
Co-Run Scheduling with Power Cap on Integrated CPU-GPU Systems

Qi Zhu‡ Bo Wu§ Xipeng Shen∗ Li Shen‡ Zhiying Wang‡
‡ National University of Defense Technology, China

§ Colorado School of Mines, USA
∗ North Carolina State University, USA

Abstract—This paper presents the first systematic study
on co-scheduling independent jobs on integrated CPU-GPU
systems with power caps considered. It reveals the performance
degradations caused by the co-run contentions at the levels of
both memory and power. It then examines the problem of
using job co-scheduling to alleviate the degradations in this
less understood scenario. It offers several algorithms and a
lightweight co-run performance and power predictive model
for computing the performance bounds of the optimal co-
schedules and finding appropriate schedules. Results show that
the method can efficiently find co-schedules that significantly
improve the system throughput (9-46% on average over the
default schedules).

I. INTRODUCTION

Recent processor development exhibits a trend towards
integrated CPU-GPU architectures, exemplified by AMD
Fusion [5], Intel Ivy Bridge [13], NVIDIA Denver [4],
and so on. Such an integration is a double-edged sword.
As CPU and GPU are integrated into a single chip, the
communication latency between them is shortened. But
at the same time, the tight sharing of hardware resource
makes co-run interference between GPU and CPU programs
become more intensified and complicated.

In this work, we aim at finding solutions to minimize the
influence of such co-run performance interference through
job co-scheduling. Job co-scheduling [10, 16, 23, 26] refers
to a technique which schedules a batch of jobs to processors
in a time sequence such that a certain objective (minimizing
co-run interference, maximizing throughput, etc.) can be
achieved. As a software approach, job co-scheduling offers
a cheap (virtually free) way to significantly improve system
throughput for shared servers, workstation clusters, and data
centers [22, 25, 29].

Job co-scheduling has drawn many research interests.
However, most prior efforts are focused on homogeneous
multicore processors [10, 15, 16]. There are some co-
scheduling studies for heterogeneous systems, but what
they concern are the fair or efficient usage of the discrete
GPU shared by co-running applications [8, 11, 18, 28], or
mapping tasks in a single application to CPU or GPU [3, 17],
rather than dealing with the complex effects of interferences
between CPU and GPU programs co-running on such inte-
grated systems.

Compared to those studies, the problems tackled in this
work have the following extra complexities.

• Job placement: The same program may show dramatic
performance differences between its CPU and GPU
executions depending on the program’s characteristics.
In an integrated system, the GPU execution may not
always outperform the CPU execution even for data
parallel programs, because the difference between peak
throughput of the CPU and GPU is substantially smaller
than that in discrete systems.

• Power cap: For energy efficiency and reliability, mod-
ern processors feature power caps—the allowed upper
limit of power consumption by the processor. While
this feature exists on CPUs, the integrated architecture
needs to allocate power to two different types of proces-
sors, which have disparate power profiles. They appear
to be more sensitive to power cap in terms of both
performance and reliability. Prior job co-scheduling
works have not systematically considered the influence
of power cap in co-scheduling.

• Interplay: The memory contention due to tight inte-
gration may substantially slow down the co-running
applications. The degree of degradation depends on not
only the applications’ memory access patterns but also
the power allocation. Job lengths further complicates
the problem, as a long job may need to co-run with
a sequence of short jobs and the lengths of a job
vary along with the power allocation and memory
contention.

As prior co-scheduling methods have not considered these
special complexities, they are not applicable to CPU-GPU
co-runs on our target processors. We are not aware of any
prior co-scheduling work that has systematically considered
all these complexities on integrated heterogeneous proces-
sors. To solve the co-scheduling problem, one must answer
two questions. The first is how to design a scheduling
algorithm that can efficiently compute a good co-schedule
assuming all co-run performance info of all jobs is avail-
able. The second is how to effectively estimate the co-run
performance of jobs with all the complexities considered.
Neither question has been systematically explored before in
the integrated heterogeneous co-scheduling environment.

This paper answers both questions. After Sections II
and III give a formal definition and an example of the
optimal co-scheduling problem on CPU-GPU integrated

environment, Section IV presents a set of developments
in co-scheduling algorithm designs. Prompted by the NP-
hard complexity of the co-scheduling problem, it presents
an efficient heuristic co-scheduling algorithm that builds
on a Co-Run Theorem. It further presents a simple way
to compute the performance bounds of the optimal co-
schedules, which offer some references for assessing the gap
between a heuristic co-schedule and the full potential of job
co-scheduling.

Section V presents our solution to the second problem:
enabling efficient prediction of the performance degradation
and power consumption of the co-runs of an arbitrary pair
of programs in a given set of workload on a CPU-GPU
integrated processor with a certain frequency setting. A naive
approach is to find out the performance of all possible co-
run settings of the workload by profiling each group of the
programs under each frequency setting. Given N programs
and K frequency levels for each processor, for co-runs of
two jobs, it would need many (O(N2×K2)) profiling runs.
Our work addresses the issue through a staged interpola-
tion method, which builds a co-run performance predictive
model. The method uses controllable micro-kernels to first
characterize the co-run performance space, through which, it
predicts the co-run performance of two jobs by interpolations
with their standalone performance.

We integrate the techniques into a prototype co-scheduling
runtime. The performance degradation model shows high ac-
curacy for 64 co-run pairs with predicted co-run performance
only 15% on average from the ground truth. In a 8-program
co-run case study, the runtime determines a co-schedule
that produces 41% performance improvement over random
scheduling and about 9% improvement over the system’s
default schedule. In a 16-program co-run case study, the
improvement is 37% and 46% over the random and default
schedules respectively.

Contributions: This work makes the following major
contributions:

• To our best knowledge, this is the first systematic study
on maximizing the throughput of CPU-GPU integrated
systems through job co-scheduling with power cap
considered.

• It proposes the first set of algorithms to efficiently com-
pute the performance bounds of optimal co-schedules
and search for appropriate co-schedules on such inte-
grated systems.

