Program-level Adaptive Memory Management

Chengliang Zhang Kirk Kelseyf, Xipeng She,
Chen Ding, Matthew Hertz, and Mitsunori Ogiharg

tComputer Science Department
University of Rochester
{zhangchl , kel sey, xshen, cdi ng, ogi hara}@s. rochester. edu

xComputer Science Department
Canisius College
hert zm@ani si us. edu

Abstract using the concept of working set. An application’s working set is
the set of objects with which it is currently operating. Tacant
of memory needed to store these objects is called the afiphéa
working set size. When the available memory is less than an appli-
cation’s working set size, throughput is limited by the tithe ap-
plication spends waiting for memory to be paged in or outiliimé
working set size it reached, we can improve program perfocea
by increasing the available memory and thereby reducingtime-
ber of page faults. Once an application’s working set fits m&in
memory the application stops paging, so increasing menmutiydr
may not improve performance.

Garbage collection automatically reclaims memory alledat
dynamically and thus relieves the programmer of the need+o e
plicitly free blocks of memory. Increasing the memory aahble
to a garbage-collected application also tends to decreéasexe-
cution time, but for a different reason. By increasing theesbf
its heap, an application can perform fewer garbage cotiastand
thereby improve its throughput. While we could size the h&ap
just fit the working set, this would require the collector fmesd
more time collecting the heap and increase execution timesd-
ingly. Setting a larger heap size in the virtual machine ceduthe
need to collect the heap and, generally, reduces the totalgpent

Most application’s performance is impacted by the amouatafl-
able memory. In a traditional application, which has a fixemtkw
ing set size, increasing memory has a beneficial effect upthet
application’s working set is met. In the presence of garbage
lection this relationship becomes more complex. Whileéasing
the size of the program’s heap reduces the frequency ofaties,
collecting a heap with memory paged to the backing storerg ve
expensive. We first demonstrate the presence of an optinagl he
size for a number of applications running on a machine withea s
cific configuration. We then introduce a scheme which adaytiv
finds this good heap size. In this scheme, we track the mensary u
age and number of page faults at a program’s phase boundaries
Using this information, the system selects the soft heap. 8
adapting itself dynamically, our scheme is independenhefun-
derlying main memory size, code optimizations, and garlze
lection algorithm. We present several experiments on replica-
tions to show the effectiveness of our approach. Our reshibsv
that program-level heap control provides up to a factor 8foker-

all speedup versus using the best possible fixed heap sir®lben

by the virtual machine on identical garbage collectors.

Categories and Subject Descriptors D.3.4 [Programming Lan- i collection. Selecting larger heap sizes, therefore rawes per-
guageS_]: Processors—Memory management (garbage collection), formance by reducing the overhead due to garbage collection
Optimization While decreasing the frequency of garbage collection, gusin
General Terms Algorithms, Languages, Performance larger heaps may not improve performance. First, as the heap

))) grows, individual collection may take longer as the colbeatx-
Keywords garbage collection, paging, adaptive, program-level, amines more objects. These larger heaps also increaseahgesh

heap sizing the heap will not fit into memory and must have pages evicted to
. virtual memory. Another downside is that the live data in lieap
1. Introduction may be scattered over a larger area. This scattering rediatas

Their is a strong correlation between memory allocation pred locality and hurts the performance of caches and the TLBi- Ult

gram performance. Traditionally, this relationship hasrbdefined mately, larger heap sizes requires balancing the benefievoéif
collections with the costs of reduced locality and paging.

The exact trade-off between frequent GC and paging is hard
to predict, because it really depends on the applicatianyittual
Permission to make digital or hard copies of all or part of thiork for personal or maChme’ the Qp(_aratlng _syStem’ othc_er programs in the mt'
classroom use is granted without fee provided that copesar made or distributed and all of their interactions. We will show that the relathip
for profit or commercial advantage and that copies bear ttis@ and the full citation follows a common pattern. This pattern includes an optingah
on the first page. To copy otherwise, to republish, to posteswess or to redistribute size value, which we can adaptively identify during the pemg

to lists, requires prior specific permission and{orafee. execution to minimize the execution time.
ISMM’06 June 10-11, 2006, Ottawa, Ontario, Canada.

Copyright(© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

| | Scope of adaptation Changes Required

VM, OS,

PAMM Program Program
Automatic Heap

Sizing [22] VM /OS VM/OS
GC Hints [5] Program Program
BC [11] VM /OS VM/OS
Preventive Program Program
GC[9]

Table 1. Comparison of different adaptive memory management
schemes

There are two levels at which the heap size can be contralted:
the program level and the virtual machine level. Past woskéda
amined this problem in a number of ways. Yang et al. estimiied
amount of available memory using an approximate reusentista
histogram [22]. A linear model controlled adjustments te keap
size so that the physical memory was utilized fully. Mainiag
these histograms required modifying the operating systedhsa
their evaluation was done in simulation. An alternativerapph by
Hertz et al. modified the garbage collector and OS to avoidheu
ing pages written to the backing store and thereby reducedadht
of collecting a large heap [11]. Andreasson et al. used oedef
ment learning to find the best times to perform garbage ditlec
Because it must first be trained, this strategy is effectivg after
tens of thousands of time steps (decision points) have pd8%e
We note that each of these schemes made changes to themgerati
system and/or virtual machine.

Programs usually run in repetitive patterns. We call each in
stance of the patternghase. While different compilers (or virtual
machines using just-in-time compilation) produce differepti-
mized code, the compilers do not alter the relationshipsvben
phases. As a result, a program expresses surprisinglyromibe-
havior across phases which can be used to adapt the heap\sre.
better, this adaption can be independent of the compilervand
tual machine, since the phase behavior is also indepenileng-
over, this approach is independent of the underlying agchitre
and memory management scheme.

