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Abstract—Sparse matrix vector multiplication (SpMV) is an
important kernel in many applications and is often the major
performance bottleneck. The storage format of sparse matrices
critically affects the performance of SpMV. Although there have
been previous studies on selecting the appropriate format for
a given matrix, they have ignored the influence of runtime
prediction overhead and format conversion overhead. For many
common uses of SpMV, such overhead is part of the execution
times and may outweigh the benefits of new formats. Ignoring
them makes the predictions from previous solutions frequently
suboptimal and sometimes inferior. On the other hand, the
overhead is difficult to consider, as it, along with the benefits
of having a new format, varies from matrix to matrix, and from
application to application. This work proposes a solution. It first
explores the pros and cons of various possible treatments to
the overhead in the format selection problem. It then presents
an explicit approach which involves several regression models
for capturing the influence of the overhead and benefits of
format conversions on the overall program performance. It
proposes a two-stage lazy-and-light scheme to help control the
risks in the format predictions and at the same time maximize
the overall format conversion benefits. Experiments show that
the technique outperforms previous techniques significantly. It
improves the overall performance of applications by 1.14X to
1.43X, significantly larger than the 0.82X to 1.24X upperbound
speedups overhead-oblivious methods could give.

Keywords-SpMV, High Performance Computing, Program Op-
timizations, Sparse Matrix Format, Prediction Model

I. INTRODUCTION

Sparse matrix vector multiplication (SpMV) is one of the
most important, widely used kernels in many scientific appli-
cations (e.g., linear equation system solvers) [1], [2]. It is also
often the performance bottlenecks of those applications [3],
[4]. Maximizing the performance of SpMV is essential.

One of the important factors people have observed for the
SpMV performance is the selection of the proper format to
represent sparse matrices in memory. Various storage formats
have been proposed for diverse application scenarios and
computer architectures [5]–[11]. As observed in numerous
studies [9]–[14], the different formats may substantially affect
the data locality, cache performance, and ultimately the end-to-
end performance of SpMV (for as much as several folds [12]).
Meanwhile, there is no single format that has been found
optimal for all sparse matrices. The proper format of a matrix
depends on many factors, including the characteristics of the
sparse matrix, the hardware architecture, the implementation
of the SpMV library, the application, and so on.
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Fig. 1: The typical workflow for an application to benefit from
improved matrix formats, and the objectives targeted by the
previous studies and by this work.

There have been some efforts for creating automatic format
selector for SpMV [12], [13], [15]. For instance, Li and
others [12] have developed a decision tree-based classifier
that, for a given sparse matrix, predicts the storage format on
which SpMV runs fastest. Follow-up studies have built similar
predictors through other machine learning models [13], [15].

Although these studies have given some promise and valu-
able insights, they are all subject to an important limitation.
They are overhead oblivious—that is, none of them have
considered the implications of the overhead in employing
the predictors and in adopting their predictions including the
substantial overhead of the required format conversions.

Figure 1 illustrates the principled issue. In practical settings,
the input matrix to a SpMV-based application often comes with
only one default storage format. To use a better format, two
steps have to happen, the prediction on which format to use,
and the conversion of the matrix into that new format. In many
cases, these two steps need to happen during the execution of
the application. The overall time is hence the sum of these
overhead (Tp for prediction and Tc for conversion) and the
execution time (Te) of the SpMV on the new format.

Prior studies have all tried to build predictors to predict the
format that minimizes Te, ignoring the influence of Tp and Tc,
which together can be even longer than the execution time of
SpMV. As a result, even though previous predictors appear to
have quite good prediction accuracies, the formats predicted
by them frequently give the inferior performance in practical
usage. The problem is fundamental. As Figure 2 shows, even if
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Fig. 2: The histogram of the overall speedups of program
PageRank when it uses a previous decision tree-based pre-
dictor with an idealized 100% accuracy (for minimizing Te

in Figure 1). The annotated numbers indicate percentage of
samples with speedup < 1, = 1, > 1 respectively; < 1 means
slowdown. CSR is the default format.

the prior method could achieve a perfect prediction accuracy,
the results from them could still cause significant slowdowns
to the overall executions.

The goal of this work is to solve the problem by putting
the overhead into consideration for SpMV storage format
prediction. The solution would need to create predictors that
can accurately predict the overall effects (rather than just
SpMV performance) of a new storage format.

Creating such a predictor is challenging. It faces a strand
of new complexities.

First, it has more factors to consider. Previous predictive
models make predictions based on only the features of the in-
put matrix because those are the only factor determining which
format makes SpMV run the fastest on the given architecture.
However, when our objective becomes minimizing the overall
time, matrix features are not sufficient anymore, because we
need to compare the benefits with runtime overhead. The
quantitative benefits from a new format of a matrix depending
on how many times SpMV gets called on the matrix, which
depends on both the matrix and the program code itself. Sparse
matrix is already difficult to characterize; adding program code
makes the development of the solution even harder.

