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Abstract—Gaussian Mixture Model (GMM) is widely used
in characterizing complicated real-world data and has played
a crucial role in many pattern recognition problems. GMM
is usually trained by Expectation Maximization algorithm
(EM) which is computationally intensive. Previous studies have
proposed a family of variants of EM. By considering only
the data points that are the most important to a model in a
GMM when updating that model, they help reduce some GMM
training time. They are named Elastic EM in this paper. This
work proposes several novel optimizations to further accelerate
Elastic EM. These optimizations detect and avoid unnecessary
probability calculations through novel bounds-based filtering at
E-step as well as a Delta optimization to the M-step. Together,
they create Lean Elastic EM (LEEM), which brings multi-fold
speedups on six datasets of various sizes and dimensions.

Keywords-Gaussian Mixture Model, Acceleration, Expecta-
tion Maximization, Elastic EM

I. INTRODUCTION

GMM is an important probabilistic model with multiple

normally distributed subpopulations (mixture components)

within an overall population. GMM is powerful in represent-

ing arbitrarily complex distributions with multiple mixture

components. It has been applied to model various data with

multi-modality in nature, from speech signals to textures,

images, and so on. GMM has been long time served as the

key component of speech recognition system [1]–[3]. In a

seminal work [1], a GMM corresponds to one speaker and

individual mixture component of GMM represents some of

that speaker’s spectral features that are effective for identi-

fying the speaker. GMM has been applied for recognizing

different languages [2], diverse dialects [4] and speaker

emotions [3]. Besides speech, GMM has been applied to

computer vision [5], remote sensing image processing [6],

medical images [7], and so on.

Although Deep Neural Networks (DNN) have been intro-

duced to the related fields [8], [9] in recent years, compared

to DNN, GMM has some important appealing properties:

less training data required, producing not only classification

but also the distribution models of each category offering

insights and interpretability of the observations, much fewer

hyperparameters to tune, and so on. So despite the recent

rise of DNN, GMM remains an important approach to data

mining and machine learning.

One GMM is composed by multiple multivariate Gaussian

distributions. Training a GMM is to find the maximum like-

lihood estimation (MLE) of parameters of all multivariate

Gaussian distributions. Yet there is no closed-form solutions

to MLE of GMM. EM algorithm [10] hence is used to

approximate the MLE of GMM. EM algorithm, also known

as Soft EM, is an iterative method that maximizes likelihood

estimation of parameters. After each iteration, the likelihood

of observation increases until convergence.

Although EM algorithm has been serving as the standard

tool to train GMM, MLE via EM algorithm can be very

time-consuming. Calculations in both E-step and M-step are

inherently expensive, especially when dealing with large

datasets and high-dimensional data. The needs for many

iterations to converge worsen the issue. A number of studies

have attempted to speed up EM for GMM. They fall into

two categories. The first category of methods divide data

into segments (or overlapping canopies [11]) and traverse

each segment incrementally [12]. The effectiveness depends

on the data partition quality, which varies across data sets

especially when data dimensions are high.

The second category of methods consider only the most

influential data points to a GMM module when updating the

parameters of that module, as illustrated by Figure 1. They

differ in the criteria used to determine the most influential

data points. Some are based on the probabilities for a point

being generated by that GMM module [12], [13], some on

the probability changes between two iterations [14]. We call

them together Elastic EM, in the sense that they all allow

for an elastic control of the amount data points considered

for updating a GMM module.

Elastic EM avoids the data partition complexities faced

by the first category, and is hence easier to use and shows

promising results. It is the focus of this current work.

By allowing the consideration of only part of the dataset

for a GMM module update, Elastic EM offers an easy

way for programmers to trade quality of EM for speed.

Although it shows some promise, in practice, the rate of

speed improvement is often less substantial than the rate of

quality loss. There are proposals of using conjugate gradient

[15] and quasi-Newton method [16] to replace the M-step for

performance, but they could cause pre-mature convergences

of the algorithm. Effectively improving the speed of Elastic

EM without compromising the result quality is the key for

it to meet a broader range of usage.

This work attempts to achieve the goal by introducing
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Figure 1. In Soft EM, each observation influences the updates of all
mixture components. In Elastic EM, each observation influences only K
mixture components that have the highest probabilities generating that
observation (probabilities are normalized in (b))

a set of optimizations, which use bounds of probabilities

to detect and avoid calculations in Elastic EM, improving

the speed of Elastic EM without causing loss to the result

quality. More specifically, through careful examination of

Elastic EM, we have come up with a series of calcula-

tion filters, based on probability bounds obtained through

Singular Value Decomposition and Triangle Inequality of

Mahalanobis Distance. The interplay of these filters helps

remove unnecessary calculations in the E-step of Elastic EM.