• It devises a micro-benchmark to characterize the co-
run performance degradation space and uses staged
interpolation to accurately predict co-run performance
for co-scheduling.

• It evaluates the integrated runtime with the performance
models and heuristic scheduling on a set of experi-
ments, which demonstrate significant performance ben-
efits.

Figure 1. The structure of Ivy Bridge Processor.

II. PROBLEM DEFINITION AND SCOPE

In this paper, we focus on integrated architectures that
have CPU and GPU put on the same die. It represents a trend
to seamlessly take advantage of both types of processors.
Figure 1 depicts an example of such architectures, Intel’s
Ivy Bridge. The CPU and GPU on an Ivy Bridge processor
share most of the memory system, including the last-level
cache, on-chip network, and main memory.

We next give a formal definition of the optimal job co-
scheduling problem tackled in this work:

Definition 2.1: In a heterogeneous processor consisting of
two types of units A and B, there are a batch of independent
jobs J (of possibly different lengths) that need to run. C is a
given power cap. The core workload in a job may run either
on A or B. The goal of the optimal job co-scheduling is
to put the jobs in J into two mutually exclusive sequences,
with each corresponding to the execution order of jobs on
one of the two types of processors, and associate each job
with a frequency level, such that the following conditions
are met:

1. At any moment, the power consumption on the hetero-
geneous processor is no greater than the given power cap
C.

2. The total time spanning from the start of the first job
of J to the finish of last job of J is minimized. The time is
commonly called makespan.

Several aspects of the definition are worth explaining.
First, the defined scope assumes that each job can run on
either type of processors. This is the most general scenario,
corresponding to the cases when all the jobs are written
in some portable language. Our study uses OpenCL [2]
programs. OpenCL is a programming model supported on
multiple types of platforms, for both CPU and GPU. An
OpenCL program usually contains one or more OpenCL
kernels that compose the core computations of the program.
An OpenCL kernel is portable, runnable on both CPU and
GPU.

The other situations, in which some jobs are runnable only
on one type of processor, can be regarded as special cases of
this general situation. In those situations, the placement of
the jobs on the processors becomes straightforward, while
the general case must deal with the extra complexity from

the choices of job placement when searching for the best
schedules.

Second, the defined scope assumes that the core workload
of a job (e.g., OpenCL kernels) runs on one of the proces-
sors. It is possible that a job contains multiple kernels—
including the cases in which a single kernel is split into
multiple ones for them to run concurrently on both types
of processors—and the scheduler could schedule some to
CPU, others to GPU. In this work, we limit the scope of
our schedule to an entire job (i.e., the collection of all its
kernels) for two reasons. First, in practical workloads, it is
not yet a common practice to partition the OpenCL kernel
of a program to make part run on CPU and part on GPU
simultaneously. In fact, previous work [31] shows that due
to the complexity in data partitioning and communications,
such partitioning often yields even worse performance than
using a single processor. Second, the fine-grained kernel-
level scheduling requires the source code of the program to
be written in a certain form. Most programs in practice are
not in such a form. We hence limit our scope of scheduling
to the entire job, but acknowledge that the fine-grained
direction is worth future explorations. We note that when
a job is scheduled to the GPU, it means that the OpenCL
kernels in that job will run on the GPU; its host thread still
runs on the CPU.

Finally, it is possible that multiple jobs co-run together
simultaneously on the CPU. Our problem definition excludes
such schedules from considerations, for two reasons. First,
on existing integrated processors, such co-runs have shown
to usually result in large performance degradations to both
CPU and GPU workload due to the much intensified re-
source contention. Second, such co-runs are helpful usually
when there are no enough parallelism in a single job. Given
that OpenCL is intended for massively parallel compu-
tations, such co-runs of OpenCL programs are typically
unbeneficial.

As per the problem definition, the objective of our sched-
ule is to minimize the makespan. Given a set of jobs, because
the set of computations are fixed, that objective is equivalent
to maximizing the amount of computations per time unit—or
throughput of the system.

III. A SIMPLE EXAMPLE

We next use a simple example to convey the intuition of
the job co-scheduling problem, give a glimpse at its potential
benefits, and discuss the two key questions to answer for co-
scheduling.

We run four OpenCL programs (streamcluster, cfd, dwt2d,
and hotspot) on a system that hosts an Intel Ivy Bridge
integrated processor. The processor has 4 CPU cores and
1 integrated GPU, with both types of cores being capable
of executing OpenCL programs. Figure 2 shows the perfor-
mance difference when running each application alone on
the CPU or GPU. Among the four programs, streamcluster,

Streamcluster Cfd Dwt2d Hotspot

0�

20�

40�

60�

80�
Standalone�exe.�time�on�CPU Standalone�exe.�time�on�GPU

Figure 2. The standalone performance of programs on CPU and on GPU.

cfd and hotspot prefer to run on the GPU and demonstrate
2.5X, 1.8X and 2.4X performance improvement over their
runs on the CPU, respectively. While dwt2d prefers to run on
the CPU, with 2.5X performance improvement over its run
on the GPU. We co-run dwt2d on the CPU and streamcluster
on the GPU, and observe 81% and 5% slowdown compared
to the standalone runs for dwt2d and streamcluster, respec-
tively. But if we co-run dwt2d on the CPU and hotspot on
the GPU, the slowdown is only around 17% for dwt2d and
5% for hotspot. The results demonstrate that the significance
of pairing the applications for co-running. Finally, we set a
power cap as 15 watts, and enumerate all frequency settings
for both processors that satisfy the power cap, we observe
that the optimal setting yields performance 2.3X better than
the worst case co-schedule of the four programs.