Second, the creation of overhead-conscious predictors re-
quires an appropriate design strategy to deal with the overhead.
The overhead could be dealt with explicitly, by for instance,
building up one predictor for each kind of overhead and then
subtracting it from the predicted benefits. It could also be
dealt with implicitly, by for instance, building up a single
predictor that takes the features of the input matrix and the
program and predicts which format gives the overall best
performance. Different strategies have different pros and cons.
Understanding them and finding the suitable strategy is the
second open research problem.

Finally, no matter what strategy is used, we eventually create
some kind of predictor such that it can predict the best format
to use for a given sparse matrix. The problem is that because

such a predictor often has to run at the program runtime and its
overhead is non-trivial (as it often requires extracting matrix
features), its own overhead could also get in the way. If its
own overhead already exceeds the benefits, the program would
suffer slowdowns. If we create another predictor Y ′ to predict
whether it is worth to run the format predictor, how do we
deal with the overhead of that new predictor Y ′? Creating
yet another predictor Y ′′? How about its own overhead? This
could lead us into a chicken-egg dilemma. How to effectively
address this dilemma is the third research problem.

The rest of this paper presents our solutions to these chal-
lenges. After some background knowledge in Section II, Sec-
tion III analyzes different strategies in creating an overhead-
conscious predictor. It points out their pros and cons, and
gives an overview of our designed solution. The solution treats
overhead explicitly through three predictors, respectively for
conversion overhead, benefits to SpMV, and loop trip counts
predictions. It lists the major challenges for materializing such
a design effectively.

Section IV describes our solution in detail. It presents the
methods for overcoming the various difficulties in constructing
each of the three predictors. It also presents lazy-and-light,
a simple method we develop to address the aforementioned
chicken-egg dilemma through a lazy scheme and a lightweight
loop trip count prediction.

Section V reports the detailed assessment of the quality
of the constructed predictors as well as the speedups the
technique brings to the executions of some real world applica-
tions. Our predictors predict the normalized format conversion
time and the SpMV time with an average accuracy greater
than 88% in most cases. The proposed overhead-conscious
method improves the overall performance of applications by
1.14X to 1.43X, significantly larger than the 0.82X to 1.24X
upperbound speedups overhead-oblivious methods could give.

In summary, this paper makes the following major contri-
butions:

• It points out the importance and challenges of being
overhead-conscious for sparse matrix format selection.

• It analyzes the pros and cons of different design choices
for creating an overhead-conscious solution.

• It presents the first end-to-end overhead-conscious so-
lution for sparse matrix format selection, including an
ensemble of predictive models for cost-benefit analysis
and a lazy-and-light scheme for slowdown prevention.

• It evaluates the technique on 2757 matrices and four real
world applications, demonstrating the significant benefits
of the proposed overhead-conscious method.

II. BACKGROUND

Before presenting the solution, we first provide some back-
ground on sparse matrix formats and their usage in SpMV.

To efficiently store and process a sparse matrix, compressed
data structures (a.k.a. storage formats) are used which store
only nonzero entries. Various storage formats have been pro-
posed [5]–[11], [14].
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for(i = 0; i < nnzs; ++i) {  
y[rows[i]] += data[i]*x[cols[i]];

}  

ptr    = [0 2 4 7]
cols  = [0 1 1 2 0 2 3 1 3]
data = [1 5 2 6 8 3 7 9 4]

for(i = 0; i < m; ++i) {
for(j = ptr[i]; j < ptr[i+1]; ++j)      

y[i] += data[j] * x[cols[j]]; 
}

offsets=[-2 0 1]

data =
*  *  8  9
1  2  3  4
5  6  7  *

for(d = 0; d < ndiags; ++d) {  
k = offsets[d];    
istart = max(0, -k); jstart = max(0, k);  
L = min(m - istart, n - jstart);  
for(i = 0; i < L; ++i) {    
y[istart+i] += data[istart+d*max_dia+i] * 

x[jstart+i];  
}

}
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Fig. 3: Sparse matrix storage formats and their corresponding
SpMV pseudo-code (adapted from [12]).

As examples, Figure 3 shows a sparse matrix represented
in three formats respectively and their corresponding SpMV
algorithms. Notations m, n, and nnzs are used to represent the
numbers of rows, columns, and nonzero entries of the sparse
matrix respectively. Coordinate (COO) format explicitly stores
the row and column indices and the values of all nonzero
entries in rows, cols, and data arrays separately. Compressed
sparse row (CSR) format retains the same cols and data arrays
of COO but compresses the row indices into ptr, elements of
which are the beginning positions of all rows in the cols/data.
Diagonal (DIA) format stores non-zeros along the diagonal
direction (from top left to bottom right). In the DIA example
in Figure 3, the first row of data contains the two elements
on the left bottom diagonal of matrix A, the second row is
for the principal diagonal of matrix A, and the third row is
for the diagonal on the top right of the matrix. The array
offsets records the offsets of each diagonal from the principal
diagonal.

