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ABSTRACT
Natural Language (NL) programming, the concept of synthesizing
code from natural language inputs, has garnered growing interest
among the software community in recent years. Unfortunately,
current solutions in the space all suffer from the same problem,
they require many labeled training examples due to their data-
driven nature. To address this issue, this paper proposes an NLU-
driven approach that forgoes the need for large numbers of labeled
training examples. Inspired by how humans learn programming,
this solution centers around Natural Language Understanding and
draws on a novel graph-based mapping algorithm. The resulting
NL programming framework, HISyn, uses no training examples,
but gives synthesis accuracies comparable to data-driven methods
trained on hundreds of samples. HISyn meanwhile demonstrates
advantages in terms of interpretability, error diagnosis support,
and cross-domain extensibility. To encourage adoption of HISyn
among developers, the tool is made available as an extension for
the Visual Studio Code IDE, thereby allowing users to easily submit
inputs to HISyn and insert the generated code expressions into
their active programs. A demo of the HISyn Extension can be found
at https://youtu.be/KKOqJS24FNo.

CCS CONCEPTS
• Software and its engineering→ Source code generation; Do-
main specific languages; Integrated and visual development
environments.

KEYWORDS
Program synthesis, natural language programming, code editor

ACM Reference Format:
Mitchell Young, Zifan Nan, and Xipeng Shen. 2022. IDE Augmented with
Human-Learning Inspired Natural Language Programming. In 44th Interna-
tional Conference on Software Engineering Companion (ICSE ’22 Companion),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3510454.3516832

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516832

1 INTRODUCTION
Natural Language (NL) programming is the process of automati-
cally generating program code for a target domain from natural
language input queries. Figure 1 demonstrates this concept using
an example for the ASTMatcher Domain Specific Language (DSL),
a C++ library used for source code analysis of the Clang compiler
abstract syntax tree (AST). From a simple English description of
the desired program, the NL programming tool generates working
code using the domain’s API set. Because of the convenience such
an intuitive programming interface offers to general users (e.g.,
IoT [12], ASTMatcher [9]), recent years have witnessed a growing
interest in NL programming.
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Figure 1: NL Programming example for ASTMatcher DSL.

Existing approaches to NL programming tools fall into two
classes: data-driven and rule-driven approaches. The former fea-
tures the reliance on many labeled input-code pairs as training data
to build up some statistical models; the latter depends on predefined
domain-specific rules. The rule-based approach showed success in
the early stages of the field’s development (e.g., Smartsynth [5]),
but has gradually lost traction due to the lack of robustness and
the difficulties in generalizing across domains. The data-driven
approach has dominated recent efforts, represented by the adop-
tion of deep learning to map NL queries to code via various neural
networks (e.g., [1, 4, 6, 10, 11]). Although this approach has shown
more promise than the previous rule-driven approach, its require-
ment of large numbers of labeled examples hinders its adoption,
especially for domains where labeled examples are scarce. Recent
proposals show the possibility of generating examples for a cer-
tain domain [2], but it is yet unclear how well these methods can
generate truly representative examples in complex domains.

The pitfalls of these approaches leave us with the following chal-
lenge faced by NL programming: Can we eliminate the cumbersome
need for large numbers of training examples while still maintaining
the robustness and cross-domain extensibility seen in data-driven
approaches? To address this challenge, we proposed HISyn (for
“human learning inspired synthesizer”) [8] , the first NL program-
ming framework driven by natural language understanding (NLU),
which attempts to model the same process through which humans
approach writing programs. Rather than building solutions using
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Figure 2: HISyn framework design and integration with VS Code Extension

snippets from training examples, as in the data-driven approach,
HISyn uses natural language processing (NLP) to build a deeper
understanding of a programmer’s intentions and a domain’s API
documentation. From this natural language understanding, output
code expressions are then generated by following the grammar
for the DSL. The advantage of this approach is that it requires no
training data and is general enough that the framework can easily
be extended to new domains by building separate modules for each
DSL.

To further improve the appeal of HISyn to programmers, the
tool is made available as an extension to the Visual Studio Code
IDE (VS Code)1. By integrating the tool with this development en-
vironment, users can interface with HISyn directly from their code
editor and automatically incorporate generated code expressions
into their active program. While similar developer tools augmented
with NL programming exist (e.g. Github Copilot2), this is the first
to allow users to add support for new domains and which requires
no training data to do so. Furthermore, the extension also includes
additional features such as snippet support and domain-specific
tools, which when paired with HISyn’s NL programming frame-
work create a hollistic tool for aiding programmers writing DSL
specific programs. In particular, the HISyn tool is best suited for
programmers working with domains that have large and complex
API sets (e.g., Python libraries [1]). In these cases, all but the most
experienced programmers will have difficulty memorizing all the
APIs and creating working programs from them. Thus, rather than
having to constantly refer to API documentation for these domains,
users can instead leverage the NL programming of the HISyn ex-
tension to more efficiently develop their programs.

