
INTER-DISCIPLINARY RESEARCH CHALLENGES IN
COMPUTER SYSTEMS FOR THE 2020s

Albert Cohen†, Xipeng Shen‡, Josep Torrellas∗, James Tuck‡, and Yuanyuan Zhou�

Sarita Adve, Ismail Akturk, Saurabh Bagchi, Rajeev Balasubramonian, Rajkishore Barik,
Micah Beck, Ras Bodik, Ali Butt, Luis Ceze, Haibo Chen, Yiran Chen, Trishul Chilimbi,

Mihai Christodorescu, John Criswell, Chen Ding, Yufei Ding, Sandhya Dwarkadas, Erik Elmroth,
Phil Gibbons, Xiaochen Guo, Rajesh Gupta, Gernot Heiser, Hank Hoffman, Jian Huang, Hillery Hunter,

John Kim, Sam King, James Larus, Chen Liu, Shan Lu, Brandon Lucia, Saeed Maleki, Somnath Mazumdar,
Iulian Neamtiu, Keshav Pingali, Paolo Rech, Michael Scott, Yan Solihin, Dawn Song, Jakub Szefer,
Dan Tsafrir, Bhuvan Urgaonkar, Marilyn Wolf, Yuan Xie, Jishen Zhao, Lin Zhong, and Yuhao Zhu+

†INRIA France ‡North Carolina State University
∗University of Illinois Urbana-Champaign �University of California, San Diego

+The affiliations of these authors are listed at https://www.asplos2018.org/grandchallenges/

September 2018

Sponsored by the National Science Foundation (NSF), USA

1

Executive Summary

The broad landscape of new technologies currently being explored makes the current times very
exciting for computer systems research. The community is actively researching an extensive set
of topics, ranging from the small (e.g., energy-independent embedded devices) to the large (e.g.,
brain-scale deep learning), simultaneously addressing technology discontinuities (End of Moore’s
Law and Energy Wall), new challenges in security and privacy, and the rise of artificial intelligence
(AI).

While industry is applying some of these technologies, its efforts are necessarily focused on
only a few areas, and on relatively short-term horizons. This offers academic researchers the op-
portunity to attack the problems with a broader and longer-term view. Further, in recent times, the
computer systems community has started to pay increasing attention to non-performance mea-
sures, such as security, complexity, and power. To make progress in this multi-objective world, the
composition of research teams needs to change. Teams have to become inter-disciplinary, enabling
the flow of ideas across computing fields.1

While many research directions are interesting, this report outlines a few high-priority areas
where inter-disciplinary research is likely to have a high payoff:

a) Developing the components for a usable planet-scale Internet of Things (IoT), with prov-
ably energy-efficient devices.2 This report envisions a highly-available, geographically dis-
tributed, heterogeneous large-scale IoT system with the same efficiency, maintainability, and us-
ability as today’s data centers. This planet-scale IoT will be populated by many computationally-
sophisticated IoT devices that are ultra-low power and operate energy-independently.

b) Rethinking the hardware-software security contract in the age of AI. In light of the recent
security vulnerabilities, this report argues for building hardware abstractions that communicate
security guarantees, and for allowing software to communicate its security and privacy require-
ments to the hardware. Further, security and privacy mechanisms should be integrated into the
disruptive emerging technologies that support AI.

c) Making AI a truly dependable technology that is usable by all the citizens in all settings. As
AI frameworks automate an increasing number of critical operations, this report argues for end-
to-end dependable AI, where both the hardware and the software are understood and verified.
Further, AI needs to turn from a centralized tool into a capability easily usable by all the citizens
in all settings to meet an ever expanding range of needs.

d) Developing solutions to tackle extreme complexity, possibly based on formal methods. This
report argues for the need to tame the explosion of system complexity and heterogeneity by creat-
ing new abstractions and complexity-management solutions. Such solutions need to be accessible
to domain experts. An important step towards this goal is to scale out and extend formal methods
for the real world.