III. DESIGN CHOICES AND CHALLENGES

As Figure 1 in Section I has mentioned, the runtime of a
SpMV-based program execution consists of the time to predict
what format of matrices is desirable, the time to convert the
matrix into that format, and the time to run the SpMV-based
program on the matrix in the new format. The first two parts
are runtime overhead.

We have considered various designs to treat the overhead
for minimizing the overall execution time.

A. Implicit Versus Explicit Treatment

The first set of designs we considered treat the overhead
implicitly. They directly predict the overall execution time of
the SpMV-based program.

For instance, one design we had is to train a predictor p
that takes a program code, the original matrix, and a certain
matrix format as input, and predicts the overall runtime of the
program. It can be represented as the following Toverall =

p(G,A, f). The difficulty is that the predictor must apprehend
the influence of the features of the program G, the matrix
A, and the format f at the same time. All three components
could have many dimensions to consider, with program being
the most complex component.1

An alternative design is to build a predictive model pG
specific to each given program G. As it is specific to a
particular program, it needs to learn only about the influence
of A and f : Toverall = pG(A, f), which simplifies the
construction process. However, the catch is the loss of the
generality of the constructed predictor. One would need to go
through the time-consuming process of predictor construction
for each program.

Overall, methods with an implicit treatment to overhead
suffer a tension between model generality and construction
complexity.

To address the tension, we use a design that takes an explicit
treatment to the overhead. This design is based on a more
detailed view of the overall program runtime. For a given
matrix used by one or more SpMV statements in a program,
if we allow format conversion of the matrix based on some
format selector, the whole program execution time can be
regarded as follows:

Toverall = Tpredict + Tconvert + (
∑
i

Tspmv(i) ∗Ni) + Tother,

(1)
where,
• Toverall: the overall execution time of the whole program.
• Tpredict: the time to predict what format to use for a given

matrix.
• Tconvert: the time to convert the matrix into the desired

format.
• Tspmv(i): the runtime of the ith SpMV statement on the

matrix.
• Ni: the number of times the ith SpMV statement is

invoked on the matrix.
• Tother: the time spent by other parts of the program.
In all SpMV-based applications that we have examined,

Tother is largely independent to the matrix format as those
parts of code tend to use the SpMV results rather than the
matrix itself. For them, Tother can be ignored in the format
selection; we need to consider only the first three terms on the
right-hand-side of Toverall. So the goal becomes to minimize

Taffected = Tpredict + Tconvert + (
∑
i

Tspmv(i) ∗Ni), (2)

Our design is to build separate predictors to directly predict
the overhead, single SpMV time Tspmv(i), and Ni respectively.
They each work across programs, matrices, and formats,
providing good generality. At the same time, they avoid
many complexities the implicit designs face. For instance, the
overhead and Tspmv(i) are not affected by the features of the
program G; Tconvert is determined by the matrix and formats

1A variant of the predictor is to directly predict which format is the best
(rather than time), which is still subject to the influence of all the components.



only; Tspmv(i) is determined by the matrix and the used format
only (for a given SpMV library); Ni is influenced by the
features of the program G and the matrix, but is independent
of the matrix formats.

Because of the strengths in both simplicity and generality
of the explicit design, we use it as the base for our developed
solution.

B. Challenges

To effectively materialize the design, there are three major
challenges.

(1) The first is that unlike previously built predictors that
give out qualitative prediction results (i.e., which format
works the best), the four predictors we need to build are
all quantitative predictors, giving out numerical predictions.
Consequently, the machine learning methods that showed
effectiveness in the previous predictors cannot be applied to
our problem, and in the same vein, the features of matri-
ces/formats/programs found useful in the previous studies may
not necessarily fit our predictors. Identifying the suitable ma-
chine learning methods and features to use is the first question
we must answer. This challenge relates to the constructions of
all our predictors.

(2) The second challenge is specific to the prediction time
Tpredict. It is the chicken-egg dilemma mentioned in the intro-
duction. The prediction time Tpredict could be substantial as
it typically requires the extraction of matrix features. Because
the prediction happens during runtime, if the prediction result
is to keep the format unchanged, the prediction would incur
only runtime overhead and result in slowdowns to the program
execution. If we add a predictor for predicting Tpredict, that
added prediction itself suffers the same problem.

(3) The third challenge is specific to the prediction of Ni.
The value of Ni is usually determined by the tripcount(s)
of the loop(s) surrounding the call of SpMV. Predicting the
tripcount of a loop is not easy as it depends on the algorithm
implemented in the loop and the data involved in the loop
execution. The former varies from program to program, and
the latter varies even across the different runs of the same
program. How to automatically model the relations between
programs and loop tripcounts is a difficult problem—it is in
general equivalent to the halting problem the answer to which
is undecidable.

In the next section, we present our solution in detail and
explain how it addresses all the challenges.