In the sections to follow we will cover the NLU-driven approach
of the HISyn framework and describe how target users can lever-
age the tool through its integration with VS Code. Then, we will
describe the procedure used to evaluate the performance of HISyn
and discuss the results on the following three domains: Text Editing
Language, Air Travel Information System (ATIS), ASTMatcher.

1https://code.visualstudio.com/
2https://copilot.github.com/

2 APPROACH OF HISYN
The framework of HISyn [8] is shown in Figure 2. It features a
modular design where domain-specific modules are separated from
a generalized core. This modularity is what allows HISyn to be
more easily extended to new domains compared to other NL pro-
gramming approaches. The generalized core of the framework is
comprised of three main components: (1) a domain knowledge con-
structor that processes the domain knowledge used during code
synthesis; (2) a front-end that transforms each NL-based query to a
dependency graph which serves as the basis for the intermediate
representation (IR) that the back-end works on; (3) a back-end that
employees grammar-graph-based translation to generate domain
specific code from the IR. In the rest of this section we will describe
each individual components at a high-level. For more details on the
concepts discussed herein, see the original publication [8] on the
approach.

The first main component of HISyn is the domain knowledge con-
structor, which processes and stores domain information leveraged
by the back-end during code generation. Some of this information
is shared between all domains. Namely a WordNet [7] synonym
list, preposition dictionary, and Named Entities (NE). Collectively,
we refer to this shared information as the common knowledge base.
The WordNet synonym list and preposition dictionary are both
used in the Semantic Mapping step of the back-end. The Word-
Net synonym list maps word tokens to their synonyms, while the
preposition dictionary maps preposition tokens (which are ignored
by WordNet) directly to semantically related words. For example,
the preposition “from” maps to “start”, “source”, and “origin”. The
Named Entities are the labels assigned to words that represent real-
world objects. For example, January’s NE is Month, Baltimore’s NE
is City.

In addition to this common knowledge base, the domain knowl-
edge constructor also processes the information unique to each
distinct domain module. We refer to each of these sets as a domain
knowledge base. For each domain, this will contain a grammar
graph and an API knowledge base. The grammar graph defines
the search space used during code generation for a given domain
in the Grammar-Graph-Based Translation step of the back-end.
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Figure 3: Example inputs for ASTMatcher domain knowledge
base. 1) API documentation for "forStmt" API. 2) Grammar
for "ForStmt_arg" type.

It is constructed from the context-free grammar for the domain
written in Backus-Naur form (BNF). The API knowledge is used
in the Semantic Mapping step of the back-end for mapping words
from the input queries to candidate APIs. This API knowledge base
is generated by parsing the API documentation and contains the
API name, input/output types, and natural language description for
all APIs in the domain. Figure 3 shows examples from the context-
free grammar and API documentation inputs used to construct the
ASTMatcher domain knowledge base.

The second main component of HISyn is the front-end, which is
responsible for transforming the NL English query into an inter-
mediary representation (IR) that is used for code generation in the
back-end. To do so, the front-end first applies light regulation to
the NL-based query to avoid term confusions for words that have
domain-specific meaning. Next, it uses multiple NLP techniques
including POS tagging, Lemmatization, NER, and dependency pars-
ing to produce a dependency graph. Non-essential words (called
function words) are then pruned from the dependency graph based
on the POS tag and the dependency relations of each word. This
pruned dependency graph is the final IR that is passed to the back-
end for code generation.

Lastly, the back-end component of HISyn is responsible for em-
ploying the novel synthesizing algorithm grammar graph-based
translation to generate code according to the pruned IR. Grammar
graph-based translation first semantically maps each node in the
IR to a set of APIs based on the lemma and synonyms of words in
each API’s description. Each node can be mapped to one, several,
or no corresponding APIs, which we call candidate APIs. HISyn
uses a longest match scheme to handle the phrases in the query.
If multiple nodes map to the same candidate, HISyn groups these
nodes as a cluster and selects a single set of candidate APIs for
the cluster instead of for each node. With the IR now annotated
with candidate APIs, we then search the grammar graph to find all
possible subgraphs that contains exactly one candidate API from
each node in the IR. Each of these subgraphs represents a gram-
matically correct candidate output code expression for this domain.
Of these candidates, the one chosen for the final code generation
output is the one with the minimum number of APIs. The justifica-
tion for this being that all candidate subgraphs contain all the key
information conveyed by the query, so additional APIs are likely
to just contain redundant and/or unnecessary information. Hence,
the final expression should contains as few as possible.