3x 10

~2.5F 1
8
=S
2

° 2f 1
&
D
8

o 1.57 1
Q.
8
T

g ’
3

0.5- 1

0 L L L L
0 0.5 1 1.5 2 2.5
Instructions Executed 9
v 10

Figurel. Phases detected for pseudoJBB. The heap size increases
steadily and evenly until a GC is called.

programs like programming environment tools, compressiod
transcoding filters, and interpreters have similar phadeatier.
While a phase usually spans many functions and loops, it higs o
one starting point and one ending point and may occur maltipl
times during the program run.

Program-level adaptive memory management is based upon
phase information for three important reasons. First, phasovide
a high level summarization of a program. The behavior of tiesg
instances are quite similar, so we do not need to measurg ever
possible phase to get a reasonable measurement. Secosds pha
are very repetitive, so the memory usage of the program is spl
evenly by the phase boundaries. Third, a phase usuallysepie

Based on the program phase information, we propose a methoda memory usage cycle. Garbage collection is best perforrhad a

of program-level adaptive memory managementPAMM. We
add the PAMM controller using program instrumentation. €ha-
troller acquires data available from many layers of theaystsuch
as the operating system, virtual machine, and the appiicéself.

phase boundary, because it is at these points in the progatralt
temporary objects will be dead and ready for collection.

One way of detecting the phases is through active profiling.
Active profiling uses regular inputs to induce behavior epe

By using data such as the current size of the heap and the mumbe able enough for analysis and phase marking.Other techsiogmee

of page faults incurred, our controller can calls for GC wliteis
needed. Table 1 compares PAMM with several previously segdo
adaptive memory management schemes.

The rest of the paper is organized as follows: Section 2 pro-
vides the background information of phases. Section 3 descr

also been proposed previously and could be used for program-
level adaptive memory management. For instance, Georges et
al. selected Java methods whose behavior variation isivellat
small [10]. There are also many algorithms which exploitessp of
the program structure such as loops and procedures [4, 10613

the program level memory management scheme in detail. Sec-regions [12], and call sites [15] to determine phase bouedar

tion 4 presents the implementation details and the bendtawee
used. Section 5 presents our experimental results on theesich-
mark applications and compares them with the brute forceckea
method. Section 7 discusses the related word and Sectiom-6 co
cludes our work.

2. Behavior Phasesin Programs

Many programs have repetitive (yet input-dependent) phasat
users understand well at an abstract, intuitive level, af/¢ney
have never seen the source code. For example, a databatesiter
over the data records to find the results matching a givenycaret
a server application processes incoming requests one byodher

Figure 1 shows the phase information for a run of pseudoJBB
with a 512MB heap. The x-axis of this figure is the logical time
within a run and the y-axis shows the heap size at a point ia.tim
The two drops in the figure correspond with the two GCs calls
made. We can see that the phases split the memory usage.evenly
Figure 2 provides us more detailed information. Each vatiiot-
ted line shows the boundary of 100 phase instances that mansu
fewer than 150K bytes. Because of the way in which the virtua
chine reports the heap size, we cannot obtain more detageaary
usage statistics. As objects are allocated, the heap se=erdi al-
ways increase because new objects can be placed in the fngggne
space between existing objects. As a result, we see mufifEse
instances with the same heap size.

x 10’

1.43

.

1 3.15 3.2 3.25
Instructions Executed

1.42¢

Current Heap Size Used (bytes)

1.413 33

¥ 10°
Figure 2. A detailed view of the phases of pseudoJBB. Each ver-
tical dotted line corresponds to a phase and there are 1G@gplia
this figure. Because of limitations of the VM, we cannot getreno
detailed heap size information.

Instrumented program + input
»| Normal program run |
ase numb¢e

od frequen:
PAMM Controller Y F————==- 1
] OS |
. Test(page faults, | |
Adjust current heap size, | Page faults ||
softbound | |
softBound) | |
7 U N
N |
VM 1|
h 4] 1
1 =1

Figure 3. Flow graph of program-level memory management

3. Program-level Memory M anagement

For ease of this discussion, we begin by introducing our itestn
ogy. TheVM controlled heap sizeis the target heap size, often spec-
ified via a command-line argument, that is maintained by thie V
tual Machine. We also call this size th bound or hardbound.
By contrast, theorogram controlled heap size is the target heap
size maintained at the program level. We also call the pragran-
trolled heap size therogram bound or softbound. Note that the
program cannot control the space that GC needs, althoug¥iNthe
can. The size of the heap at any instant in the program run e ca
the current heap size. The current heap size can be computed by
subtracting the free heap memory from the total memory.

Figure 3 shows the control flow graph of our program-level

55 7500
Execution Time —+—
Total Collection Time
Page Faults —+—

50 -

5000

Time (s)
Count

- 2500

10 gk 1 1 1 1 1 1 1 1

0
100 120 140 160 180 200 220 240 260
Heap Size (MBytes)

60 80

Figure 4. Behavior of pseudoJBB using GenCopy with 192M
physical memory

strumenting the original program to get the phase inforamati
Then, during the program run, we invoke the test functiorhezce
we finish executing a specific number of phase instancesny fh®
current heap size and the number of page faults the procesa-ha
curred, the controller decides whether or not to make a GICA#l
ter the GC completes, the PAMM controller adjusts the safitisb
using the number of page faults duing the garbage colleetiwh
the reason the heap was collected.

3.1 Monitoring Frequency

There are two principles used to decide upon the monitoniag f
quency. The monitoring must be frequent enough to providel
information when deciding to invoke the collector. But it shalso
be infrequent enough that it does not impose a substangahewud.
On average, each call to the test function takes about 0.lli$eui
onds. Thus, for most applications, we can safely perforrmshads
of checks without dragging down program throughput.