We further introduce a Delta optimization to also avoid

many unnecessary calculations in the M-step of Elastic EM

(for the setting K = 1). By putting these optimizations

together, we create an improved Elastic EM, which we call

Lean Elastic EM or LEEM. Experimental results on six

diverse datasets show that LEEM on average removes 50%

probability calculations and achieves up to 5X speedup with

the popular setting.

We organize the rest of this paper as follows. In section II,

we give a formal description of GMM and how Soft EM and

Elastic EM are used to train GMMs. Section III describes

the optimization approaches in detail. Section IV presents

the experimental results and comparisons with Elastic EM

and Soft EM. The last section summarizes the work.

II. BACKGROUND

A. Gaussian Mixture Model

Definition 1. Gaussian Mixture Model is a weighted sum of
probability densities of its all mixture components:

P (yj|θ) =
M∑
m=1

αmφ(yj|μm,Σm) (1)

where θ represents all parameters of the GMM, θ =
{α1, α2, ... , αM , μ1, μ2, ... , μM,Σ1,Σ2, ... ,ΣM}. yj =
(yj,1, yj,2, ... , yj,d) is a d-dimensional continuous-valued
vector. αm is the weight of mth mixture component, m =
1, 2, ...M . φ(yj|μm,Σm) is the probability density function

of the mth mixture component which follows a d-variate
Gaussian distribution:

φ(yj|μm,Σm) =
1√

(2π)d|Σm|exp
{ (yj − μm)(yj − μm)

T

−2Σm

}

(2)

where μm and Σm are the mean and covariance matrix of
the mth mixture component.

There are three important configurations related to using

a GMM Model for a problem. GMM Model Order is the
number of mixture components in a GMM. During the

training process of GMM, it’s likely that some items in the

covariance matrix become very small. These small values

inflict singular covariance matrix and degrade performance

of trained GMMs [1]. Variance limiting is usually applied to
deal with this problem by setting those values to a minimum

value σ2min (2.22 × 10−16 in our implementations). Type
of covariance matrix hinges on the feature dependency.

Sometimes, for datasets with independent feature dimen-

sions, covariance matrices are made diagonal by setting

non-diagonal elements in them zero. But for cases with

dependent features, full matrix should be used [6]. Our ex-

plorations focus on the general case and use full covariance

matrices in our implementations.

B. EM algorithm

Training GMM is to find the MLE of its parameters. The

log likelihood of GMM can be written as:

L(θ) = logP (Y |θ) = log{P (y1|θ)P (y2|θ)...P (yN|θ)}

=
N∑
i=1

logP (yi|θ) (3)

where Y is the set of all observations, Y = {y1,y2, ...,yN}
and θ is parameters of GMM.

Since there is no closed-form solutions to Formula 3, EM

algorithm is used to approximate the solution. It approaches

the solution via iterations of E-step and M-step. For the

(i+ 1)th iteration:
E-step: Use the parameters from the previous iteration

to get the expectation of log likelihood with respect to the

conditional distribution of γ given Y and θ(i), as in:

Q(θ|θ(i)) = Eγ|Y,θ(i) [logP (Y, γ|θ)] (4)

where γ is the latent variable which represents memberships
of observations and θ(i) is the estimate of parameters after
the ith iteration.
M-step: Calculate the θ maximizing Formula 4, that is:

θ(i+1) = argmax
θ

(Q(θ|θ(i))) (5)

After each iteration, L(θ) is calculated. EM algorithm

repeats E-step and M-step until the difference between L(θ)
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from two consecutive iterations is less than the convergence

threshold.
In practice, when using EM for GMM, the MLE for each

parameter is computed as follows:
Membership: probability for an observation yj to belong

to the mixture component m

γ̂j,m =
α̂mφ(yj|μ̂m, Σ̂m)∑M
t=1 α̂tφ(yj|μ̂t, Σ̂t)

(6)

Weight: probability of selecting the mixture component

m

α̂m =

∑N
j=1 γ̂j,m

N
(7)

Mean: mean of the mixture component m

μ̂m =

∑N
j=1 γ̂j,myj∑N
j=1 γ̂j,m

(8)

Covariance Matrix: covariance matrix of the mixture

component m

Σ̂m =

∑N
j=1 γ̂j,m(yj − μ̂m)

T(yj − μ̂m)∑N
j=1 γ̂j,m

(9)

where yj and μ̂m are row vectors.

On each EM iteration, parameters (α̂m, μ̂m, Σ̂m) got

from the previous iteration are used to update γ̂j,m at E-step,

then the updated γ̂j,m is used to update those parameters in

M-step. This process repeats until convergence.

