configura-
tion is as follows: γ = 0.4, G TH = 0.25, β = 0.0073.

0 500 1000 1500 2000 2500 3000 3500

50

60

70

80

90

Configurations

A
cc

ur
ac

y
(%

)

Figure 6. Prediction accuracies using differ-
ent configurations. The configurations in a
panel (i.e., the area between two adjacent ver-
tical lines) have the same value of γ. The or-
der of the configurations follows the loops in
Figure 7.

for (γ=0.05; γ < 1; γ+=0.05){
for (G TH = 0.05; G TH <= 0.9; G TH += 0.05){
for(k = 1; k < 100; k += 10){
β = γ*(1-G TH)/k;
... ...}}}

Figure 7. Generation of the configurations in-
cluded in Figure 6.

Table 1. Profitability prediction accuracy ∗

Patterns accg(%) accl − accg(%) (γ, G TH, β)l

1 89.6 0.6 (0.25, 0.3, 0.0159)
2 86.8 3.2 (0.05, 0.9, 0.0001)
(1,2)-102 77.2 1.5 (0.85, 0.1, 0.0084)
(1,2)-103 86.2 0.2 (0.35, 0.25, 0.0085)
(1,2)-104 88.0 1.0 (0.2, 0.25, 0.0021)
(1,2)-105 88.2 1.8 (0.05, 0.65, 0.0002)

∗ accg is the accuracy using the globally-chosen configuration;accl is for
the locally-chosen configuration;(γ, G TH, β)l shows the corresponding
configurations.

Figure 6 contains the prediction accuracy of the adap-
tive algorithm using different configurations; an accuracy
is the average value over all 6 patterns presented earlier in
this section. There are 3420 configurations in the graph, the
order of which is determined by the nested loop showed in
Figure 7.

The configuration, (γ = 0.4, G TH = 0.25, β =
0.0073), produces the most accurate prediction, an average
accuracy of 85.6%. The second column in Table 1 shows the
accuracy when using this configuration (denoted byaccg, g
for global) on each of the 6 patterns. The first combined
pattern shows the lowest accuracy, 77.2%, due to the fre-
quent pattern changes. All other patterns show accuracies
higher than 86.2%. The third column reports the difference
of accg from the accuracies produced by the best configura-
tion for each individual pattern,accl (l for local). The small
difference demonstrates that the adaptive algorithm is able
to handle different profitability patterns by using a single
configuration.

Figure 8 illustrates the influence of the three factors. We
use (γ = 0.4, G TH = 0.25, β = 0.0073) as the seminal
configuration, and change one factor each time to obtain the
three graphs. The increase of the decay factor improves pre-

Table 2. Efficiency comparison on parser
sentences pePPR 2 5 10 50

acc adapt-bop 0.89 0.88 0.94 0.86
org-bop 0.50 0.88 0.94 0.86

cost seq 12.40 12.27 12.40 12.33
(s) adapt-bop 20.12 38.60 28.30 17.64

org-bop 52.75 38.73 28.45 17.96

time seq 12.29 12.27 12.27 12.33
(s) adapt-bop 12.33 12.87 9.43 6.88

org-bop 17.58 12.91 9.48 6.99

diction accuracy first and then decreases it, indicating the
tradeoff between the usefulness of long-term and shor-term
history information. The aggressiveness factor shows the
similar influence trend. Compared to those two factors, the
gain threshold has more significant influence on the predic-
tion accuracy.

4.2 Computation Efficiency

Table 2 shows the comparison between the original and
the adaptiveBOP, represented byorg-bopandadapt-bopre-
spectively. We use a dual-core Intel Pentium-D machine
(3.4GHz). We chooseparser in SPEC CPU2000 as the
benchmark because the workload size of aPPR in parser
is easy to control. We test on 4 differentPPRgranularities;
the larger aPPRis, the easier it is for speculation benefits to
offset the overhead (no dependences exist betweenPPRs).
For the smallest granularity, org-bop runs 5.2s slower than
the sequential run, whereas, adapt-bop removes most of the
overhead by automatically disabling most of the specula-
tions. On the other hand, for large granularities, adapt-bop
enables most of the speculations and accelerates the sequen-
tial run by up to 79.2%, a speedup similar to what org-bop
produces. The “cost” data in the table are the total times
of all the processors that work on the program. The adap-
tive scheme saves up to 162% of the org-bop’s cost by im-
proving profitability prediction accuracy to over 86%—the
“acc” data in the table.

5 Related Work

Automatic loop-level software speculation is pioneered
by the lazy privatizingdoall (LPD) test [5]. Later tech-
niques speculatively privatize shared arrays (to allow for
false dependences) and combine the marking and checking
phases (to guarantee progress) [1,2,4]. Two programmable
systems are developed in recent years:safe futurein Java [8]
andordered transactionsin X10 [7]. The first is designed
for (type-safe) Java programs, whereasPPR supports un-
safe languages with unconstrained control flows. Ordered

transactions rely on hardware transactional memory support
for efficiency and correctness. Hardware-based thread-level
speculation relies on hardware extensions for bookkeeping
and rollback, having limited speculation granularity [6].

BOPsystem is unique in that the speculation overhead is
proportional to the size of program data rather than to the
frequency of data access.BOP is the first to speculatively
privatize the entire address space and apply speculative ex-
ecution beyond the traditional loop-level parallelism.

The speculation in prior systems is definite in the sense
that once a region is selected (by users or profiling tools)
as a candidate for speculative execution, it will always be
speculatively executed. This work makes software specu-
lative parallelization adaptive by predicting the profitability
of a speculative execution.

6 Conclusion

This paper proposes adaptive speculation forBOP. Based
on execution history, the adaptive scheme dynamically pre-
dicts the profitability of a speculation and disables the spec-
ulations that are unlikely profitable. Experiments demon-
strate that the algorithm can produce accurate prediction for
different profitability patterns, which improves system effi-
ciency significantly.

References

[1] M. H. Cintra and D. R. Llanos. Design space exploration of
a software speculative parallelization scheme.IEEE Trans-
actions on Parallel and Distributed Systems, 16(6):562–576,
2005.

[2] F. Dang, H. Yu, and L. Rauchwerger. The R-LRPD test: Spec-
ulative parallelization of partially parallel loops. Technical re-
port, CS Dept., Texas A&M University, College Station, TX,
2002.

[3] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior-oriented parallelization. InProceedings of
ACM SIGPLAN Conference on Programming Languages De-
sign and Implementation, San Diego, USA, 2007.

[4] M. Gupta and R. Nim. Techniques for run-time parallelization
of loops. InProceedings of SC’98, 1998.

[5] L. Rauchwerger and D. Padua. The LRPD test: Speculative
run-time parallelization of loops with privatization and reduc-
tion parallelization. InProceedings of ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, La Jolla, CA, June 1995.

[6] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. InProceedings of the International Symposium on
Computer Architecture, 1995.

[7] C. von Praun, L. Ceze, and C. Cascaval. Implicit parallelism
with ordered transactions. March 2007.

[8] A. Welc, S. Jagannathan, and A. L. Hosking. Safe futures for
java. pages 439–453, 2005.