The results show three factors that play important roles in
the co-scheduling: program-to-processor mapping, program
co-run mapping, and frequency selections. To find appro-
priate settings to these factors, two key questions must be
answered. The first is to quickly estimate how well two
programs co-run together at an arbitrary processor frequency
setting. The second is how, based on the estimated co-
run performance, to find a way to quickly go through the
potential candidate schedules, assess their quality, and then
choose the best. The challenge is that the search space can
be enormous. Even for just four programs, the search space
contains C2

4 ∗ C1
2 ∗ 10 ∗ 16 = 1920 (10 frequency levels

for GPU, and 16 frequency levels for CPU) possible co-
schedules. To make the co-scheduling technique broadly
applicable, it is ideal to take effect online. The stringent
runtime overhead tolerance makes the problem even more
difficult.

IV. ALGORITHM DESIGN

The next section will answer the questions on co-run
performance prediction. This section provides our findings in
the algorithmic dimension of the problem. So the discussions
in this section assume the availability of accurate co-run
performance and power models at each frequency level.

On homogeneous multicore CPU, some work [26] has
proved that finding the optimal co-schedule is NP-complete

in general. As homogeneous systems can be regarded as
a special case of the optimal co-scheduling problem in
Definition 2.1 (with a fixed processor frequency and identical
processing units), our optimal co-scheduling problem is
NP-hard, which implies that finding optimal co-schedules
is in general infeasible to be done in polynomial time
(unless NP=P). We hence design a heuristic algorithm to
find good (not necessarily optimal) co-schedules. To help
assess the distance from the optimal, we further present a
simple way to compute the lower bound of the makespan of
optimal schedules. This section presents these algorithmic
contributions.

A. Heuristic Algorithm

Before describing our algorithm, we first list some nota-
tions we use as follows:

J : the set of jobs to schedule
li: the standalone run time of job i when

the system is homogeneous and allows no
frequency adjustment

li,p,f : the standalone run time of job i on proces-
sor p with power frequency f

dji : the co-run degradation percentage of job
i when job j runs on the other processor
in a homogeneous system allowing no fre-
quency adjustment

dj,gi,p,f : the co-run degradation percentage of job i
on processor p with frequency at f when
job j runs on the other processor with
frequency at g

Tlow: the lower bound of the time makespan of
the executions of all the jobs

In this section, J , li, li,p,f , dji , and dj,gi,p,f are all assumed
known variables (next section discusses the attainment of
their values). For the convenience of discussion, sometimes
we call the CPU and GPU each as a processor in the
following descriptions.

The design of our algorithm leverages a Co-Run Theorem
that we propose as follows. The theorem helps determine
whether a job should be arranged to run alone (i.e., leaving
the other type of processor idle while it is running) as such
arrangements are also permitted in the co-schedule if they
help reduce the makespan. Although the theorem is for ho-
mogeneous systems, its extension applies to heterogeneous
systems well.

Co-Run Theorem: For two jobs W1 and W2, on a
homogeneous system, suppose their standalone lengths are
l1 and l2, co-run lengths are l1+ l1×d21 and l2+ l2×d12, and
l1+ l1×d21 ≥ l2+ l2×d12. Then if and only if l1×d21 < l2,
the co-run produces a higher throughput than the sequential
executions of the two jobs.

The theorem can be easily proved as follows: The
makespan of the co-run is Tc = l1 + l1 × d21. The makespan

of the sequential executions is Ts = l1 + l2. Apparently,
(l1 × d21 < l2) ≡ (Tc < Ts).

We next describe the heuristic co-scheduling algorithm.
To ease the understanding, we start with a basic design
without considering power cap. It shows how the Co-
Run Theorem helps with co-scheduling. We then explain
the changes to the basic design to take power cap into
considerations. Finally, we describe several ways to do post
refinement of the produced co-schedule.

A.1 For Heterogeneous Systems without Power Cap

This part considers the integrated systems but with no
power cap; both processors may hence run at their highest
frequency levels. The algorithm is illustrated in Figure 3. It
consists of the following three steps.

Step 1: Job partition based on the Co-Run Theorem. The
goal of this step is to partition J into two disjoint sets
Sco and Sseq . The jobs in Sco can potentially benefit from
co-runs, while the jobs in Sseq should run in a standalone
manner for the best performance. To determine whether a
job should join Sco or Sseq , we pair each other job with it
and use the co-run theorem to dictate whether the two jobs
should co-run or not. If the evaluation from co-run theorem
always gives a negative answer, this job should join Sseq .
Otherwise, the algorithm puts it into Sco.

Step 2: Job categorization. Taking processor heterogene-
ity into consideration, the algorithm divides the jobs in S
into three sets: CPU-preferred, GPU-preferred, and non-
preferred. For each job, the algorithm includes it in non-
preferred if the difference between its execution times on
the CPU and GPU is smaller than or equal to a threshold
D (empirically selected as 20%). When the difference is
larger than D, the job should join the set preferred by the
processor, on which it has better performance.

Step 3: Greedy scheduling. The algorithm first schedules
jobs in S by following a rule to respect processor preference.
To schedule jobs to a processor, the algorithm always picks
jobs from its preferred set if that set is not empty, followed
by jobs in the non-preferred set and at last the jobs from
the set that prefer to run on the other processor. At the
beginning of the scheduling, the algorithm picks the longest
job in the GPU-preferred set and schedules it to the GPU.
It then picks the job from CPU-preferred set with the least
co-run interference (determined by the sum of the co-run
degradation percentages) with the job on the GPU and
run the picked job on the CPU. When a job finishes, the
algorithm follows the scheduling rule and picks a job with
the smallest co-run degradation to the running job until
all three sets are empty. The algorithm then sequentially
executes each job in Sseq on the processor that delivers the
best performance to avoid co-runs.

Figure 3. The flow diagram of heuristic algorithm.

A.2 With Power Cap Considered

In this case, the algorithm should select frequencies for
both processors such that the aggregate power consumption
does not exceed the power cap. We make the following
changes to the basic algorithm described in the previous
section:

Changes in step 1: When the algorithm leverages the co-
run theorem to dictate whether a job can benefit from the
co-run with another job, it traverses all possible frequency
settings that satisfy the power cap requirement.