Phases boundaries provide us with many potential oppaiesni
to check whether the heap must be collected and, when neieded,
voking the collector. We cannot just check at every phasatary,
however. For example, pseudoJBB has as many as 221,804sphase
and, were we to call the test function at each of these, wedvoul
add more than 30 seconds to the running time of this minutg-lo
program. In practice, we avoid this problem by specifyingex f
quency for checks (e.g., n pseudoJBB we check only once every
100 phase boundaries). By calling the test function lespifatly
an execution performs only slightly more than 2000 checkschv
is sufficient for deciding upon tens of GC calls.

Manual selection of a suitable frequency is easy. Dynamic se
lection is also possible according to the two principlesimabove.
The adaptive solution would be useful if the program is cosegb
of several different types of phases and the frequency caeo
fixed. In our experiments, we use the manual solution.

3.2 Making Decisions

Figures 4 through 6 show the behavior of pseudoJBB running at
different hardbounds using 3 different GC algorithms: Gepy;
CopyMS, and MarkSweep. In all these figures, the page faults
include both those caused by the mutator and those caused by
the garbage collector. The total collection time includekags in

adaptive memory management approach. This begins with-us in collection that occur as a result of paging.

RVM to perform a garbage collection. By this, we control tleah
size from the program level. We call this caseeach-softbound

140 15000

Execution Tighe +—+— invocation. For the other case, if that number of page faults since

Total Collection Fime /-~

last GC is above a certain level, we consider that the softthou
goes beyond the optimal point and invoke GC. Considering tha
the system may be not stable, for the second case, we add the
- 10000 requirement that the current heap size should be bigger tti@an
heap size after last GC call by at least 2M. WE call this case
paging invocation.

The number of page faults caused by the current process can be
1 5000 obtained from the file “/proc/self/stat”. This file is actlyed pseudo
file and is used as an interface to the kernel data structimee &
is maintained in the memory, it is efficient to read from it.

120 - 1 12500

100

80 -
- 7500

Time (s)
Count

60

40

- 2500

20 [X
.){/ ; 3.3 Adjusting the Softbound
° = H;O e 0 20 300 After the GC call, our controller negd to change the.softlnbun
Heap Size (MBytes) to adapt to the environment. These includes two possibleresct

increasing or decreasing.

To help adjusting the softbound, we introduce two new vari-
Figure 5. Behavior of pseudoJBB using CopyMS with 192M ables: left mark and right mark. The left mark is the very koftnd
physical memory where we increase our softbound and the right mark is the very

softbound where we decrease our softbound. We also assenee th
is a predefined step size. In our experiment, the step is da¢ to
10M.
27500 Our initial softbound is set at the right beginning of thegmam.
ExlcufionT?meTjj Itis currently set to be the current heap size plus 2 steps.|&ft
ction Time| - 25000 . .
350 [e Faulty —x— mark is set to be the current heap size.
| 1 22500 The softbound is increased as follows: First, the currefit so
300 - 20000 bound is recorded as the left mark. If right mark does nottettie
1 17500 softbound is increased by the step size . Otherwise, it i®tthb
mean of the current softbound and the right mark. Howevereth
do exist cases where the right mark is incorrectly set to ballem
than the optimal point because of the changes in the enveahm
150 - 10000 or some random reasons. To get over those cases, we forcehboth
- 7500 softbound and the right mark to increase by 1M, if their disgis
1 5000 smaller than 2M.
s0 | ‘s I The softbound is decreased as follows: First, the right nigrk
/ : 12° set to be the current softbound. We then move the softboutiteto
O e T 0 20 30 mean of softbound and left mark. To deal with the case in which
Heap Size (MBytes) the left mark is incorrectly set, we force the softbound dmelleft
mark to decrease by 1M if their distance is smaller than 2Mc&i
itis of no use if the soft bound is smaller than the currenphsiae
Figure 6. Behavior of pseudoJBB using MarkSweep with 192M after GC, we make sure that the smallest value of softboufitVlis
physical memory away from the current heap size.
From the previous description, it is easy to see that we Hgtua
follow a binary search scheme to find the optimal softbound.

We can observe that for each GC scheme, the total execution The next question is when to invoke increase and decrease. We
time first drops down, then quickly goes up and drops downlglow measure the page faults incurred by the current GC callelftim-
at last. There exist multiple locally optimal hard boundswéver, ber is smaller than a specified threshold, e.g., 10 in ourréxeet,
there does exist an optimal point, such that: and the GC is a reach-softbound invocation, we consideetiser
still room to boost the performance, so we increase the soft.

In the other case, if the number of page faults is no smallen th
the threshold, we decide to decrease the softbound, regarthe
reason the type of GC being triggered.

400

250

- 15000
200 -

Time (s)
Count

- 12500

100

1. When the hard bound is smaller than the point, the totécol
tion time correlates with the total execution time very waid
the number of pages faults remains steadily low.

2. When the heap size goes beyond the point, both the totaliexe
tion time and the number of page faults increase dramaticall 4, Experimental M ethodology

However, the number of pages faults correlates better \uith t . . .
execution time To evaluate the effectiveness of adaptive heap sizing w¢ cons-
' pare the total execution time for a number of benchmarksttisr

Based on these observations, we propose our program-levelanalysis we compared the results on 4 SPECjvm98 benchngrks [
adaptive control scheme. We set a large VM bound for thealirtu as well as pseudoJBB [7] and ipsixql [12D1_compressis a high-
machine when we start the virtual machine. We also maintain a performance application to compress and uncompress ldag fi
softbound. At each monitoring point, we poll the virtual rame based on the Lempel-Ziv method. In our experiment, it coisgee
for the current heap size of the program and poll the OS thebeum and uncompresses 5 different files 5 times each. We havei-ident
of page faults accumulated from the last GC call. For one,dhse fied 2 different phases, one is within the compress proceds an
the current heap size is greater than the softbound, weiiislikes the other is in the decompress proced®_jess is a Java expert