IV. OVERHEAD-CONSCIOUS PREDICTOR IN DETAIL

This section first describes the choice of machine learning
method we made for constructing the predictors, then presents
our two-stage lazy-and-light scheme and how it helps with risk
control, and finally explains some other important details in
the predictors’ construction.

A. Learning Method

Previous format selection systems are oblivious to the
overhead terms, and only need to make qualitative predictions

(i.e., which format gives the shortest SpMV time). Hence,
they all formalize the problem as a classification problem. In
contrast, as the previous section has explained, when taking
the overhead into consideration, we need the predictors to
provide quantitative predictions. We can no longer model it as
a classification problem. Instead, we need to build regression
models to predict numerical values.

Regression models are models that take in some feature
values (which could be numerical or categorical) and output
some numerical predictions. There are many machine learning
algorithms for constructing regression models, such as linear
regression, Support Vector Regression (SVR), and so on. We
select the learning method for our problem based on the
following principles:

1) The algorithm should give good prediction results;
2) Due to the complexity of sparse matrices, the model

should be robust and flexible in handling data with complex
features;

3) As our predictors are for online predictions, the algorithm
should be efficient;

4) It would be better if the produced models are inter-
pretable.

Among the machine learning methods used in practice,
regression tree-based models meet the four requirements well.
They have advantages in simple data preparation, robust
performance to nonlinear relationship, and easy interpretable
results (as the created trees are composed of questions on input
features). The regression models they produce are also fast
to run as they involve only a small number of questions on
the data features and several linear algebraic operations (the
leaf nodes in the trees are typically linear functions of data
features). Moreover, when combined with boosting methods,
they have shown best prediction results and robustness in a
variety of problems. In our work, we select the open-source
package XGBoost [16], an efficient tree boosting system, to
build our models. XGBoost is one of the most widely used
tree boosting package, and has proven its effectiveness in many
previous machine learning tasks [17], [18] 2.

B. Two-Stage Lazy-and-Light Scheme

As the previous section has mentioned, one of the barriers
for deploying format predictors during runtime is that the
predictor’s own overhead could already cause large slowdowns
to the overall execution if the SpMV is called for only a few
times on a given matrix. It is primarily due to the time needed
for the predictor to extract the features from the given matrix
(running the predictor takes little time as mentioned in the
previous subsection.)

Our solution is a two-stage lazy-and-light scheme. As Fig-
ure 4 shows, the scheme consists of two stages of predictions.
The first one is a lightweight predictor of the number of times
the SpMV gets called on a matrix. The second stage does
more sophisticated predictions and decides what format is the

2Although deep learning is now popular, it is best for classification rather
than regression.
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best format to use. The first predictor serves as a gateway;
by comparing the predicted value LC to a threshold TH , it
decides whether it is worthwhile to invoke the second stage
of prediction. If LC < TH , no further prediction will be
done and the program runs with the default format; otherwise,
the second-stage prediction will be done, and depending on
the prediction result, the matrix may remain as it is or be
converted to a new format and used in the rest of the program
execution.

Such a scheme is designed to prevent the large prediction
overhead from causing significant slowdowns when the ex-
ecutions are short-run executions. For the scheme to work
effectively, it is important to ensure that the first stage takes
virtually no time but still can provide reasonable prediction
accuracies, and at the same time, the influence of its prediction
errors could be controlled as much as possible.

We have explored several ways to implement the first-stage
predictor. One method is to build it by modeling the relations
between the features of matrices and the tripcounts of the
SpMV-containing loops, such that the model can predict the
tripcounts for an arbitrary matrix given to that loop. The
relations are too complicated to capture; our results based
on XGBoost show disappointing prediction accuracies. The
method also incurs substantial runtime overhead as it needs
the collection of matrix features.

We eventually settled on the following time-series–based
lazy predictor and found it meets our needs well. It is based
on an observation that the loop surrounding SpMV in a SpMV-
based application is often a loop for convergence. In a linear
solver, for instance, each iteration of the loop computes the
error from the current solution and the loop terminates when
the error is smaller than a predefined threshold. We call
the error the progress indicator of the loop. Other kinds of
applications may have other kinds of progress indicators. Our
solution is to build up a predictor that predicts the total number
of iterations based on the sequences of the progress indicators
of the first k iterations of the loop. Its usage will be lazy in the
sense that it is invoked in an execution of the target program
only after the first k iterations of the loop have passed and

their progress indicators are revealed.
Such a lazy design has three benefits. First, it avoids the

slowdowns that the prediction (and prediction errors) may
cause to the loop if the loop has very few (less than k)
iterations. For such short loops, even small runtime overhead
could have some significant impact. Second, as the collected
progress indicators reflect the dynamic behaviors of this cur-
rent execution, they provide the predictors with clues specific
to this run. Finally, the constructed predictor runs quickly. It
does not need extracting features from matrices. It only needs
to record several values of the progress indicator and then
do several linear algebraic calculations. They take virtually
no time compared to a SpMV execution. The predictors are
built with autoregressive integrated moving average (ARIMA)
machine learning model [19], which is a simple but efficient
time series analysis model.