Changes in step 2: To compare the performance differ-
ence between CPU and GPU runs of a job, the algorithm
uses the execution time of the job at the highest frequency
allowed by the power cap.

Changes in step 3: Like in step 1, to determine the co-
run interference for two jobs, the algorithm traverses all
frequency settings allowed by the power cap to compute
the minimal degradation.

A.3 Post Local Refinement

We further propose a 3-step local refinements to further
enhance the co-schedules produced by the heuristic algo-
rithm with low cost. First, it tries to swap every two adjacent
jobs in a processor to see whether the swapping helps reduce
the makespan. If so, keep the new order and continue to try
on the next two adjacent jobs until reaching the last job on
that processor. Then try the same refinement on the job list
of the other processor. Second, it tries to swap two randomly
picked jobs from the job list assigned to a processor. Finally,
it tries to swap two jobs on two different processors. The
complexities of the steps are all linear, either to the number
of jobs, or to the number of random samples. They offer
some quick refinements to the results from the heuristic
algorithm.

B. Lower Bound

In this part, we present a simple way to compute the lower
bound of the makespan of the optimal schedules. The lower
bounds, although they are not sophisticatedly computed to
be the tightest, offer some reference points for estimating
the room that a heuristic schedule has left from the optimal.
It is shown in the following formula:

Tlow =
1

2

∑
i

l′i

where, for each processor p,

l′i,p =


minj,f,g(li,p,f + dj,gi,p,f); if

minj,f,g(li,p,f + dj,gi,p,f) < 2minf ′ li,p,f ′ ;

2minf ′ li,p,f ′ ; otherwise.

l′i = min
p

l′i,p

In the formula, minj,f,g(li,p,f + dj,gi,p,f) is the minimal
co-run time of job i on processor p under a power cap
with a co-runner that introduces the least interference. And
minf ′ li,p,f ′ is the minimal standalone run time of job i,
where frequency f ′ needs to ensure that the system does
not exceed the power cap when job i is running standalone
at processor p. The soundness of the formula comes directly
from the Co-Run Theorem.

A side note: When computing the co-run lengths of two
jobs, some care needs to be taken in treating the differences
in their lengths. If l1 ∗ d21 < l2 ∗ d12, the co-run length of the
first job is just l1 ∗ d21, but the co-run length of the second
job is not l2 ∗ d12 because only part of it (l1 ∗ d21 in length)
actually co-runs with job 1. The remaining part is not subject
to the interference from job 1. Therefore the co-run length
of job 2 should be l1 ∗ d21 + l2 − l1 ∗ d21/d12.

V. CO-RUN PERFORMANCE AND POWER MODELING

The previous section has assumed that co-run performance
and power usage are known. This section describes how
these info is predicted through some lightweight models and
a staged interpolation method.

For a group of N programs with each processor having
K frequency levels, exhaustive profiling would require at
least O(N2 × K2) profiling co-runs. To avoid the time-
consuming process, our solution uses controllable micro-
kernels to first characterize the co-run performance space,
through which, it predicts the co-run performance of two
jobs by interpolations with their standalone performance
that can be attained through some existing online sampling
methods or cross-run predictive methods. Although micro-
kernels have been used for characterizing performance on
on CPU [33] before, the integrated heterogeneous processor
features some special complexities, especially in identifying
the crucial hardware resource that affects CPU-GPU co-run
performance on such a system, and the interplay between

1: /* tid: thread id */

2: Kernel(in_data_1[], in_data_2[], out_data[],

3: i_max, j_max){

4: data_tmp = 0;

5: for(i=0; i<i_max; i++){

6: //Step 1: read data (memory related)

7: data_1 = in_data_1[tid];

8: data_2 = in_data_2[tid];

9:

10: //Step 2: do calculation (memory unrelated)

11: for(j=0; j<j_max; j++){

12: data_tmp += j;

13: data_tmp = data_tmp % 10000;

14: }

15: //Step 3: write back (memory related)

16: data_out[tid] = data_1 + data_2*data_tmp;

17: } //end of for loop

18: } //end of Kernel

Figure 4. Source code of micro-benchmark kernel.

performance and power cap. We are not aware of prior
work on modeling CPU-GPU co-run performance and power
usage on such settings.

In the rest of this section, We first describe the synthesized
micro-benchmark, and its use in characterizing the co-
run performance degradation space. We then describe how
to use it with interpolation to predict co-run performance
degradation and power consumption.

A. Devising the Micro-benchmark

To construct a co-run performance degradation space
for estimate the performance degradations of co-running
programs, two complexities have to be addressed. The first
is to identify the critical hardware resource(s), the contention
on which influences the co-run performance the most. The
second is to devise a micro-benchmark, which can be easily
controlled to generate different levels of pressure on that
resource.

We focus on an architecture with the CPU and GPU
sharing the last-level cache and the whole main memory
system. Previous work on multicore CPU [35] have reported
that the main memory access contention, rather than LLC
contention, is the dominant reason of the co-run slowdown
in the real system. We have observed similar phenomena on
the heterogeneous integrated systems (both Intel and AMD).
So, in the modeling, we primarily consider the impact of
memory access contention. Section VI will show that it is
sufficient to help yield appropriate schedules.

We devise a micro-benchmark as a software stressor that
apply controllable pressure to the memory system. It is
written in OpenCL such that it can run on both CPU and
GPU. The source code of kernel is shown in Figure 4.
The kernel contains three arrays, in data 1, in data 2,
out data. These arrays are large enough so that no one
single array can stay in LLC during execution. In step 1, each
thread the kernel launches reads data from in data 1 and
in data 2. Then, step 2 controls the amount of arithmetic
calculations, which does not access memory because all
operands are hosted in registers. In step 3, the kernel writes
back data to out data. By setting the array sizes and the
number of loop iterations in step 2, the kernel generates
various degrees of memory demands.