Benchmark Phasemarkd Monitoring | Parameters is artificially constrained to values between 96 Megabytes 02
frequency Megabytes.
201 compress 2 32768 -s100 -M1 -m1 -a We use two different approaches to identifying the phases of
202 jess 2 100 -s100 -M1 -m1 -a the benchmarks, depending on whether or not the source code
209.db 1 10 -s100 -M1 -m1 -a is available. In the simpler case where the source is avaijlab
227 mirt 1 100 25100 -M1 -m1 -a the phases are identified manually. Because the functioteof t
ipsixq 8 100 1,7 benchmark is known, we can insert control at points that acsv
pseudoJBB 3 250 140000 to execute once per phase. When the source code is not d&ddab
direct modification, we use the Soot Java optimization fraork
Table 2. Benchmarks and their parameters to identify the insertion points through profiling. Using &owe

analyze the number of times a particular instruction in theode
is executed. Based on the statistics information, we determhe
phases manually, and insert the control mechanism there.

shell system based on NASA's CLIPS expert shell system. in ou
experiment, it is used to solve the Number Puzzle Problem. We 4.1 Garbage Collectors
have identified two different phases: one is to parse theesxpr
sions and the other is to execute a simple function @9_db

is a small database management program that performs kevera
database functions on a memory-resident database. Theloabye

we identified is to process one data functi@2t_mtrt is origi-

nally dual-threaded ray tracer. However, since we curyerdghnot
manage multiple-threaded programs, we changed it to béesing
threaded. The only phase identified in the benchmark is tidere

ing of a pair of pixelslpsixgl is an XML database program from
the DeCapo benchmark suite with a set of 7 queries. Because we
identified the phases of Ipsixql via instrumentation wittoS@1],

we do not know the meaning of the 8 phagmsudoJBB is a single
threaded simulation of a warehouse system which repeapedly
cess 6 different types of transactions. It is modified fronESfpb
benchmark to perform only a fix number of random loads, and has
7 phases identified during the warehouse initializatiore dther
phases process transactions one by one. Table 2 showsatezrel
information for each benchmark we used.

All of the experimentation is done using the Jikes compiler
(version 1.22) and Jikes RVM (version 2.4.0). When the pogr
level adaptive memory management is active, the virtualhingc
is instructed to use a 512 Mbyte heap. In order to have a tiealis
evaluation of running time, we need to execute the benchsitk
with any optimizations that would typically exist. At thesatime,
we wish to separate the program execution time from the alirtu
machine’s optimizations. We use the second-run technofiogly
proposed by Bacon et al. [3]. Prior to the timed executiongume
the benchmark once with adaptive optimization active. Blimvs
the virtual machine to recompile hot methods. During theetim
executions the adaptive optimization system is deactivatethat
each trial will be the same. This allows us to isolate the mny
running time from the optimization overhead. The executiores
reported are the minimum of three trials.

The Jikes RVM can be built with several different garbage col
lectors and optimization schemes. In addition to testiregvérious
benchmarks under different collection routines, each bereck
is evaluated using two different optimization schemeshinFas-

tAdaptive builds the included classes have all been comhpifigh tion, the nursery size is unbounded, so initially the nyrsidis the

the optimizing compiler, and the adaptive compilation ofim@th- g ire heap. Each time the nursery is collected its sizesisaed by
ods is doné. In the BaseBase builds, the optimizing compiler is e size of the survivors. Whole heap collection is done @ithe
not used, and adaptive compilation is unavailable. nursery size falls below a static threshold.

All of the benchmarks were evaluated on 2GHz Pentium 4 Thg memory requirements and usage of the garbage collection
processors running Linux kernel version 2.6.12 with 512Mb 0 gchemes are very different. In a Copying collector the wirma-
physical memory. To simulate a more constrained systeminie | cpine must allocate an area of memory twice as large as the hea
the amount of system memory available to the virtual machine gjze peing used. Additionally, it will potentially touchesy page in
This limited-memory effect is achieved by pinning memorg@& e page working set. In the Generational approach, the ahuu
in the operating system. For each benchmark the physicalanem memory needed does not need to exceed the heap size, asspace i
transferred from the nursery to the mature space when abget
I'Fast” actually indicates that a fully optimized compitatiis done, but moved. In most cases, the collector will only have to toucinoey
the assertions are removed. pertaining to the youngest elements, which are likely tatmém-

Because we want the adaptive heap sizing to be dependenvronly
the program behavior, we will illustrate its advantageshia pres-
ence of three different garbage collectors: Mark-Sweemy®is,

and GenCopy. These collectors are hybrids of other codacti
schemes. All of them have in common that they are “stop the
world” approaches that halt the program mutator duringezion.

BasicM ark-Sweep (MS) garbage collection traverses the entire
object reachability graph. Each object is marked when itésed
during the search, and unmarked objects are known to be gmrba
In the Jikes RVM objects are allocated in blocks of speciftes)
which are maintained in a free-list. Objects that are notkediare
simply returned to the list.

Copying memory management allocates objects sequentially
into one space of memory. When the space becomes full, the ob-
jects are traced as in Mark-Sweep. The difference is thherdhan
marking objects and managing the free space at the endsbjec
copied into another memory space when they are touched.ithe e
result is that the second space has reachable objects ictated|
at the beginning, and new objects can again be allocatecesequ
tially after them. The scheme toggles back and forth betviaen
memory spaces.