C. Elastic EM
Elastic EM is a family of variants of EM. They consider

only the data points that are most influential to a GMM

module when updating the parameters of that module. The

different variants [12], [13] use different ways to define what

data points are important to a GMM module. In this work,

we take one of them as the focus in our development, but

note that the proposed optimizations are applicable to other

variants as well.
In the Elastic EM we focus on, in each iteration, every

observation influences only the K mixture components with

the highest probabilities generating the observation, where

1 � K < M ; M is the number of mixture components.
Elastic EM first calculates the probabilities for an obser-

vation to belong to each mixture component and then selects

K mixture components with the highest probabilities. Let Sj
be the set of indices of the K mixture components for the

observation yj, we have:

Sj = K-argmax
m

(γ̂j,m) (10)

After finding the K mixture components, the weight for

each mixture component is adjusted accordingly, thus:

α̂j,m =

⎧⎪⎨
⎪⎩

α̂m∑
t∈Sj α̂t

, m ∈ Sj

0, otherwise

(11)

Weights of the K mixture components with the highest

probabilities are normalized so that their sum equals to 1.

Weights of other mixture components are set to 0.

Formally, α̂j,m replaces α̂m in Formula 6. The adjusted

γ̂
′
j,m in Elastic EM is:

γ̂
′
j,m =

α̂j,mφ(yj|μ̂m, Σ̂m)∑M
t=1 α̂j,tφ(yj|μ̂t, Σ̂t)

(12)

As for M-step, Elastic EM uses the same formulas as

Soft EM does. The only difference is that γ̂j,m is replaced

by γ̂
′
j,m in those formulas.

III. LEEM: OPTIMIZED ELASTIC EM

Elastic EM helps save some computations in the M-

step of Soft EM as every observation is used by only K
mixture components to update their parameters. However,

as an approximation method, the value of K hinges on

the requirements of specific applications. It is subject to a

tradeoff between time savings and quality loss. The smaller

K is, the more time saved, but also the more quality loss

caused. LEEM is designed to magnify the time savings by

Elastic EM without causing any extra quality loss.

LEEM accelerates both the E-step and the M-step of

Elastic EM. Its optimization of the E-step of Elastic EM

is based on the following basic idea: Since the goal of

the step is to identify K mixture components with the

highest probabilities for each observation, it’s possible to

filter out some unnecessary calculations via carefully de-

signed bounds. Similar ideas have been implemented in K-

Means [17], KNN [18], [19], and other machine learning

algorithms. However, strategies used in those studies can

not be applied to Elastic EM, because they are based on

Euclidean distance while Elastic EM is based on probability

as shown in Formula 6.

To see how the idea plays out on Elastic EM, Algorithm 1

outlines the E-step algorithm in Elastic EM. For each obser-

vation yj, all probabilities of it belonging to every mixture

components need to be calculated. Thus, the number of

probability calculations is O(MN), whereM is the number

of mixture components and N is the number of observations.

After having all probabilities, Elastic EM selects K mixture

components with the highest probabilities. Then weights

αj,m, weighted probability densities Pj,m and probabilities

γj,m are updated accordingly.

It’s easy to see that the first step of probability calcula-

tions incurs the majority of overhead. The optimization of

LEEM for E-step is to reduce the number of probability

calculations. To identify K mixture components with the

highest probabilities, according to Formula 6, the numerator

is the key factor, since the denominator is the same for

everyone. As for the numerator, the probability density of the

observation plays an essential role. Therefore, the strategy

of LEEM is to construct bounds of unknown probability

densities and use them to filter out unnecessary calculations.
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For example, suppose that we would like to find the max-

imum probability density of observation yj in all mixture

components and the upper bound of an unknown probability

density of observation yj in some mixture component is

already smaller than the current maximum. There would

be no need to calculate the exact value of that probability

density, since we know it will not be the maximum. This

strategy can help us remove unnecessary calculations and

generate significant speedups. The challenge is how to

construct tight bounds of multi-variate Gaussian probability

density efficiently, and how to effectively use these bounds.

LEEM uses two levels of bounds respectively attained in

SVD and through Triangle Inequality.

The optimization of LEEM for the M-step of Elastic EM

is based on the following insight. Across two consecutive

iterations, the set of observations relevant to a mixture

model often has only small differences. Therefore, some

calculations could be possibly saved if the results of the

previous iteration can be reused when updating the module

in this iteration, by incorporating only the changed parts. We

call this optimization Delta optimization. This optimization
is particularly useful for the setting of K = 1 of Elastic EM.

We next explain these optimizations in detail.

A. Accelerate E-step

As aforementioned, optimizations of E-step center around

bounds of Mahalanobis distances. Formally, Mahalanobis

distance is defined as follows:

Definition 2. The Mahalanobis distance of an observation
yj from a mixture component with mean μm and covariance
matrix Σm is:

dM (yj, μm) =

√
(yj − μm)Σ

−1
m (yj − μm)T (13)

where yj and μm are row vectors.