B. Characterizing Co-run Degradation Space

To collect profiled data to construct the co-run perfor-
mance degradation space, we run the micro-benchmark

0r1

3r4

6r7

9r10

0%
10%
20%
30%
40%
50%
60%
70%

0
r1

1
r2

2
r3

3
r4

4
r5

5
r6

6
r7

7
r8

8
r9

9
r1
0

1
0
r1
1

0%r10% 10%r20% 20%r30% 30%r40%

40%r50% 50%r60% 60%r70%
Range�of�slowdown

C
o
ru
n
�s
lo
w
d
o
w
n
�o
f�

C
P
U
�p
ro
g
ra
m

Mem.�Band. levels�of�CPU�program�(GB/s)

Range�of�slowdown

Figure 5. Spectrum of CPU program degradation due to memory
contention.

0r1

3r4

6r7

9r10

0%

10%

20%

30%

40%

50%

0
r1

1
r2

2
r3

3
r4

4
r5

5
r6

6
r7

7
r8

8
r9

9
r1
0

1
0
r1
1

0%r10% 10%r20% 20%r30% 30%r40% 40%r50%Range�of�slowdown

C
o
ru
n
�s
lo
w
d
o
w
n
�o
f�

G
P
U
�p
ro
g
ra
m

Mem.�Band. levels�of�GPU�program�(GB/s)

Figure 6. Spectrum of GPU program degradation due to memory
contention.

alone on the CPU and GPU, respectively, with 11 parameter
settings to evenly cover main memory bandwidth throughput
levels from 0 GB/s to 11 GB/s. We then co-run two micro-
benchmarks with each pair of the throughput settings and
collect the performance degradation data for both.

Figure 5 shows the co-run performance degradation for
the micro-benchmark runs on the CPU with a co-running
micro-benchmark instance on the GPU. The two axes at the
horizontal plane show the throughput settings of the micro-
benchmarks running on the CPU and GPU, respectively.
The vertical axis shows the performance degradation for the
micro-benchmark running on the CPU. Figure 6 shows the
graph of GPU degradations (the two axes on the horizontal
plane switched positions from Figure 5).

The graphs show that higher-throughput micro-benchmark
executions tend to suffer larger slowdowns and lead to more
serious degradation for the co-runner. CPU and GPU show
different co-run degradation patterns. GPU appears to suffer
more from co-runs, with most degradations in the 20%-40%
range, while the CPU suffers 20% or less degradations in
around half of the evaluated cases. Interestingly, the CPU
shows much more serious slowdown than the GPU when
both co-runners have a high memory demand (over 8.5
GB/s). For instance, the largest degradation for the CPU
is about 65%, but only 45% for the GPU.

C. Staged Interpolation in Co-Run Degradation Space

Using the co-run performance model for predicting co-
run performance of real programs requires the memory
bandwidth statistics of the standalone executions of the real
programs. With that info, their co-run degradations can be
then predicted through two-dimensional linear interpolations
upon the performance space already characterized by the
micro-benchmark.

There are already many solutions on efficiently attaining
or estimating standalone performance or power consumption
of a program through sampling [9], statistical method [20]
or cross-run prediction [27]. In this paper, to assess the full
capability of the proposed co-scheduling algorithm and co-
run performance models, we use offline profiling to record
the standalone performance and power usage at each fre-
quency level for experimental purpose. In practical settings,
those existing lightweight methods can be used to estimate
those metrics on the fly with minimum overhead.

VI. EVALUATION

This section evaluates the efficacy of the co-scheduling
method.

Platform. Our work employs an Intel Ivy Bridge proces-
sor, i7 3520M, which has an integrated GPU HD Graphics
4000. The CPU and GPU share a 4MB last-level cache.
The CPU frequency is adjustable and ranges from 1.2 GHz
to 3.6 GHz, while the GPU frequency can be changed
from 350 MHz to 1.25 GHz. The system runs Ubuntu
14.04LTS with Linux kernel version 4.2. We use Intel
OpenCL driver (version 1.2.0.43) for the CPU and an open-
source GPU driver, Beignet (version 0.9.1) [1], to support
OpenCL programs on the GPU as Intel’s driver for GPU
does not work on Linux. All programs are compiled by g++
(version 4.8) with O3 option.

Benchmarks. We select eight OpenCL programs from
the Rodinia benchmark suite [6] (streamcluster, cfd, dwt2d,
hotspot, srad, lud, leukocyte, and heartwall), which is widely
used in many existing works. We discard the other pro-
grams in Rodinia because those programs show unstable
performance across runs due to the immature support of
the third-party driver, or some OpenCL features (such as
APIs) of those programs are not supported by Beignet.
The benchmarks cover multiple domains, such as machine
learning, fluid dynamics, and particle simulation. They cover
both compute-intensive and memory-intensive workloads.
We use large enough inputs so that all instances of the
benchmarks in the experiments run for at least 20 seconds.

A. Points of Comparisons

Existing co-scheduling methods are either about homoge-
neous processors [10, 15, 22, 23] or about efficiently or fairly
sharing discrete GPU across applications [7, 8, 18, 28, 30],
rather than dealing with co-run interferences between in-
tegrated CPU and GPU that are subject to power caps.
These methods are hence not applicable to our problem.
For example, Tian and others employs A*-search for finding
good schedules for co-running jobs on multicore [26]; using
the method for our problem would not answer the questions
on how to decide the frequencies each processor shall use
when running a job to observe the power cap, how to handle
the impact of the frequency control on the performance of

each possible co-schedule, and how to decide which type of
processor a job should be placed.

Since there is no comparable prior work, we design
two alternative approaches to compare with our heuristic
algorithm, and employ the lower-bounds computed by our
technique to roughly estimate the gap from the optimal.

Random co-scheduling (Random): This approach ran-
domly picks jobs to run on CPU or GPU. Whenever a
processor becomes idle, it randomly picks a new job to
occupy that processor, or it just leaves the idle processor
idle as some jobs prefer to be executed alone.