We make three notes. First, the goal of the two-stage
scheme is not to ensure no slowdown (which could be easily
achieved by avoiding any prediction or format conversion),
but to maximize the overall speedups while avoiding large
slowdowns in the unfavorable cases. The second stage of
the prediction gets used only if the first stage predicts, after
the first k iterations of the loop, that the loop will run for
at least another TH iterations. We empirically set both k
and TH to 15 in our implementations. Second, we do not
claim the novelty of the time-series method for loop tripcount
prediction. The approach shares lots of commonality with
many other time-series–based program behavior predictions.
The main contributions in this part is that we go around the
prediction overhead dilemma through this lazy-and-light two-
stage design. Finally, our discussion focuses on convergence
loops. For regular for loops, the problem is easier; the loop
tripcount can be directly attained from the loop bounds at
runtime.

C. The Second-Stage Prediction and Feature Selection

The second stage predicts the best format to use. Recall that
our original goal is to find the format to minimize Taffected

in Equation 2. By this time, the first-stage prediction has
already decided to run the second-stage prediction. So the
same Tpredict is incurred no matter what format the predictor
chooses. Therefore, the original goal is equivalent to minimize

Tconvert +
∑
i

Tspmv(i) ∗Ni.

We observe that if we divide the goal formula with a con-
stant (normalization), the result of minimizing the normalized
value is equivalent to minimizing the original formula.

This observation is useful because in our explorations, we
found that directly predicting Tconvert and Tspmv(i) is not as
easy as predicting their normalized values (e.g., by Tspmv(0)

on the original matrix format). The plausible reason is that
some environment biases common to the three times are
canceled out by the divisions.

So, we build two predictors for the second stage prediction.
They respectively predict the normalized conversion time and



the normalized SpMV time on each matrix format. For a given
old matrix format and a new format, both normalized times are
primarily determined by the matrix features. The predictors
are regression models on matrix features, constructed with
XGBoost.

The construction process is straightforward. For instance,
for the predictor of normalized Tconvert from given old
to new formats, we collect the normalized Tconvert val-
ues on many matrices. For each, we create a tuple
(feature1, feature2, · · · , featurem, normalized Tconvert),
where featurei is the value of the ith feature of the matrix.
XGBoost then takes these tuples as training data and auto-
matically constructs the predictor that predicts the normalized
Tconvert from the features of an arbitrary given matrix.

The main challenge in building the regression models is
on the identification of the important features of a sparse
matrix. The feature should capture the characteristics of the
matrix for the studied problem well. On the other hand, more
features may increase the feature extraction overhead and
artificially increase the needed number of training data to form
the predictor. So the optimal choice of features is a trade-off
among expressiveness, cost, and simplicity.

Prior studies [12], [20], [21] have proposed more than 60
features to store the meta information about a matrix. It is
essential to find those that are important for our predictors.
Fortunately, a benefit of using ensembles of decision tree meth-
ods like XGBoost is that they can automatically determine
feature importance from a trained predictive model. To be
specific, an XGBoost model is built using the whole feature
set in Table I. As a side product, the importance score of each
feature can be calculated by the algorithm, allowing features to
be ranked and compared to each other. The importance score
indicates how useful each feature is in the construction of the
tree-boosting model. Features with low importance score can
be automatically pruned until the minimal set of features is
retained without sacrificing the prediction performance.

In addition to the feature selection, some other standard
methods are used in our predictors constructions, including
grid search for parameter auto-tuning and cross validation for
overfitting prevention.

The deployment of the overhead-conscious method is cur-
rently through library. For a given application, to use the
method for runtime format selection and conversion, the
user just needs to replace the original SpMV call with our
customized SpMV call, and insert code to record the values of
the progress indicator of the surrounding loop. The customized
SpMV call adds a wrapper to SpMV such that when the
appropriate conditions are met, it calls the construction of
Stage-1 predictor, or calls the Stage-2 predictor (which needs
to be built only once on the system of interest) and the format
conversion when necessary.

V. EVALUATION

In this section, we report the evaluations of the efficacy of
the proposed overhead-conscious format selection for SpMV-
based applications. A quick summary is that it predicts the

TABLE I: The full set of feature candidates of a matrix.

Parameter Meaning
M number of rows
N number of columns
NNZ number of nonzeros (NZ)
Ndiags number of diagonals

NTdiags ratio the ratio of ”true” diagonals to total diagonals, true
diagonals represents one occupied mostly with NZ.

aver RD average number of NZ per row
max RD maximum number of NZ per row
min RD minimum number of NZ per row
dev RD the deviation of number of NZ per row
aver CD average number of NZ per column
max CD maximum number of NZ per column
min CD minimum number of NZ per column
dev CD the deviation of number of NZ per column
ER DIA the ratio of nonzeros in DIA data structure
ER RD the ratio of nonzeros in row-packed (ELL) structure
ER CD the ratio of nonzeros in column-packed structure
row bounce average difference between NNZs of adjacent rows
col bounce average difference between NNZs of adjacent columns
d density of NNZ in the matrix
cv normalized variation of NNZ per row
max mu max RD − aver RD
blocks number of non zero blocks
mean neighbor average number of NZ neighbors of an element

TABLE II: Hardware platforms used in the experiments.