Generational garbage collection also uses multiple spates
memory. New objects are allocated into the “nursery,” angied
into a “mature” space. The major departure from the copying
scheme is that the spaces are not swapped. New objects are al-
ways allocated into the nursery, and collection is only @ened
on regions that are full. This allows collection to be coricated
on the newer objects, which are more likely to be garbage. ifewr
barrier must be used to track references from older spades in
younger spaces to avoid scanning them for reachability.

CopyM S uses two memory regions. New objects are allocated
sequentially into the first region, which is a copying spat#aen
the region is filled, reachable objects are copied into tloorse
space, which is managed using Mark-Sweep. No write barsier i
present, and every collection is performed over the whophe

GenCopy is a generational scheme in which a mature space is
managed with a standard Copy approach . In the Jikes impkamen

600 400
—— gencl\jl)gy i —o— g-encl\jl)gy
I . J ~+ Copy
500! /*\ —— MarkSweep 350 | \\ —— MarkSweep
/ \ -© - Adap GenCopy | -o - Adap GenCopy
. / . -« Adap CopyMS __300¢ | %] -~ Adap CopyMS
2 400+ | \\ -+ - Adap MarkSweep £ | -+ - Adap MarkSweep
) © | |
£ g0 %
§ 300 § 200 f
é é 150 |
£ 200} 2 |
| & | B
100
100
50+
0 L L L L |
150 200 250 300

%O 100 150 200 250 300 0 50 100
Used heap size (M) Used heap size (M)
Figure7. Execution time of pseudoJBB vs. heap size with 128MB Figure 9. Execution time of pseudoJBB vs. heap size with 192MB

physical memory, BaseBase GC scheme is used physical memory, FastAdaptive GC scheme is used

10001 300r
—e— GenCopy —— GenCopy
—~— CopyMS —— CopyMS
—— MarkSweep 250} —— MarkSweep
800+ -e - Adap GenCopy -o - Adap GenCopy
. - - Adap CopyMS -+ - Adap CopyMS
w -+ - Adap MarkSweep @ 200! /\”/\/*_“\ -+ - Adap MarkSweep
5] () - %
£ 600 £ . —
= < 150 |
S \\/\ S 150r |
S 400 o 3
Lﬁ Q 100+ S FEEEEEEE et
" X p X Lu GGGGG &8 g &8-G-6-G-G-G-G-G-G-G-G-G-G-G-C-0
2007 sol
0 e A ﬁ
L L L L L ! 0 1 1 1 1 1 |
0 50 100 =~ 150 200 250 300 0 50 100 150 200 250 300
Used heap size (M)

Used heap size (M)
Figure8. Execution time of pseudoJBB vs. heap size with 128MB Figure 10. Execution time of ipsixql vs. heap size with 128MB
physical memory, FastAdaptive GC scheme is used physical memory, BaseBase GC scheme is used

Figure 16 depicts the exact heap size immediately before eac

ory. In the Mark-Sweep case, all of the objects may be toudned
invocation of the garbage collector during an executionsayalo-

no extra memory needs to be explicitly resefied
JBB using the program-level adaptive memory managemeris. Th
5. Experimental Results figure is meant to illustrate how our strategy continuallggis the
heap size for pseudoJBB.

The curve we wish to optimize can be seen in Figure 7, where e can see that the curves of MarkSweep and CopyMS col-
the j[otal exepution time can be seen to drop to a minimum, rise |ectors quickly converge to a stable point in as few as 4 phase
again as paging becomes more pronounced, and then slovayadro |f we look at the detailed type of each GC, we will find that most
the frequency of garbage collections becomes trivial. Téreegal of the first few arereach-softbound invocations and the late ones
shape of this curve is the same for each of the garbage amiect are mostly paging invocations. Actually, for all of the exales,
and is constant for the adaptive cases that each attempertifid the page faults play an important role in finding the optinit-s

an optimal heap size for the given main memory size. Becdwse t phound. After the softbound is stabilized, the heap size ree®C
adaptive approach responds to changes in program beh#wor, still increases at a slow rate, however, the GC now incurg few
Optlmal heap size will ||ke|y not be found Immedlately Thessult page faults. A reasonable exp|anation is that due to thmgag]e

is that the total execution time with adaptive heap siziny mat process pushes those useless pages out.
For GenCopy, all of the collections are performed on theemyrs

be as low as the optimal execution time.
space. The curve of GenCopy keeps increasing and does hpt sta
lize until phase 99,892. Prior to that there are two placesreh

2 Clearly, some internal fragmentation will occur using fis¢s of blocks.

400¢ Genc 500 Genc
—o— GenCopy —o— GenCopy
| — CopyMS ~< CopyMS
350 /\W —— MarkSweep /\\ —— MarkSweep
| \ -e - Adap GenCopy 400¢ [\ -e - Adap GenCopy
__300¢ | \ -~ - Adap CopyMS - | : -~ - Adap CopyMS
2 | -+ - Adap MarkSweep 2 | x -+ - Adap MarkSweep
£2°0 T \ £ 300 | \ /\/\
+— N +— | X
§ 200} | S s “s :
S ‘ : N S L g‘
2 150/ \ o 3 200 |
x x |
L L |
100} ¢
100F
50r 5 4
SeSaa s %%%%%%%%%%%%%9
0 ! 1 1 1 1 | 0 |
0 50 100 150 200 250 300 0 150
Used heap size (M) Used heap size (M)
Figure 13. Execution time of 20Jess vs. heap size with 96MB

Figure 11. Execution time of ipsixql vs. heap size with 128MB
physical memory, FastAdaptive GC scheme is used physical memory, FastAdaptive GC scheme is used