System’s default co-scheduling (Default): In this ap-
proach, we want to leverage the default Linux scheduler to
schedule the jobs. However, we need to partition the jobs to
determine which jobs should run on which processor. To do
that, we use the offline-profiled results for standalone runs to
determine each program’s preference. We rank the programs
by the ratio between the standalone CPU run time and GPU
runtime at the highest frequency. We partition the ranked
programs and run the first partition on the GPU and the rest
on the CPU. We ensure that the partitioning minimizes the
sum of execution times of the longer partition.

Note that the two co-scheduling approaches above only
produce co-schedules without a way to control the power
consumption. When one of these approaches is used and
the total power consumption is above the power cap, there
are two methods to adjust frequency of the CPU and GPU
described below.

GPU-biased: This approach tries to leverage the GPU’s
high-throughput. When the aggregate power consumption
exceeds the power cap, it always lowers the CPU’s fre-
quency until the CPU reaches the lowest frequency. GPU’s
frequency is lowered only when the power cap requirement
is still not satisfied. When there is energy room to raise
frequencies, it always raises the GPU’s frequency if it’s not
the highest yet.

CPU-biased: This approach is the opposite of the
GPU-biased approach. It prefers to first lower the GPU’s
frequency and raise the CPU’s frequency.

We evaluate the following two co-scheduling approaches
proposed in this paper.

HCS: This approach follows the heuristic co-
scheduling algorithm without post refinement.

HCS+: This approach is HCS plus the post refinement
described in Section IV-A.

B. Performance and Power Model Accuracy

To evaluate the co-run performance model, we co-run
every pair of the eight programs, and randomly select one
to run on the GPU and the other on the CPU. There are 64
pairs in total (including two instances of the same program).
For each pair, we test two frequency settings without power
cap. In the first setting, we set both CPU and GPU at the

[0%,10%] (10%r20%] (20%r30%] (30%r44%]

0%

10%

20%

30%

40%

50%

60%

Range�of�error�

Figure 7. The error rate distribution of performance model. The x-axis
represents the range of error rate, and y-axis represents the proportion of
the 64 pairs that falls into the range of error rate.

0%

20%

40%

60%

80%

[0%,2%) [2%,4%) [4%,6%) [6%,8%]

P
ro
p
o
rt
io
n
o
f�
co
ru
n
s

Range of�error�rate

Figure 8. The error rate distribution of power model. The x-axis represents
the range of error rate, and y-axis represents the proportion of the 64 pairs
that falls into the range of error rate.

highest frequency. In the second setting, we use the medium
frequency (2.2GHz for CPU and 0.85GHz GPU).

Figure 7 shows the accuracy of the predicted slowdown
for both cases. The accuracy is defined as the relative error
of the predicted performance degradation compared to the
real degradation. The x-axis shows multiple error ranges,
and the y-axis represents the fraction of the 64 pairs in a
range. For both frequency settings, around half of the co-
runs have errors below 10% and more than 70% below
20%, which shows the reasonable accuracy of the co-run
performance degradation model. On average, at the high
frequency setting, the model shows 15% deviation from
the ground truth, while the average error for the medium
frequency setting is 11%. A plausible reason is that at
high frequency, the programs have higher memory demands,
leading to more serious and complex memory contention and
hence complicating the prediction.

We use the same 64 pairs to evaluate the accuracy for
power consumption prediction. For each pair, we select the
frequencies for the CPU and GPU that meet the 16-watt
power cap and yield the best performance. Figure 8 reports
the histogram of the errors of using the power of standalone
runs at the same frequency to predict the power usage of the
co-runs. No error is larger than 8%. For 69% of the co-run
pairs, the error for the power prediction is less than 2%. Only
3% of the co-runs demonstrate the worst accuracy (6–8%).
The average error is 1.92%, demonstrating the effectiveness
of the simple prediction approach.

Figure 9 shows the aggregate power consumption of the
CPU and GPU for four randomly selected co-run pairs; one
sample per second. It shows that the power consumption
is lower than the power cap in most time, confirming the

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

streamclusterrheartwall streamclusterrstreamcluster

cfdrstreamcluster hotspotrstreamcluster

P
o
w
e
r�
in
�w
a
tt
s

Time�in�seconds

Figure 9. The power sample of four random co-runs. Co-run pair A-B
means A on CPU and B on GPU.

53%

38%
41%

32%

9%

Lower�bound HCS HCS+ Default_G Default_C

0%

10%

20%

30%

40%

50%

60%

Figure 10. Speedup over Random (8 program instances; TDP=15 watts.)

effectiveness of the power prediction and control. When the
power consumption exceeds the power cap, the exceeded
amount of power is typically less than 2W.

C. Performance Comparisons

Table I shows offline profiling results. Six out of the
eight programs prefer running on the GPU. The program
dwt2d runs much faster on the CPU and is the only program
in the CPU-preferred set. The program lud has similar
performance on the two processors, and hence belongs to
the non-preferred set. All other programs are in the GPU-
preferred set. The min. co-run time (CPU) and min. co-run
time (GPU) rows show the execution time when the program
runs with a co-runner that introduces the least contention.

The comparison uses Random as the baseline. We use
Random to schedule the eight program 20 times with dif-
ferent seeds and take the average of the makespans. GPU-
biased policy is used to adjust frequency to meet the 16
watts power constraint.

Figure 10 shows the performance improvement from the
scheduling approaches, Default (Default G and Default C
for the GPU-biased and CPU-biased policies respectively),

52%

35% 37%

r9%

r21%

Lower�bound HCS HCS+ Default_G Default_C

r30%

r20%

r10%

0%

10%

20%

30%

40%

50%

60%

Figure 11. Speedup over Random (16 program instances; TDP=15watts.)