Figure 4: HISyn Extension Interface: (A) Side Panel Icon, (B)
Main Interface, (C) Command Palette, (D) Code Editor.

3 AN IDE AUGMENTEDWITH NL
PROGRAMMING

We next propose an integration of the HISyn framework with the
environment where the generated code will most likely be used,
the IDE (Integrated Development Environment). Specifically, we
introduce the HISyn Extension, an extension to the Visual Studio
Code IDE that allows users to interface with HISyn and leverage its
code generation functionality from the comfort of the text editor.
Figure 4 shows the basic layout of the HISyn Extension interface.

The main features provided by the extension include: (1) NL-
Based Code Generation; (2) Custom Domain Creation; (3) Snippet
Support; (4) Domain Specific Tools. Each feature is exposed to
the user through commands executable within VS Code. These
commands can be accessed either directly through the extension
interface, figure 4(B), or using VS Code’s built-in command palette,
figure 4(C). In the rest of this section, we will go into more detail
on each of the above features regarding their usage scenarios and
expected behaviors. For examples of these features in action, please
refer to our demo video3.

3.1 NL-Based Code Generation
The primary feature of the extension allows users to leverage the
NL programming available through HISyn fromwithin the VS Code
editor. This functionality can be executed using the "HISyn: Run
HISyn" command, which opens a dialog for users to submit their
domain and a natural language description of their desired code
expression to the HISyn tool. Within a few seconds of submission,
the top code expressions generated by HISyn will be displayed in
the dialog. The user can then select their preferred result which
will automatically be inserted into the active editor. Figure 5 shows
this process and an example output copied to the editor.

By default, this code generation is executed via API calls on a
HISyn engine running on a remote server. As such, a stable internet
connection is required and only the domains currently supported by
the server will be available. For users who find that their preferred
domain is not currently supported, the extension can instead be
configured to run through a locally installed version of HISyn and
the domain creation feature may be used to add new domains. To
3https://youtu.be/KKOqJS24FNo
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Figure 5: Series of input dialogues for NL-based code genera-
tion through HISyn Extension.

add a new domain, users can execute the "HISyn: Add Domain"
command, which opens a dialogue for submitting a name for the
new domain, as well as its Grammer & API documentation. Once
submitted, the domain knowledge constructor will automatically
incorporate the new domain into the local HISyn installation and
be made available for selection during code generation.

3.2 Domain Support
In addition to the code generation functionality exposed through
HISyn, support for code snippets and domain specific tools has also
been incorporated into the extension to further assist users when
working with certain domains. For example, the code expressions
generated by HISyn for many of the supported domains will not
serve as executable code in and of themselves. These code expres-
sions will need to be wrapped by more code blocks for importing
the APIs, initializing the referenced variable names, outputting the
results to files, etc. To assist users in these types of scenarios, the
provided code snippets can be used to quickly generate the bulk
of this wrapper code. Moreover, since the included snippets can-
not possibly cover all possible usage-scenarios, the extension also
allows users to create their own snippets or edit existing snippets.

Beyond the code snippets, additional commands have been added
to the extension to further aid users working with the ASTMatcher
domain. This domain is typically used to develop tools for the Clang
compiler and LLVM-Project, a process that is not well documented
and prone to errors. For this reason, the extension includes the
"Build Clang Tool" and "Run Clang Tool" commands to allow users
to easily compile their ASTMatcher tool into their Clang build and
run the tool against selected source files. Figure 6 shows an example
of a Clang tool being built, compiled, and executed using these
additional tools. Note that the tool itself was built using the "Clang
Tool Template" code snippet and modified using code expressions
generated by HISyn for the ASTMatcher domain.

4 EVALUATION
To evaluate the efficacy of the HISyn framework, experiments were
conducted across several different domains. These experiments
were intended primarily to determine if HISyn can produce code ex-
pressions which are comparable in accuracy to data-driven methods

Figure 6: Additional support for ASTMatcher domain, in-
cluding: (A) Build & Run Clang Tool Commands, (B) Tool
Terminal Output, (C) Clang Tool Template Snippet.

and whether this accuracy is dependent on the difficulty of the NL
query. In the rest of this section we will describe the methodology
behind the experiments and discuss the results for each domain.

4.1 Methodology
Three different DSLs were used for our experiments on HISyn. For
each domain, HISyn was tested against a dataset of English queries
with corresponding ground truth DSL expressions. Below are brief
descriptions of these DSLs and the datasets used for each.