140; 180;
—— GenCopy —— GenCopy
—— CopyMS L —— CopyMS
120¢ \ —+— MarkSweep 160 —— MarkSweep
\ -& - Adap GenCopy 140! -& - Adap GenCopy
- -~ - Adap CopyMS - -~ - Adap CopyMS
2 100¢ ’ -+ - Adap MarkSweep 2 120} -+ - Adap MarkSweep
]]
£ 8o £ 100,
S S
= 60 5 80
o o
% % 60
W 40 i
4071
20r o0t
0 1 | 1 1 1 1 1 |
0 50 100 150 %O 40 60 80 100 120 140
Used heap size (M) Used heap size (M)
Figure 14. Execution time of 209b vs. heap size with 96MB

Figure 12. Execution time of 20lcompress vs. heap size with
96MB physical memory, FastAdaptive GC scheme is used physical memory, FastAdaptive GC scheme is used

a lot of collections are initiated. These two places coiaaidth While it is clear that finding the optimal heap size results in
the warehouse initializations. The initializations ineulot of page significant performance gains, it is also the case the fintlirg
faults and cause the GC to be called frequently. After thializa- optimal heap size is not trivial. The optimal value dependshe
tions, the system quickly stabilizes. At last, though thagphsize garbage collector, the amount of physical memory preseuttlze
still increases, each garbage collection takes only temsiltitec- particular program being executed, and the compiler ogatinns
onds and causes very few page faults. that have been used.

In the case of ipsixgl with 128 megabytes of physical memory Looking at Figure 7 we see that there is a significant differ-
using the FastAdaptive MarkSweep build of the Jikes RVM, the ence between the performance of the MarkSweep garbage-colle

tor and that of the CopyMS collector. Not only are the exauti

running time at the optimal heap size was 12.6 seconds, \éle
running time was 207.7 seconds on average and 375.4 seaonds i times quite different, but their behavior is such that ongrioves

the worst case The optimal heap size results in an execution time while the other worsens. While the choice of garbage caitect
can have a significant impact on program performance, thdtses

that is 16.46 times faster than the average case. Averagedabiv

of the benchmarks we have evaluated, the mean executioridime shown in Figure 8 show that with program-level adaptatiendpe-

a benchmark is 4.9 times longer than the minimum execution fo cific garbage collector may become inconsequential. Whikeis
not the case for every benchmark (particularly when thelabts

the same benchmark.
memory is quite constrained), it is the common case.
3The worst case here is only considering those executionsdnaplete. If The optimal heap size is also affected when the compiler op-
timizations are changed. Figures 7 and 8 illustrate thatoghtée

the heap size is extremely low, the execution may fail elgtire

scheme is 9% slower than the best performance of GenCopy,

250r
\ —<— GenCopy 10% slower than CopyMS, but 113% faster than MarkSweep (due
\ —— CopyMS mainly to the large improvements in two cases). For GenCibyey,
200. I\ o X:;';Sé":rfgopy largest slowdown is 39% for jess, and the greatest improweise
‘;‘ \\ -~ Adap CopyMS 26% for optimized pseudoJBB on 128MB memory. For the other
‘ two garbage collectors, the speedup ranges from -45% to 780%

| -+ - Adap MarkSweep
\ compared to the best performance of VM-controlled heap 3ize

150¢ J‘ \ slowdown is due partly to the overhead of the run-time cdlgro
and partly to the startup cost and mis-steps in the adaptafio
N the other hand, since the adaptive scheme uses differeptsiess
100F | for different stages of the execution, it achieves a fagieed than
~ the best fixed heap size for over a third of test configuratitms
| N\L/*"”\\ﬂ the extreme case, optimized pseudoJBB on 128MB memory using
MarkSweep, the adaptive heap control is 7.8 times faster tifia

Execution time (s)

50 best fixed heap size, even though both schemes use an idlentica
garbage collector.
In Table 3, we also compare our adaptive scheme with the de-
00 50 100 150 fault Jikes RVM setting. The default setting of Jikes RVM figis

Used heap size (M) tial and maximum heap size to be 50 megabytes and 100 megabyte
- .. - - for FastAdaptive case, and 20 megabytes and 100 megabytae fo
Figure 15. Execution time of 22/mirt vs. heap size with 96MB gagepase case. We can see that on average across all of the ben
physical memory, FastAdaptive GC scheme is used marks, our strategy have 64% speedup for GenCopy, 524%speed
for CopyMS and 553% speedup for MarkSweep. Our adaptive
; scheme works very well for all of the benchmarks except pseu-
12X 107 =" Adap GenCopy doJBB. We are uniformly slower than the best fixed heap size fo
.~ Adap CopyMS pseudoJBB benchmark running with 192 megabytes physical-me
—+— Adap MarkSweep ory. A reasonable explanation is that 192M physical memehjig
enough for the default GC without too much page faults.
It is interesting to consider the situation that a persordade
select a uniform heap size for all benchmarks with physicaim
ory fixed. We consider pseudoJBB and ipsixgl when physicahme
ory is 128 megabytes. For GenCopy, CopyMS and MarkSweep,
people will select 128M, 80M and 224M separately. Our adapti
scheme outperforms these selected heap size by 1.6%, 6.8% an
9.4% separately. When the physical memory is 96 megabytes, p
ple will select 48M, 24M and 128M separately for the SPECj8m9

11r

Current heap size (bytes)
[ee]

7,
benchmarks. Our adaptive scheme is faster than theseestlezdp
6- size by 1.4% 1.8% and 3.9% separately.
5,
4 1 1 1 1 | .
0 0.5 1 15 2 25 6. Conclusion

Phase ¥ 10° In the presence of automatic memory management, the nesiip
Figure 16. Heap size before the GC, tested for pseudoJBB using between allocated memory and application performancerbeso