Table I
STANDALONE EXECUTION TIME PROFILED OFFLINE AND CO-RUN EXECUTION TIME WITH THE CO-RUNNER THAT INTRODUCES THE SMALLEST

PERFORMANCE DEGRADATION PREDICTED BY THE PERFORMANCE MODEL.
Job Name streamcluster cfd dwt2d hotspot srad lud leukocyte heartwall
Min. co-run time (CPU) 62.70 57.15 29.97 84.99 61.66 32.48 61.06 66.71
Min. co-run time (GPU) 27.28 34.22 62.28 38.21 31.77 36.49 26.77 30.35
Standalone time (CPU) 59.71 49.69 24.37 70.24 51.39 27.76 50.88 54.68
Standalone time (GPU) 23.72 26.32 61.66 28.52 23.71 24.83 23.08 22.99
Preferred GPU GPU CPU GPU GPU Non GPU GPU

HCS, HCS+, and the best possible speedup from the lower
bound makespan calculation. Recall that Default leverages
HCS’s models to partition the programs, which takes into
account the program’s processor preference. The preference
awareness helps Default G and Default C improve perfor-
mance by 32% and 9%, respectively. Default G provides
better performance, because it prefers high frequency on the
GPU, which produces higher throughput for the programs.
Compared to Default, HCS considers co-run contention and
adjusts both CPU and GPU’s frequencies for optimized
performance. It outperforms Default G by 6%. The local
refinements help HCS+ get 3% extra performance gains.

D. Scalability Analysis

We also conduct a 16-program instance study to show
the scalability of HCS. In this more complicated case, the
benefits of HCS+ over the default schedules are much more
significant. We launch two instances for each of the eight
programs with different inputs. As shown in Figure 11, in
this case, HCS produces 35% performance improvement
over Random, and HCS+ delivers 37% improvement, 15%
away from the lower bound. Default G still outperforms
Default C, but both perform even worse than Random,
showing 9% and 21% degradation, respectively. HCS+ gives
over 46% speedups over the default schedules. Note that
Random determines a fixed order for the co-runs, and at
any time only launches up to one program to the CPU.
Default, however, launches multiple programs to the CPU
at the very beginning, which share the CPU through context
switching. The context switching introduces overhead and
worsens locality at the cache level and the main memory
level (i.e., more page faults).
Scheduling Overhead. The scheduling algorithm takes al-
most no time to run (less than 0.1% of the makespan) for
its linear computational complexity.

VII. RELATED WORK

Job scheduling: Co-scheduling a batch of jobs to a
system for the best throughput is not a new problem.
Researchers designed a number of approaches to map jobs
to homogeneous [10, 15, 16, 22, 23] or heterogeneous
machines [7, 8, 18, 28, 30]. The major concerns include
locality [14–16, 23], job length [26], program character-
istics [7, 10, 18, 28, 30], energy efficiency [18, 22], or
the effective usage of the GPU that is shared by multiple
applications [8].

As mentioned in the introduction and evaluation sections,
none of those co-scheduling solutions is applicable to our
problem as they do not consider the special complexities in
power cap, placement of jobs, or their subtle interplay with
the CPU-GPU interferences on the integrated environment.

The research on scheduling for integrated architectures
mainly focuses on mapping workloads of the same applica-
tion to the CPU and GPU. Kaleem and others [17] propose
adaptive online profiling to partition the workloads for load
balance, which is not feasible for solving our problem as
it requires the considerations of the contention between all
possible pairs of the job set at various frequency levels. The
overhead is not affordable for runtime co-scheduling.

Maximizing performance under a power cap: The
power cap constrain is becoming prominent, which has
been studied by both hardware and software community.
Venders even introduced special hardware approaches to
enforce power cap, such as RAPL (Running Average Power
Limit) [24] and ACPI (Advanced Configuration and Power
Interface) [12]. The purpose of these techniques are to es-
tablish industry-standard interfaces for enabling OS-directed
configuration for power management.

Zhang and Hoffmann [32] evaluated a set of software,
hardware, and hybrid approaches to maximize performance
as well as satisfying a power cap requirement. They focused
on a single parallel application on the CPU and used control
theory to dynamically choose optimal parameters for maxi-
mized performance. Our platform is different from theirs and
the input to our problem is a set of applications. Komoda
and others [18] considered job scheduling on heterogeneous
systems under a power cap. They developed empirical mod-
els to guide the DVFS setting and job mapping. Although
the CPU and GPU share the same power budget, they do not
share the same memory system and hence do not interfere
with each other in terms of performance.

Contention mitigation for integrated architectures:
Mekkat et. al [21] demonstrated the different access behav-
iors of the CPU and GPU on the shared last-level cache.
They proposed novel management policies to better coor-
dinate the accesses for performance improvement. Lee and
Kim [19] proposed a core-sampling technique to predict the
integrated GPU’s performance and leveraged cache partition-
ing to improve performance for heterogeneous workloads.
With those approaches supported by commodity integrated
processors, the co-running applications would have better

and more predictable performance. Zhu et. al [34] provided
a preliminary exploration on understanding the co-run per-
formance of CPU and GPU programs on integrated GPUs,
with no co-scheduling solutions proposed.

VIII. CONCLUSION

In this paper, we studied the problem of job co-scheduling
on an integrated system with a power cap. We revealed
the important factors, including memory contention, power
contention and job lengths, that affect performance. We
proposed heuristic algorithms to efficiently find good co-
schedules, which produce throughput improvement by as
much as 46% over the deafult schedules.

REFERENCES

[1] Beignet. https://01.org/zh/beignet/.
[2] Opencl specification 2.0. https://www.khronos.org/registry/cl/specs/

opencl-2.0.pdf.
[3] A. M. Aji, A. J. Pena, P. Balaji, and Wu Chun Feng. Automatic

command queue scheduling for task-parallel workloads in opencl. In
IEEE International Conference on CLUSTER Computing, pages 42–
51, 2015.

[4] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman. Denver:
Nvidia’s first 64-bit arm processor. IEEE Micro, 35(2):46–55, 2015.

[5] A. Branover, D. Foley, and M. Steinman. Amd fusion apu: Llano.
IEEE Micro, 32(2):28–37, 2012.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, 2009.

[7] Linchuan Chen, Xin Huo, and G. Agrawal. Accelerating mapreduce
on a coupled cpu-gpu architecture. pages 1–11, 2012.