Comparing Formula 13 with Formula 2, it’s easy to see

that the key component of multi-variate Guassian probability

density is a Mahalanobis distance between the observation

and the mean of the mixture component. To get bounds of

multi-variate Gaussian probability density, we capitalize on

bounds of such Mahalanobis distance.

Bounds based on singular value: As shown in For-

mula 13, to calculate Mahalanobis distance, we need to get

the inverse matrix of covariance matrix. Since our strategy

aims to support full covariance matrix rather than just

diagonal matrix, getting inverse matrix of covariance matrix

directly is often difficult, and Singular Value Decomposition

(SVD) is usually used. We give a quick review of SVD as

the knowledge is necessary for the rest of the discussion.

Definition 3. Suppose A is a real m × n matrix, then there
exists a factorization, called a singular value decomposition
of A, of the form:

A = UDVT (14)

Elastic EM E-step
input : Y :dataset of all observations, size of Y is N ; M :

the number of mixture components; K: the number
of mixture components with highest probabilities to
be considered by each observation.

output: L:Log likelihood of current parameters
L = 0;
for j ← 1 to N do

Lj = 0; //Lj is Log likelihood for observation yj ;
for m← 1 to M do

Pj,m = α̂mφ(yj|μ̂m, Σ̂m) //weighted probability
density of yj in mixture component m;

end
sumPj =

∑M
t=1 Pj,t;

for m← 1 to M do
γ̂j,m = Pj,m/sumPj //γ̂j,m is the probability of
observation yj to belong to mixture component m;

end
Find out the K largest γ̂j,m, and put their mixture
component indices into Sj ;
Sj = K-argmax (γ̂j,m);
for m← 1 to M do

Update α̂j,m according to Formula 11
end
for m← 1 to M do

P
′
j,m = α̂j,m/αm ∗ Pj,m;

P
′
j+ = P

′
j,m;

end
sumP

′
j =

∑M
t=1 P

′
j,t;

for m← 1 to M do
γ̂

′
j,m = P

′
j,m/sumP

′
j ;

end
Lj = logP

′
j ;

L+ = Lj ;
end
return L;

Algorithm 1: E-step of Elastic EM for GMM

where U is a m×m unitary matrix, D is a m×n diagonal
matrix, V is a n× n unitary matrix.
SVD has some appealing geometry properties. The three

matices represent three operations on a vector, as shown

in Figure 2. U is a rotation, D is scaling and V is

another rotation. Thus, multiplying an observation with A
is to actually rotate the vector, scale it and rotate it again.

Based on this property, we know that both U and V will

not change the length of the vector, only D does. LEEM

capitalizes on this property which we will describe later.

D = diag(σ1, σ2, ..., σn) and σ1 � σ2 � ... � σn. D is

a diagonal matrix with singular values on its diagonal and

they are ordered in decreasing order.

Formula 14 gives the general definition of SVD for any

real-value m × n matrix. But in our case, the covariance

matrix is a positive-semidefinite and symmetric matrix.

In practical implementation of GMM, singular value less

than a very small positive threshold will be replaced by

that threshold value [20]. Hence, the covariance matrix is

680



Figure 2. Geometrical transformations of SVD

positive-definite. For a positive-definite matrix, U and V
are the same. Thus, Formula 14 can be rewritten as:

Σ = UDUT (15)

After having decomposed matrices, inverse matrix of

covariance matrix is easy to get, as in:

Σ−1 = (UDUT)−1 = UD−1UT (16)

where D−1 = diag(1/σ1, 1/σ2, ..., 1/σn).

Lemma 1. The Mahalanobis distance of an observation yj

from a mixture component with mean μm and covariance
matrix Σm satisfies:

|yj − μm|√
σ1

� dM (yj, μm) �
|yj − μm|√

σd
(17)

where |yj − μm| is the Euclidean distance between yj and
μm, σ1 and σd are the maximum and minimum singular
value of Σm (d is the dimension of yj and μm).

Proof: According to Formula 13, we have:

d2M (yj, μm) = (yj − μm)Σ
−1
m (yj − μm)

T

Plugging Formula 16 into it:

d2M (yj, μm) = (yj − μm)UmD
−1
m UT

m(yj − μm)
T

Let’s assume: yj − μm = (x1, x2, ..., xd), (yj − μm)Um =
(y1, y2, ..., yd) and D−1

m = diag(1/σ1, 1/σ2, ..., 1/σd), the
Mahalanobis distance can be written as:

d2M (yj, μm) =
y21
σ1
+
y22
σ2
+ ...+

y2d
σd

We know σ1 � σ2 � ... � σd, hence we can get:

y21 + y
2
2 + ...+ y

2
d

σ1
� d2M (yj, μm) �

y21 + y
2
2 + ...+ y

2
d

σd

Since Um will not change the length of vectors:

|(yj − μm)Um| = |yj − μm|
Plugging it into previous inequality, we have:

|yj − μm|2
σ1

� d2M (yj, μm) �
|yj − μm|2

σd

Since d2M (yj, μm), σ1 and σd are all positive, we thereby

have Formula 17 by getting square roots of them.