Intel® CPU NVIDIA® GPU

CPU Xeon E5-1607 GeForce GTX
TITAN X

Freq. 3.00 GHz 1.08 GHz
Cores 4 3072

Memory 16GB DDR3 1.9
GHz

12GB GDDR5
3.5 GHz

Memory
Bandwidth 34.1 GB/s 168 GB/s

OS/Driver Ubuntu 16.04 CUDA 8.0
Compiler GCC (6.2) NVCC (8.0)

normalized format conversion time and the SpMV time with an
average accuracy greater than 88% in most cases. It improves
the overall performance of applications by 1.14X to 1.43X,
significantly larger than the 0.82X to 1.24X upperbound
speedups overhead-oblivious methods could give. We next
describe the methodology and the full results.

A. Experimental setup

a) Hardware: The evaluations are on a CPU-GPU plat-
form as detailed in Table II.

b) Library, Formats, Applications: As Figure 3 has
shown, different formats require SpMV to be coded differ-
ently. To evaluate the speedups of SpMV brought by format
predictions, we need to use a SpMV library that can work with
multiple matrix formats.

In our evaluation, we focus on the CUDA-based SpMV
libraries on the NVIDIA GPU. We adopt the NVIDIA® CUSP
library [22], which supports COO, CSR, DIA, ELL, HYB
formats. We supplement it with the cuSPARSE library [23]
to support the BSR format. A previous work reports some
promising performance of a new format CSR5 over some



alternative formats and publishes the implementation [8]. We
include its CUDA implementation to support CSR5 format.
Format conversions are through the functions included in
CUSP which runs on GPU.

The set of formats covered in this study are limited to
the formats supported by these existing libraries. The support
of these covered formats by these (commercial) libraries
indicates their competitiveness and general applicability. The
set unavoidably leaves some formats uncovered. With the idea
verified, the approach can be easily extended to the selection
of other formats.

CSR is the most commonly used default format in SpMV-
based applications. It is hence used as the default format in
our experiments.

We create a simple software framework, named
SpMVframe, to help with a focused study of SpMV
performance. It consists a loop with adjustable upperbounds
that surrounds a call to SpMV. In addition, we also evaluate
the technique on four real-world SpMV-based applications:
PageRank [24] is the popular web page ranking algorithm,
BiCGSTAB [25] implements the bi-conjugate gradient
stabilized method, CG [26] is a conjugate gradient method,
GMRES [27] is a linear equation system solver based on the
generalized minimum residual method.

c) Dataset: Our experiments use the dataset from the
SuiteSparse matrix collection [28]. These matrices include the
2757 real-world matrices (which were also used in the previous
studies [12], [13]).

In our evaluation of the prediction model, we run the SpMV
on all the matrices of all formats. However, not all runs are
valid as some formats impose extra limitations on matrices.
For example, the DIA and ELL require the fill ratio (the
ratio of zeros to be padded in the storage) is within some
threshold. And some applications (e.g., linear solver) works
on only matrices meeting certain conditions. Only valid runs
are considered in the performance comparisons; more details
are given during our following result discussions.

d) Cross Validation: For the evaluations on the SpMV
format prediction, we separate testing data from training data
through 5-fold cross validations. This is a method commonly
used in statistical learning for evaluations. It takes 20% of
valid matrices out to form a test set and uses the remaining
valid matrices for training. It repeats the process for 5 times
with a different subset of the dataset taken out as the test set.

B. Impact of the Overhead on Format Selection

We first measure the impact of the format conversion
overhead on format selection. This part uses no prediction
but actual performance measurements. As Table III shows,
converting a matrix to a different format takes a lot of time,
equaling 9-270 calls of SpMV. And the time differs across dif-
ferent formats. As a result, the format minimizing SpMV often
does not give the best overall performance. It is reflected by the
largely different distributions of matrices shown in Table IV
in terms of their favorite formats in overhead-conscious (OC)
and overhead-oblivious (OO) cases. Table IV also shows that

TABLE III: The conversion (CSR to other formats) time
normalized by a single SpMV on CSR.

Other format Conversion cost
COO 9
DIA 270
ELL 102
HYB 147
BSR 37
CSR5 26

TABLE IV: The number of matrices that favor each of
the formats in the conversion overhead-oblivious (OO) and
overhead-conscious cases (when the loop has 100 or 1000
iterations).