192M physical memory, all GC schemes use FastAdaptive more complicated. Allowing a larger heap size will reduce th
frequency of garbage collections. Once the heap size egdbed

available physical memory, portions of the heap will be phte

mal heap size for GenCopy (the best collector for that bermckm the backing store. Paging is particularly detrimental wharbage
changes from 120 megabytes to 160 megabytes. By compagng Fi collections are performed because the collection is likelgccess
ure 8 to Figure 9 we can identify the impact of changing theamho every page of the heap, thus incurring additional pagingtmex.
of physical memory on the execution times. In this case thiena Somewhere on the continuum of heap sizes lies a balance dretwe
heap size for the GenCopy collector changes again from 188to frequency and cost of collection.
megabytes. We have introduced a scheme for adaptively identifying e o

The results depicted in Figures 8 & 11 support the intuitive timal heap size for a program while it is running within a Jaira
notion that that the optimal heap size also depends on tloeisdc tual machine. We are able to use phase level behaviorahiaion
program. Here the CopyMS collector has the optimal perforcea to monitor a program’s performance. By observing how thecaxe
in both cases, but the optimal heap size changes from 48 to 56tion time responds to changes in the heap size we can forbaggr
megabytes. Because of the number of factors that come &gath collection to limit the program’s heap usage. Using this hagism
determining the optimal heap size, identifying it prior taeution we can get performance either close to or better than theposst
is impossible. sible with a virtual-machine controlled heap size, indejger of

Table 3 lists the speedup of the adaptive scheme over the bestthe garbage collector, the physical memory size, and thepdem
the second best, and the third best performance of VM-chedtro optimization. In the extreme case, the adaptive heap slears to
heap sizes for the three garbage collectors. On averagessacro a factor of 7.8 overall speedup over the best possible sinedg
all programs, memory and compiler configurations, the @dapt size, when both are using the same garbage collector.

pJBB pJBB pJBB ipsixql ipsixql

192M opt | 128M opt | 128M base| 128M opt | 128M base COMPress, Jess db mtrt AVG

best -30% 26% -0% -30% -10% -16% -39% 9% 13% -9%

GenCopy 2nd -27% 34% 2% -15% -9% -15% -30% | 20% | 80% 4%
3rd -24% 37% 3% -11% -8% 11% -1% 32% | 85% 13%

default -28% 274% 20% 129% 17% 26% 9% 13% | 118% | 64%

best -8% 14% -14% -45% -14% -3% 2% 3% -28% | -10%

CopyMS 2nd -1% 22% -12% -39% -14% -1% 6% 10% | 159% | 14%
3rd -6% 45% -2% -37% -14% 3% 168% | 12% | 571% | 82%
default -2% 648% 100% -37% -0% 28% 2925% | 40% | 1016% | 524%
best -6% 780% -1% -23% -14% 4% 262% | 52% | -35% | 113%
Mark- 2nd -6% 791% 4% -9% -12% 13% 725% | 53% | 369% | 214%
Sweep 3rd -6% 835% 28% -4% -10% 18% 748% | 54% | 381% | 227%
default -5% 1603% 436% 1368% -2% 40% 861% | 92% | 584% | 553%

Table 3. The speedup of the adaptive scheme over the performancée tfest fixed, the second best fixed, the third best fixed and the
default VM-controlled heap sizes for the three garbagesctdirs. A negative number means a slowdown.

7. Related Work induce behavior repeatable enough for analysis and phage ma
ing [18]. This analysis can be performed on low-level codgid-
ing program binaries.

While heap management adds several new wrinkles, there is
a long history of work on creating virtual memory managerat th
adapt to program behavior to reduce paging. Smaragdakisdet-a
veloped early eviction LRU (EELRU), which made use of regenc
information to improve eviction decisions [19]. Last redlstance,
another recency metric, was used by Jiang and Zhang to prieven
teractive applications from thrashing. Chen et al. [6] alsed last
reuse distance to reduce the total amount of paging [14]u&io
al. tracked reuse distance histograms for each fixed tine\al
to improve the throughput and response time of multiple gsses
through selective memory allocation [23]. All of these teicjues
try finding the best subset of the working set to keep in ptafsic
memory, but are of limited benefit when the working set fits en-
tirely in available memory. Heap management, on the othedha
can improve performance when given additional physical mrgm
by increasing the heap size, thus reducing the frequencgrbbge
collection. Our program-level adaptive memory managersgat
tem tries balancing these costs by choosing heap sizes that m

Several recent studies examined methods by which a progracd (
not the JVM) controls when the heap is collected, and whatgdar
the heap to collect. Buytaert et al. use offline profiling ttedeine
the amount of reachable data as the program runs, and then-gen
ate a listing of program points to indicate when collecting heap
will be most profitable. At runtime, they then can then cdllge
heap when the ratio of reachable to unreachable data is enast f
able [5]. Similar work by Ding et al. used a Lisp interpreteshow
that limiting collections to occur only at phase boundareduced
GC overhead and improved data locality [9]. We expand upesgh
past studies by including information from the applicafi®fM,
and operating system to guide our collection decisions atett
collection points that both minimize the amount of reachatdta
and maximize the use of available memory.

Soman et al. used a modified JVM to allow a program to se-
lect which garbage collector to use at the program load tiesed
on profiling and user annotation [20]. The control mechanigas
applied before the start of the program, and the heap size was
fixed rather than adaptive. Other studies have proposedatethy
which the JVM adapts the heap size to improve performance. Se . .
eral of these approaches, like ours, were focused on reglpeig- mize the costs of smaller heap sizes (more frequent gartuiige ¢
ing costs. Alonso and Appel presented a collector whichgedu tions) and of larger heap sizes (increased paging activity)
the heap size when advised that memory pressure was increas-
ing [1]. Yang et al. modified the operating system to use aneapp ~ Acknowledgments

imate reuse distance histogram to estimate the currentablei We are grateful to IBM Research for making the Jikes RVM gyste

memory size. They then developed collector models thatledab ayajlable under open source terms. The MMTk memory manage-
the JVM to select heaps size that fully utilize physical men{a2]. ment toolkit was particularly helpful.