The benefits of using these bounds is that to get the bound,

we only need to calculate Euclidean distance between the

observation yj and the mean of the mixture component

μm. If the bound works, it can help us filter out the

calculation of many Mahalanobis distances which are much

more computationally expensive.

Bounds based on triangle inequality:

Theorem 1. Triangle inequality holds in Mahalanobis dis-
tance.

Recall that triangle inequality says that the sum of the

lengths of any two sides of a triangle must be greater

than or equal to the length of the remaining side. In the

context of Mahalanobis distance, let dM (x,y) represent

the Mahalanobis distance between two points x and y.
Theorem 1 says that for any three points a,b, c, we have:

|dM (a,b)− dM (b, c)| � dM (a, c) � dM (a,b) + dM (b, c)
(18)

Proof: Let a - b = v, c - b = w, a - c = u and

D−1 = SST

Since D−1 = diag(1/σ1, 1/σ2, ..., 1/σn), we have S =
diag(1/

√
σ1, 1/

√
σ2, ..., 1/

√
σn).

We have already shown in Lemma 1 proof:

dM (a,b) =
√
(a− b)UD−1UT(a− b)T

Let E = US, then:

dM (a,b) =
√
vEETvT

Let vE = v
′
, wE = w

′
, uE = u

′
, we have:

dM (a,b) =
√
v′v′T = |v′ |

Similarly, dM (b, c) = |w′ |, dM (a, c) = |u′ |
dM (a, c) = |u′ | = |uE| = |(v −w)E|

= |vE−wE| = |v′ −w
′ |

According to triangle inequality for Euclidean distance, we

know:

||v′ | − |w′ || � |v′ −w
′ | � |v′ |+ |w′ |

Therefore,

|dM (a,b)− dM (b, c)| � dM (a, c) � dM (a,b) + dM (b, c)

681



Corollary 1. Assume μm, μs,yj form a triangle, then the
Mahalanobis distance of the observation yj from the mix-
ture component with mean μm and covariance matrix Σm

satisfies:

dM (yj, μm) �

⎧⎪⎪⎨
⎪⎪⎩

Dm,s − |yj − μs|√
σd

, (Dm,s �
|yj − μs|√

σd
)

|yj − μs|√
σ1

−Dm,s, (Dm,s � |yj − μs|√
σ1

)

(19)

dM (yj, μm) �
|yj − μs|√

σd
+Dm,s (20)

where
Dm,s = dM (μs, μm) =

√
(μs − μm)Σ

−1
m (μs − μm)T,

σ1 and σd are the maximum and minimum singular value
of Σm.

Proof: First, note that all the Mahalanobis distances in

Corollary 1 are with Σm.
According to Theorem 1:

|dM (yj, μs)−Dm,s| � dM (yj, μm) � dM (yj, μs) +Dm,s

According to Lemma 1, we have:

|yj − μs|√
σ1

� dM (yj, μs) �
|yj − μs|√

σd

Therefore, the upper bound is easy to get:

dM (yj, μm) � dM (yj, μs) +Dm,s �
|yj − μs|√

σd
+Dm,s

As for the lower bound, there are three cases:
(1) Dm,s � |yj − μs|/√σd

dM (yj, μm) � |dM (yj, μs)−Dm,s| = Dm,s − dM (yj, μs)

� Dm,s − |yj − μs|√
σd

(2) Dm,s � |yj − μs|/√σ1
dM (yj, μm) � |dM (yj, μs)−Dm,s| = dM (yj, μs)−Dm,s

� |yj − μs|√
σ1

−Dm,s
(3) |yj − μs|/√σ1 < Dm,s < |yj − μs|/√σd
The sign of dM (yj, μs) − Dm,s is unknown and it’s

possible dM (yj, μs)−Dm,s = 0. Therefore, the lower bound
is 0 in this case, which is not helpful.
To use the bounds, Dm,s needs to be calculated. There-

fore, the number of introduced Mahalanobis distance calcu-

lation is O(M2) (M is the number of mixture components.)

Since M is usually a small number, the overhead is small.

In practice, when we calculate the probability for an obser-

vation yj to belong to the mth mixture component, LEEM
leverages all previous μs (s = 1, 2, ...m − 1) to construct

bounds according to Corollary 1. As Figure 3 illustrates, as

the distances to previous μs are computed earlier already,

LEEM just picks the tightest one among all those bounds

without the need to recompute them.

Figure 3. μ1, μ2, μ3, μ4 are used to construct bounds for dM (yj, μ5).
Since |yj − μs|, (s = 1, 2, 3, 4) are already known, no need to recompute
these bounds; LEEM just picks the tightest one.