(1) Text Editing Language4: a command language intended
for performing text editing in Office suite applications. DSL
consists of 52 APIs. Dataset includes 467 English query/DSL
pairs.

(2) Air Travel Information System (ATIS)5: a SQL style lan-
guage used as a benchmark for querying air traffic control
data. DSL consists of 51 APIs. Dataset includes 535 English
query/DSL pairs.

(3) ASTMatcher6: a library included in the Clang and LLVM
Project used for constructing matchers that identify particu-
lar patterns in the Clang AST. DSL consists of 505 APIs and
over 200 data types. Dataset includes 50 English query/DSL
pairs.

The datasets of English query/DSL pairs for the first two do-
mains, Text Editing Language and ATIS, both come from their re-
spective work [3]. For the third dataset, ASTMatcher, the 50 English
query/DSL pairs were collected manually, with the ASTMatcher
expressions drawn from Clang-tidy and the English descriptions
generated independently by 5 graduate students. Each ASTMatcher
expression is described using a single English sentence from at
least two students. Additionally, for the ASTMatcher DSL official
API documentation was used for our experiments; however, no
documentation is provided for the Text Editing and ATIS DSLs. For
these domains, API documentation was created manually based off
descriptions and examples.

All DSL test cases were tested on the HISyn framework as well as
a baseline synthesizer for comparison. To evaluate the performance
4shorturl.at/npFIS
5shorturl.at/sxyS5
6https://clang.llvm.org/docs/LibASTMatchersReference.html
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Table 1: Accuracy of HISyn vs. baseline model for 3 different
domains broken down by query difficulty.

Domain HISyn Acc. (%) Comparison Acc. (%)
Easy Hard Overall Overall

Text Editing 88.03 59.3 82.59 82.3
ATIS 89.81 64.56 85.4 88.4

ASTMatcher 89.29 68.18 80.0 68.0

on these test cases, the synthesis accuracy evaluation metric was
chosen. This accuracy measures the percentage of the total test
cases for which HISyn generates the correct code expressions. A
generated code expression is considered correct if it matches the
ground truth DSL expression exactly (including APIs, variables,
ordering, etc.). A data-driven synthesizer [3] was used for the Text
Editing and ASIT baselines, while a rule-based synthesizer was used
for the ASTMatcher domain. The chosen data-driven synthesizer
was selected for comparison with HISyn because it gives accuracies
on-par with existing domain-specific NL-based synthesizers and,
like HISyn, is cross-domain extensible. For the ASTMatcher domain,
a rule-based synthesizer [5] was used instead because satisfactory
accuracies could not be achieved using a data-driven synthesizer
given the limited set of training examples available.

4.2 Results
Table 1 reports the results of our experiments, including the overall
accuracy of HISyn and the comparison baseline, as well as the
HISyn accuracy broken down by the difficulty of the input query. It
should be noted that the comparison accuracies for the Text Editing
and ATIS domains come from the paper [3] directly. From these
results, one can see that HISyn achieves accuracies comparable
to the data-driven method for the Text Editing and ATIS domains.
On the other hand, for the ASTMatcher domain HISyn achieves a
significantly higher accuracy of 80% compared to the rule-based
approach at 68%.

In the breakdown by query difficulty, we characterize easy and
hard queries as those with token lengths shorter and longer than
the domain average, respectively. The average query lengths of the
Text Editing, ATIS, and ASTMatcher domains are 7, 12, and 9 tokens.
This breakdown shows that for all 3 domains HISyn achieves much
higher accuracies on the shorter queries, dropping by about 20% for
longer queries. This reduced accuracy for longer queries has two
major causes: (1) in the front-end, the NLP engine is more likely to
generate an incorrect dependency graph for long queries; (2) in the
back-end, incorrect candidate grammar subgraphs are generated
due to the increased number of paths to select and combine.

5 CONCLUSION
This paper introduces the HISyn Extension, a NL programming
tool for the VS Code IDE that features NLU-driven code synthe-
sis, a novel approach to NL programming. Experiments on the
HISyn framework demonstrate that an NLU-driven solution, with-
out the use of training examples, can produce results comparable
to data-driven methods. This makes the HISyn Extension a viable
NL-programming tool for developers working with complex do-
mains that lack extensive documented examples. Using the tool,

programmers can easily generate DSL expressions through HISyn
and incorporate the output into their active code editor. Further-
more, because the approach features a modular design and does
not require example collection, users can easily extend the tool to
support new domains. In the future, we hope to improve this tool
further by adding support for more popular domains (e.g. Python
libraries) and adding commands to help users generate DSL gram-
mar/API documentation.
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