Hertz et al. developed a paging-aware garbage collectoaamod-
ified virtual memory manager that cooperated to greatly cedhe

paging costs of large heaps [11]. While these past schemjesee References))]
modifications to the virtual machine and, for all but one, dper- [1] R. Alonso and A. W. Appel. Advisor for flexible working
ating system, our approach runs only at the applicatioatend sets. InProceedings of the 1990 ACM Sigmetrics Conference on

does not need these intrusive modifications. Measurement and Modeling of Computer Systems, pages 153-162,

Our technique depends on recurring phase behavior in a pro- Boulder, CO, May 1990.
gram. Many phase detection techniques have been propdsese T [2] E. Andreassor), F. Hoffmann, and O. Lindholm. To collechot to
algorithms exploit aspects of the program structure suclo@ss collect? Machine learning for memory management.JViv * 02:
and procedures [4, 10, 13, 16], regions [12], and call sit&3 fo Prooeedlngs of the Java Virtual Machine Research and Technology
determine phase boundaries. Most techniques use fixedthoss Symposium, August 2002.
to select coarse-grained, recurring phases. Georges stlatted [3] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbzgjkecor
Java methods whose behavior variation was relatively sfhel]l with low overhead and consistent utilization. fnoceedings of the
Unfortunately the phase behavior of the utility programsagrich fCM SGPLQN'S'OGIACT S’I["Apojs'“m ggogr'”c'p'esm Programming
we focus is dependent upon the program inputs, and may not be anguages, New Lrieans, LA, Jan. ’
captured by static analysis. We rely upon the active prefitech- [4] R. Balasubramonian, D. Albonesi, A. Buyuktosunogludan

niques we developed in earlier work that use regular inpats t S. Dwarkadas. Memory hierarchy reconfiguration for enengg a
performance in general-purpose processor architectuhesPro-

—

fla.aer

ceedings of the 33rd International Symposium on Microarchitecture,
Monterey, California, December 2000.

D. Buytaert, K. Venstermans, L. Eeckhout, and K. D. Bbsse.
Garbage collection hints. [Rroceedings of HIPEAC' 05. Lecture
Notesin Computer Science Volume 3793, Springer-Verlag, November
2005.

[6] F. Chen, S. Jiang, and X. Zhang. CLOCK-Pro: an effective
improvement of the CLOCK replacement. Fnoceedings of USENIX
Annual Technical Conference, 2005.

[7] S. P. E. Corporation. Specjbb2000t t p: / / ww. spec. or g/
j bb2000/ docs/ user gui de. ht n .

[8] S. P. E. Corporation. Specjvm98 documentation, Mar9199

[9] C. Ding, C. Zhang, X. Shen, and M. Ogihara. Gated memontrcbd
for memory monitoring, leak detection and garbage coltectiIn
Proceedings of the 3rd ACM SIGPLAN Workshop on Memory System
Performance, Chicago, IL, June 2005.

[10] A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bossehéfiethod-
level phase behavior in Java workloads. Rroceedings of ACM
S GPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, October 2004.

5

—_

[11] M. Hertz, Y. Feng, and E. D. Berger. Garbage collectioithaut
paging. InPLDI '05: Proceedings of the 2005 ACM SIGPLAN
Conference On Programming Language Design and |mplementation,
pages 143-153, New York, NY, USA, 2005. ACM Press.

[12] C.-H. Hsu and U. Kremer. The design, implementationeraduation
of a compiler algorithm for CPU energy reduction. Rnoceedings of
ACM SIGPLAN Conference on Programming Language Design and
Implementation, San Diego, CA, June 2003.

[13] M. Huang, J. Renau, and J. Torrellas. Positional adiaptaof
processors: application to energy reduction. Phoceedings of the
International Symposium on Computer Architecture, San Diego, CA,
June 2003.

[14] S. Jiang and X. Zhang. TPF: a dynamic system thrashintegtion
facility. Software Practice and Experience, 32(3), 2002.

[15] J. Lau, E. Perelman, and B. Calder. Selecting softwhese markers
with code structure analysis. Technical Report CS20040BCSD,
November 2004 conference version to appear in CGO’ 06.

[16] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and
S. Dropsho. Profile-based dynamic voltage and frequendingca
for a multiple clock domain microprocessor. Rmoceedings of the
International Symposium on Computer Architecture, San Diego, CA,
June 2003.

[17] J. E. B. Moss, K. S. McKinley, S. M. Blackburn, E. D. Berge
A. Daiwan, A. Hosking, D. Stefanovic, and C. Weems. The dacap
project. Technical report, 2004.

[18] X. Shen, C. Ding, S. Dwarkadas, and M. L. Scott. Charaztey
phases in service-oriented applications. Technical Refier848,
Department of Computer Science, University of Rochestevgxhber
2004.

[19] Y. Smaragdakis, S. Kaplan, and P. Wilson. The EELRU tdap
replacement algorithmPerform. Eval., 53(2):93-123, 2003.

[20] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selectibn o
application-specific garbage collectors.|8MM ’04: Proceedings of
the 4th international symposium on Memory management, New York,
NY, USA, 2004. ACM Press.

[21] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, Egr®@a, and
P. Co. Soot - a java optimization framework. Mnoceedings of
CASCON 1999, pages 125-135, 1999.

[22] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. Bgsl
Automatic heap sizing: taking real memory into account. SKM
'04: Proceedings of the 4th international symposium on Memory
management, pages 6172, New York, NY, USA, 2004. ACM Press.

[23] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Yu,Zid
S. Kumar. Dynamic tracking of page miss ratio curve for mgmor
management. IProceedings of the International Conference on
Architectural Support for Programming Languages and Operating
Systems, Boston, MA, USA, October 2004.