Format OO OC (Iter=100) OC
(Iter=1000)

CSR 195 1490 965
DIA 30 6 27
ELL 107 0 76
HYB 54 4 13
BSR 943 201 632
CSR5 582 210 198

when overhead is considered, the best format changes with the
number of iterations of the SpMV-surrounding loop (format
conversion is done only once for a matrix in a run). These
results confirm the importance of being overhead conscious in
selecting matrix storage format.

C. Performance Comparison of Primary Predictors

As mentioned, our overhead-conscious solution consists of
two stages. The first stage is a gateway mostly based on loop
tripcount prediction. It is application specific. The second stage
consists of our primary predictors that deal with the trade-off
between format conversion overhead and conversion benefits.
In this part, we give a focused study on the quality of the
primary predictors, and compare the format they select with
those from previous overhead-oblivious methods. The next
section will report the performance of the whole overhead-
conscious solution on real applications.

We use our SpMVframe for this study; by allowing easy
change of loop bounds, it makes it convenient to examine the
tradeoff between conversion overhead and benefits.

a) Prediction Accuracy and Speedup Comparisons:
Recall that the primary predictors predict the normalized
format conversion time and the normalized SpMV time on
the new format. We use relative error as the metric, defined
as

|predicted value− actual value|
actual value

.

Table V reports the relative errors of the predictions by our
primary predictors on each of the studied matrix formats. The
accuracies are over 88% in most cases.

Figure 5 shows that the predictions are sufficient for the
primary predictors to select the best matrix formats correctly
in most cases, and produces significant speedups. The bars
in Figure 5 report the speedups obtained in three ways. The



TABLE V: Prediction errors of normalized format conversion
time and SpMV time

Format No. of matrices Error of conversion
time

Error of SpMV
time

COO 1911 9.6% 18.0%
CSR 1911 8.1% 7.0%
DIA 630* 8.8% 8.3%
ELL 1331* 8.6% 10.0%
HYB 1911 8.3% 8.0%
BSR 1911 10.7% 15.0%
CSR5 1911 13.9% 11.5%

*The library allows only matrices meeting certain conditions (e.g., number
of diagonals exceeds 20% for DIA) for DIA and ELL.
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Fig. 5: The comparison of speedups based on SpMVframe. The
baseline is the performance on the default CSR format.

SpeedupOC bars are the speedups from our primary predic-
tors. The TBOC bars are the upperbounds of the overhead-
conscious method—that is, when the primary predictors have
a perfect prediction accuracy. The TBOO bars are the upper-
bounds of the results from overhead-oblivious methods, which
are obtained by picking the format that actually minimizes
SpMV time (without considering format conversion time).

As the results in Figure 5 show, because of the impact
of the conversion overhead, the decisions from TBOO cause
large slowdowns when the SpMV-enclosing loop has a small
number of iterations. When the number of iterations gets
large, the speedups from that method is still lower than
what the overhead-conscious method achieves. The differences
between the SpeedupOC bars and the TBOC bars show
that the speedup loss due to the prediction errors of our
primary predictors is small across all different numbers of
loop iterations. The results indicate the importance of being
overhead-conscious, and suggest that the predictions from our
primary predictors are accurate enough to keep most benefits
of overhead-conscious matrix format selection.

D. Performance on Entire Applications

In this part, we report the overall speedups our solution
brings to four real world applications, along with the evalua-
tion of our first stage predictor.

The convergence checking statements in those applications

TABLE VI: Speedup of applications.

Application Speedup
TBOO TBOC SpeedupOC

PageRank 1.0762 1.4368 1.4307
BiCGSTAB 1.2454 1.3975 1.3375

CG 0.8246 1.1449 1.1416
GMRES 1.0136 1.2505 1.2034

give the progress indicators for the Stage-1 predictor to use for
its prediction of loop tripcounts. The four applications exhibit
different patterns in loop tripcounts. PageRank has a quite
stable pattern, with loop tripcounts in the range of [1, 93],
while BiCGSTAB shows a much larger range [1, 100000]
(100000 is the preset upper bound). The errors in the exact
numbers of predicted loop iterations vary, from 17% average
on PageRank to 62% on BiCGSTAB, 78% on CG, and 102%
on GMRES. It is important to note that our ultimate goal is to
decide whether to do the predictions and format conversions,
rather than to get the precise loop tripcounts. Hence, there is a
substantial amount of slack for tolerating tripcount prediction
errors. For instance, even though a prediction of 10 for a 2-
iteration loop means a 400% prediction error, the predictor still
makes the right decision that no further predictions or conver-
sions should be done as the loop is too small (smaller than
the threshold). And for a loop, tripcounts of 1000 and 2000
could lead to the same conclusion for our ultimate questions
as they are both so large that the overhead in predictions and
format conversions is trivial compared to the benefits. More
specifically, for our Stage-1 predictor, the predicted tripcount is
taken to compare with the threshold TH=15 to decide whether
it is worth proceeding into the more costly Stage-2 prediction.
So despite the sometimes quite big errors in the predicted
tripcounts, our Stage-1 predictor correctly predicts whether
the tripcounts (after the first stage) of the loop exceed the
threshold in most of the times: PageRank 93%, BiCGSTAB
82%, CG 76%, GMRES 65%.