Filtering conditions: The filtering condition used by

LEEM can be described as follows:

Let UB(γ̂
′
j,m) be the upper bound of γ̂

′
j,m and

γKj be the Kth largest one of all probabilities that
have been already calculated for observation yj. If

UB(γ̂
′
j,m) � γKj , then we can skip the calculation

of γ̂
′
j,m.

This is because we know γ̂
′
j,m will not be one of the K

highest probabilities for yj and yj will not be assigned to

that mixture component.

Lemma 1 and Corollary 1 have given the bounds of the

Mahalanobis distance of the observation yj from the mixture

component with mean μm and covariance matrix Σm. But

we need the upper bound of γ̂
′
j,m in the filtering condition.

It’s easy to get this upper bound via the lower bound of the

Mahalanobis distance, as in:

UB(γ̂
′
j,m) =

α̂j,mUB(φ(yj|μ̂m, Σ̂m))∑M
t=1 α̂j,tφ(yj|μ̂t, Σ̂t)

(21)

UB(φ(yj|μ̂m, Σ̂m))

=
1√

(2π)d|Σ̂m|
exp

{ [LB(dM (yj, μ̂m))]
2

−2
}

(22)

where UB and LB stand for upper bound and lower bound.

The bounds are straightforward to understand. We need

the upper bound of the probability and there is a ”-2” in the

exponential term; it hence corresponds to the lower bound

of the Mahalanobis distance. The lower bound is always

positive.

In practice, for an observation yj, LEEM maintains a list

of its current K highest probabilities and their corresponding

mixture components’ indices. Every time when the upper

bound of an unknown probability has been calculated, that

upper bound is compared with the lowest probability in that

list. If the upper bound is lower than the lowest probability,

we can filter out the calculation for that unknown probability.

Since there are two ways to calculate the upper bound, if
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one upper bound fails, LEEM tries the other. If no upper

bound works, the probability calculation can not be removed

and the exact value is calculated. After getting the value,

LEEM updates the list with the exact value. The list is

materialized through the use of min-heap. Min-heap has

some properties that make it a desirable choice. On min-

heap, finding the lowest probability takes O(1) time while
inserting and deleting a new probability take O(log(K))
time, where K is the size of the min-heap.

B. Accelerate M-step for K=1

Besides the E-step optimization, LEEM incorporates a

Delta optimization into the M-step. This optimization is only

for the case where K = 1. This case is also called hard
EM [21]. It is one of the most popular settings of Elastic EM

that has been used in applications [22]–[24]. So even though

this optimization is for this setting only, it is meaningful for

practical usage of Elastic EM.

For the case of K = 1, the formula in M-Step for

calculating covariance matrix after t iterations is:

Σ(t)m (j, k) =
1

|C(t)m |
∑
xi∈Ct

m

(xi,j − x̄(t)j )(xi,k − x̄(t)k ) (23)

where the superscript t indicates the number of iterations.

Thus, Σ
(t)
m (j, k) means the element at the jth row and

kth column of the covariance matrix of the mth mixture

component after t iterations. C
(t)
m is a set of all observations

assigned to the mth mixture component after t iterations.

|C(t)m | is the size of the set. x̄
(t)
j and x̄

(t)
k are the jth and

kth dimension of the mean of the mth mixture component

after t iterations.
If we consider the scalar multiplication as a measure,

which is |C(t)m |+ 1 using Formula 23.

We derived another way to calculate covariance matrix

which leverages the results in the previous iteration. The

number of calculations tapers off with the process of con-

vergence. It can be shown as follows:

Σ(t+1)m (j, k) =
1

|C(t+1)m |
(|C(t)m |Σ(t)m (j, k)+|C(t)m |Δx̄jΔx̄k)

− 1

|C(t+1)m |
∑
xi∈A

(xi,j − x̄(t+1)j )(xi,k − x̄(t+1)k )

+
1

|C(t+1)m |
∑
xi∈B

(xi,j − x̄(t+1)j )(xi,k − x̄(t+1)k ) (24)

where Δx̄j = x̄
(t+1)
j −x̄(t)j and Δx̄k = x̄

(t+1)
k −x̄(t)k , A is

the set of observations that leave themth mixture component
in the (t + 1)th iteration, B is the set of observations that

join the mth mixture component in the (t + 1)th iteration.

Formally, C
(t+1)
m = C

(t)
m −A+B.

Proof: We now prove the correctness of Formula 24.