[8] Q. Chen, H. Yang, J. Mars, and L. Tang. Baymax: Qos awareness
and increased utilization for non-preemptive accelerators in warehouse
scale computers. In ASPLOS, 2016.

[9] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S.
Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Prediction
models for multi-dimensional power-performance optimization on
many cores. In PACT, 2008.

[10] Ali El-Moursy, Rajeev Garg, David H Albonesi, and Sandhya
Dwarkadas. Compatible phase co-scheduling on a cmp of multi-
threaded processors. In IPDPS, 2006.

[11] Chris Gregg, Michael Boyer, Kim Hazelwood, and Kevin Skadron.
Dynamic heterogeneous scheduling decisions using historical runtime
data. In Proceedings of the 2nd Workshop on Applications for Multi-
and Many-Core Processors. San Jose, CA, 2011.

[12] H. P. Intel and Phoenix Microsoft. Advanced configuration & power
interface (acpi) specification. 2006.

[13] D. James. Intel ivy bridge unveiled the first commercial tri-gate,
high-k, metal-gate cpu. Proceedings of the Custom Integrated Circuits
Conference, pages 1–4, 2012.

[14] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approxi-
mation of optimal co-scheduling on chip multiprocessors. In PACT,
pages 220–229, October 2008.

[15] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. The complexity and
approximation of optimal job co-scheduling on chip multiprocessors.
IEEE Transactions on Parallel and Distributed Systems., 22(7), 2011.
(DOI: 10.1109/TPDS.2010.193).

[16] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with
online proactive job co-scheduling in chip multiprocessors. In
Proceedings of The International Conference on High Performance
Embedded Architectures and Compilation (HiPEAC), pages 201–215,
2010.

[17] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,
Chunling Hu, and Keshav Pingali. Adaptive heterogeneous scheduling
for integrated gpus. In PACT, pages 151–162, 2014.

[18] Toshiya Komoda, Shingo Hayashi, Takashi Nakada, and Shinobu
Miwa. Power capping of cpu-gpu heterogeneous systems through co-
ordinating dvfs and task mapping. In IEEE International Conference
on Computer Design, pages 349 – 356, 2013.

[19] Jaekyu Lee and Hyesoon Kim. Tap: A tlp-aware cache management
policy for a cpu-gpu heterogeneous architecture. In IEEE Interna-
tional Symposium on High-Performance Computer Architecture, pages
1–12, 2012.

[20] Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. Statistical
power consumption analysis and modeling for gpu-based computing,
2009.

[21] Vineeth Mekkat, Anup Holey, Pen-Chung Yew, and Antonia Zhai.
Managing shared last-level cache in a heterogeneous multicore pro-
cessor. In PACT, 2013.

[22] David K. Newsom, Olivier Serres, Sardar F. Azari, and Abdel
Hameed A. Badawy. Energy efficient job co-scheduling for high-
performance parallel computing clusters. In IEEE International Con-
ference on Smart City/socialcom/sustaincom, pages 550–556, 2015.

[23] Thomas Phan, Kavitha Ranganathan, and Radu Sion. Evolving
toward the perfect schedule: Co-scheduling job assignments and
data replication in wide-area systems using a genetic algorithm.
In Job Scheduling Strategies for Parallel Processing, International
Workshop, Jsspp 2005, Cambridge, Ma, Usa, June 19, 2005, Revised
Selected Papers, pages 173–193, 2005.

[24] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrish-
nan, and Eliezer Weissmann. Power-management architecture of
the intel microarchitecture code-named sandy bridge. IEEE Micro,
32(2):20–27, 2012.

[25] Wei Tang, Narayan Desai, Venkatram Vishwanath, Daniel Buettner,
and Zhiling Lan. Job coscheduling on coupled high-end computing
systems. pages 317–326, 2011.

[26] K. Tian, Y. Jiang, and X. Shen. A study on optimally co-scheduling
jobs of different lengths on chip multiprocessors. In Proceedings of
ACM Computing Frontiers, pages 41–50, 2009.

[27] K. Tian, E. Zhang, and X. Shen. A step towards transparent integration
of input-consciousness into dynamic program optimizations. In the
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2011.

[28] Yuan Wen, Zheng Wang, and Michael F. P. O’Boyle. Smart multi-
task scheduling for opencl programs on CPU/GPU heterogeneous
platforms. In 21st International Conference on High Performance
Computing, HiPC 2014, Goa, India, December 17-20, 2014, pages
1–10, 2014.

[29] Kenneth Yoshimoto, Patricia Kovatch, and Phil Andrews. Co-
scheduling with user-settable reservations. In International Confer-
ence on Job Scheduling Strategies for Parallel Processing, pages 146–
156, 2005.

[30] Feng Zhang, Jidong Zhai, Wenguang Chen, and Bingsheng He. To co-
run, or not to co-run: A performance study on integrated architectures.
In IEEE International Symposium on Modeling, pages 89–92, 2015.

[31] Feng Zhang, Jidong Zhai, Wenguang Chen, Bingsheng He, and
Shuhao Zhang. To co-run, or not to co-run: A performance study
on integrated architectures. In 23rd IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, MASCOTS 2015, Atlanta, GA, USA, October 5-7,
2015, pages 89–92, 2015.

[32] Huazhe Zhang and Henry Hoffmann. Maximizing performance
under a power cap: A comparison of hardware, software, and hybrid
techniques. In ASPLOS, 2016.

[33] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. Smite: Precise
qos prediction on real-system smt processors to improve utilization in
warehouse scale computers. In Microarchitecture (MICRO), Annual
IEEE/ACM International Symposium on. IEEE, 2016.

[34] Q. Zhu, B. Wu, X. Shen, L. Shen, and Z. Wang. Understanding
co-run degradations on integrated heterogeneous processors. In
International Workshop on Languages and Compilers for Parallel
Computing (LCPC), 2014.

[35] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
Addressing shared resource contention in multicore processors via
scheduling. Acm Sigplan Notices, 45(3):129–142, 2010.