The prediction errors have some influence on the overall
benefits of the predictions, but the overall results still re-
main positive. Table VI (the SpeedupOC column) shows the
average speedups our method brings to the whole program
executions (all runtime overhead is counted.) We also report
the upperbound speedups (the TBOC column) of our method
when there are no prediction errors, and the upperbound
speedups (the TBOO column) of overhead-oblivious methods.
Again, the performance of the default CSR format is used
as the baseline. The prediction errors reduce the speedups
of overhead-conscious method to a certain degree. It is most
visible on GMRES which has the lowest prediction accuracies.
However, even with that influence, the overhead-conscious
method still significantly outperforms the upperbounds of
the overhead-oblivious methods. The average speedups are
significant, ranging from 1.14X to 1.43X.

Table VII shows the distributions of the selected formats.
Figure 6 shows the histogram of the speedup for PageRank.
Compared with Figure 2, our selector largely avoids perfor-
mance slowdowns caused by unnecessary format conversions.



TABLE VII: The numbers of matrices that favor each of the
formats in the four applications.

Applications PageRank BiCG CG GMRES
Schemes OO OC OO OC OO OC OO OC

F CSR 71 320 32 114 36 122 117 292
o DIA 12 0 8 3 8 5 9 5
r ELL 38 0 9 5 27 23 17 8
m HYB 24 0 4 0 12 5 8 0
a BSR 367 129 166 96 115 45 291 164
t CSR5 86 149 31 32 7 5 48 21
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Fig. 6: The histogram of the overall speedups of program
PageRank when it uses our OC format selector predictor.
CSR is the default format.

Selected new formats work well for most cases.
Table VIII reports the details of the predictions on several

matrices of different sizes and densities. The consideration
of overhead leads our predictor to select entirely different
formats from those selected by the ideal overhead-oblivious
method on four out of the five matrices. For instance, on matrix
shallow_water2, even though HYB can make the SpMV
run faster, our stage-1 predictor correctly predicts that it is not
worthwhile because the runtime overhead will likely outweigh
the benefits. By leaving the format unchanged, it avoids the
substantial slowdowns the overhead-oblivious method incurs.
Because stage-1 predictor takes virtually no time, it adds
no noticeable overhead to the program execution. The stage-
2 predictor has some larger overhead (about 2X–4X SpMV
time) as it needs to extract matrix features. However, the
two-stage design and the lazy-and-light scheme ensure that
it does not get invoked in short program executions, as in the
shallow_water2 case.

Overall, the upperbounds of speedups that previous
overhead-oblivious methods can bring are only 0.82X–1.24X.
(Recall that less than one means slowdown.) In contrast, our
method, on average, improves the overall performance of
applications by 1.14X–1.43X. The results demonstrate that the
proposed method is effective in overcoming the limitations of
prior methods in selecting the storage format for SpMV-based
applications. The experiments focus on GPU, but as SpMV
selection is also important for CPU [12], [29], we expect
that the technique could help CPU executions as well; the
exploration is left for future studies.

Regarding the prediction overhead, the time of the time-
series model and the XGBoost model is constant with value

of 2ms and 5ms, respectively. The feature extraction overhead
varies with a range of 2X–4X of a SpMV call.

VI. RELATED WORK

There has been a number of studies on format selection for
SpMV. For example, the SMAT work [12] built up a decision
tree for selecting the best storage format for a sparse matrix
storage. A similar classification-tree-based model was used in
[13] and an SVM classification model was used in [15].

None of these studies have taken the overhead into account
when predicting the best format. A recent work [29] discusses
the “break-even point”, which is the minimal number of
SpMV calls needed for the conversion benefits to outweigh the
overhead. This concept is overhead conscious, but the work
does not integrate it into the prediction model, leaving the
decision to users.

There are some other efforts trying to optimize the compu-
tations over sparse matrices, including building automatically
performance tuning (auto-tuning) systems [9], [10], [12], [13],
designing new sparse formats [6], [7], [11], and hand-tuning
input- or architecture-related features [11], [30], [31].

In a broader scope, there have been a large body of work
applying machine learning techniques to solve program opti-
mization difficulties. Examples include some on algorithmic
selections [32], [33], some on improving lower-level compiler
optimizations [34]–[37], and some on dynamic compilations
and adaptations [38].

VII. CONCLUSION

This paper has provided the first systematic exploration on
how to construct overhead-conscious selectors of matrix for-
mat for SpMV-based programs. SpMV is important, but there
are many other uses of sparse matrices. We foresee that the
potential of the proposed techniques and method (e.g., the two-
stage lazy-and-light scheme, the explicit treatment of online
overhead) may go well beyond SpMV format selection (e.g.,
selection of the best linear solvers for a given matrix [39].)
How to unleashing the potential is left for future explorations.
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