According to Formula 23:

Σ(t+1)m (j, k) =
1

|C(t+1)m |
∑

xi∈C(t+1)
m

(xi,j−x̄(t+1)j )(xi,k−x̄(t+1)k )

Since C
(t+1)
m = C

(t)
m −A+B, plug it into previous equation:

Σ(t+1)m (j, k) =
1

|C(t+1)m |
∑

xi∈C(t)
m

(xi,j−x̄(t+1)j )(xi,k−x̄(t+1)k )

− 1

|C(t+1)m |
∑
xi∈A

(xi,j − x̄(t+1)j )(xi,k − x̄(t+1)k )

+
1

|C(t+1)m |
∑
xi∈B

(xi,j − x̄(t+1)j )(xi,k − x̄(t+1)k ) (25)

Because x̄
(t+1)
j = x̄

(t)
j +Δx̄j and x̄

(t+1)
k = x̄

(t)
k +Δx̄k,

∑

xi∈C(t)
m

(xi,j − x̄(t+1)j )(xi,k − x̄(t+1)k )

=
∑

xi∈C(t)
m

(xi,j− x̄(t)j )(xi,k− x̄(t)k )−
∑

xi∈C(t)
m

Δx̄j(xi,k− x̄(t)k )

−
∑

xi∈C(t)
m

Δx̄k(xi,j − x̄(t)j ) +
∑

xi∈C(t)
m

Δx̄jΔx̄k (26)

Because:
∑

xi∈C(t)
m

Δx̄j(xi,k−x̄(t)k ) = Δx̄j
∑

xi∈C(t)
m

(xi,k−x̄(t)k ) = 0

∑

xi∈C(t)
m

Δx̄k(xi,j−x̄(t)j ) = Δx̄k
∑

xi∈C(t)
m

(xi,j−x̄(t)j ) = 0

Plug them into Formula 26, we have:∑

xi∈C(t)
m

(xi,j − x̄(t+1)j )(xi,k − x̄(t+1)k )

=
∑

xi∈C(t)
m

(xi,j − x̄(t)j )(xi,k − x̄(t)k ) +
∑

xi∈C(t)
m

Δx̄jΔx̄k

= |C(t)m |Σ(t)m (j, k) + |C(t)m |Δx̄jΔx̄k (27)

Plugging Formula 27 into Formula 25, we get Formula 24.

The benefits of using Formula 24 over 23 are on the

reuse of the previous covariance matrix. Instead of recalcu-

lating the covariance matrix, LEEM only calculates changes

brought by observations which change their belonging mix-

ture components during consecutive iterations. Those obser-

vations are often just a small portion of all observations. It

hence avoids substantial computational overhead. Σ
(t)
m (j, k)

is already known. When we consider the number of scalar

multiplications, Formula 24 takes (4 + |A| + 1 + |B| + 1)
scalar multiplications, where |A| and |B| are the size of these
two sets. Therefore, the speedup is approximately

|C(t)
m |+1

|A|+|B|+6 .
When the LEEM approaches convergence, |A| and |B| are
usually very small. Therefore, the speedup can be significant.
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Table I
DATASETS USED IN EXPERIMENTS

Dataset Dataset Properties
# sample # dim # category avg category size

Dota2 102944 116 2 51472
Skin Seg. 245057 4 2 122529
Pen Digits 10992 16 10 1099

Drive Diagno. 58509 49 11 5319
Credit Card 30000 24 2 15000
Cover Type 581012 54 7 83002

IV. EXPERIMENTS

We evaluate the efficacy of LEEM on a variety of

benchmark datasets from UCI Machine Learning Repository

[25] as shown in Table I. Skin Segmentation [26] contains

skin textures from images of diversity of age, gender, and

race people. Dataset of Pen digits [27] collects coordinate

information of hand-written digits by 44 writers. In Drive di-

agnosis dataset [28], samples are the extracted drive signals

from 12 different operating conditions. Default of credit card

dataset [29] is composed of basic personal information (e.g.

gender, education, marital status, etc) and history of past

payment, which aims to predict the probability of default.

Cover type dataset [30] contains cartographic data related to

forest cover type. Dota2 [25] is a dataset used for predicting

the winner of game by evaluating the heroes chosen by

players of each team. Every dataset has multiple categories

and each category is modeled as a GMM.

Our experiments measure the efficacy of LEEM based

on the number of probability calculations it removes as

well as the speedup it attains. All of our experiments

are conducted in the following experimental environment:

PowerEdge R620 equipped with 2 Xeon E5-2670 CPUs,

128GB memory, Red Hat Enterprise Linux 7.5.

Experiments are conducted on Soft EM, Elastic EM and

LEEM. All three algorithms are implemented based on

OpenCV 3.4.1 [20]. Soft EM is already implemented in

OpenCV, we hence directly use that implementation. Elastic

EM and LEEM1 are both implemented by modifying the

source code of the Soft EM so that we can keep the

comparison fair by avoiding the influence from other factors

(e.g. different libraries, different optimization levels, etc).

The GMM Model order (i.e., the number of mixture

models) needs to be set when applying GMM. There is

no universal approach to choosing the optimal model or-

der. Akaike information criterion(AIC) [31] and Bayesian

information criterion (BIC) [32] are widely used to estimate

the optimal model order. In our experiments, we use AIC to

select the model order from a series of predefined values.

Regarding variance limiting, we use the same value OpenCV

1Code of LEEM is available at https://github.com/PICTureRG/LEEM

uses, which is about 2.22 × 10−16. Full covariance matrix

is used in our experiments.

A. Avoided Calculations

Table II reports the number of probability calculations of

Elastic EM and LEEM for each dataset with different Ks.

The number of LEEM is the total number of probability cal-

culations including both the ones left and extra calculations

introduced by our optimizations. The percentages shown in

the parentheses are the ratios of the numbers of calculations

in LEEM to those in Elastic EM.

It’s easy to see that LEEM avoids the largest number

of probability calculations when K = 1. For most of the
datasets, LEEM is able to remove 50% probability calcu-

lations. When K gets larger, the savings become smaller.

This is intuitive. When K = 1, only the mixture component
with the highest probability is relevant. Every time the upper

bound of an unknown probability is compared with the

current maximum, the filtering condition has a large chance

to be met. But when K equals to a large number, the Kth

largest number could be small, and the filtering condition is

harder to get satisfied. In practical usage of Elastic EM, K
is usually small.

In our experiments, the best performance is achieved

on Skin segmentation dataset. It removes 93% probability

calculations when K = 1. Overall, the results in Table I

show that the dataset with a larger category size tends

to get more savings in probability calculations. A larger

category entails more computations in EM, and also usually

takes more iterations to converge, giving more room for

improvement.

B. Speedups

In Table III, we report the running time of each part

of algorithms and the speedups that LEEM brings. The

numbers in the parenthesis indicate speedups over Soft EM.

The running time we report includes all extra overhead

introduced by our optimizations.

For the E-step, the Elastic EM does all calculations that

Soft EM does without optimizations; therefore, their running

times are almost the same as those of Soft EM. LEEM

achieves on average 2.3X speedups when K = 1, which
is consistent with the calculation savings shown in Table II.

The speedups of Elastic EM are from M-Step. Our opti-

mization methods for M-step has brought LEEM significant

speedups when K = 1. All datasets get speedups of one or
two orders of magnitude. LEEM attains 101.7X speedups on

Skin segmentation dataset at M-step with K = 1, thanks to
the large category size of the dataset. As mentioned in last

section, the speedup of M-step is approximately
|C(t)

m |+1
|A|+|B|+6 .

A larger category size usually leads to larger |C(t)m |. As this
optimization applies only to K = 1, the speedups of M-step

at other K values are similar to those in Elastic EM.
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Table II
PROBABILITY CALCULATIONS IN DIFFERENT ALGORITHMS

Dataset M K No. of Probability Calculations∗
Elastic EM LEEM

Dota2 12 1 839525 451303 (54%)
2 905752 609558 (67%)
4 893985 738956 (83%)
8 900497 859885 (95%)

Skin Seg. 20 1 2684594 191650 (7%)
2 2605875 426788 (16%)
5 2398880 939782 (39%)
10 2691421 1920246 (71%)

Pen Digits 5 1 24615 14140 (57%)
2 22368 20959 (94%)
3 22707 22616 (99.6%)
4 23717 23683 (99.8%)

Drive Diag. 15 1 524279 413898 (79%)
2 532952 469610 (88%)
4 532952 489428 (92%)
8 528838 495876 (94%)

Credit Card 12 1 444153 219756 (49%)
2 435377 312798 (72%)
4 435377 384240 (88%)
8 421310 416440 (99%)

Cover Type 20 1 10289174 5948359 (58%)
2 9363640 7531113 (80%)
5 11460390 9769904 (85%)
10 10992196 10287371 (94%)

M : The number of mixture components.
K: The number of mixture components with highest probabilities to be considered
by each observation.
∗: The number is the total number of probability calculations divided by the total
number of iterations of all GMMs in that dataset. A percentage in parentheses is the
number of probability calculations in LEEM over those in Elastic EM.

The overall speedups of LEEM vary across the different

settings. When K = 1, the improvement is the largest.

The best performance is on dataset of Skin segmentation,

which achieves about 5X speedup over Elastic EM and

11.5X speedup over Soft EM. When K gets larger, the

improvements become less significant. Since in practice, the

value of K is usually a small number, LEEM is an appealing

replacement of the current Elastic EM.

V. CONCLUSION

This study revisits Elastic EM and proposes LEEM as

a practical replacement of Elastic EM. LEEM applies two

types of bounds based on the singular value and triangle

inequality to detect unnecessary probability calculations.

A Delta optimization for M-Step is also incorporated into

LEEM. LEEM on average achieves 5X speedups over

Soft EM. It speeds up Elastic EM by up to 2.3X with no

quality loss, appearing as a promising drop-in replacement

of current Elastic EM.
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