This report also describes other, related research challenges.

1In this report, inter-disciplinary refers to cutting across multiple areas of computer and information science and engi-
neering, rather than across engineering disciplines.
2This report uses the IEEE definition of IoT, which is found in https://iot.ieee.org/images/files/pdf/IEEE IoT Towards
Definition Internet of Things Revision1 27MAY15.pdf.

2

1 Introduction

It is now an exciting time in computer systems research. New technologies such as machine learn-
ing and the Internet of Things (IoT) are rapidly enabling new capabilities that were only dreamed
of a few years ago. The research community is actively exploring an extensive range of topics,
ranging from the small (e.g., energy-independent embedded devices) to the large (e.g., brain-scale
deep learning). At the same time, technology discontinuities such as the end of Moore’s Law and
the inescapable Energy Wall combine with new challenges in security and privacy, and the rise of
Artificial Intelligence (AI).

In this new environment, computer system researchers have a great opportunity to make last-
ing contributions. While it is true that, in some of these areas, IT companies are heavily invested,
their focus is necessarily narrow and has relatively short-term horizons. Academic researchers,
one the other hand, can afford to take a broader, longer-term view and address the hard problems.

Further, computer systems researchers have already moved away from a mindset focused ex-
clusively on performance. They have realized that other measures, such as security, complexity,
and power are as consequential as performance. All of these other measures are indeed crucial at
the current technology juncture.

However, to make progress in this multi-objective world, computing systems research teams
need to be inter-disciplinary. It is necessary to enable close collaboration across computing fields,
allowing inter-disciplinary computer systems research to flourish. Research advances will mainly
come from collaborations of researchers with various expertises, such as distributed systems, com-
puter architecture, programming systems, security, circuits, and languages.

Against this backdrop, an NSF-sponsored community visioning workshop convened about
150 researchers of multiple computer systems areas (Section 6). The goal was to outline a few
high-priority areas where inter-disciplinary research is likely to have a high payoff in the next 10
years. This report summarizes the workshop’s findings. While many research directions were
found interesting, the workshop outlined several high-priority inter-disciplinary research areas.
They are shown in Table 1. The rest of the report describes each area in detail.

Challenge Research Vision
Develop the components
for a usable planet-
scale IoT, with provably
energy-efficient devices

A highly-available, geographically distributed, heterogeneous large-
scale IoT system that has the same efficiency, maintainability, and us-
ability as today’s data centers. This planet-scale IoT includes many
computationally-sophisticated IoT devices that are ultra-low power
and operate energy-independently.

Develop an effective
hardware-software secu-
rity contract in the age of
AI

Hardware abstractions that communicate security guarantees to the
software, and software systems that communicate their security and
privacy requirements to the hardware. Security and privacy mecha-
nisms are integrated in the technologies that support AI.

Make AI a truly depend-
able technology that is us-
able by all the citizens in
all settings

End-to-end dependable AI, where both the hardware and the soft-
ware are understood and verified. AI turns from a centralized tool
into a capability easily usable by all the citizens in all settings to meet
an ever expanding range of needs.

Develop solutions to
tackle extreme complex-
ity, possibly based on
formal methods

Tame the explosion of system complexity and heterogeneity by cre-
ating new abstractions and complexity-management solutions. Such
solutions are accessible to domain experts, and are based on scaling
out and extending formal methods for the real world.

Table 1: Inter-disciplinary research areas identified.

3

2 Internet of Things and Infrastructure

IoT devices such as vehicles and smart phones are everywhere, and becoming ever more com-
plex. These and many other computing devices interact with increasingly sophisticated network-
ing, embedded sensing, and actuation. The resulting evolving environment lends itself to an
exciting vision where the notion of what computing systems are is changing. Specifically, built en-
vironments such as commercial buildings, transport networks, or energy and water networks are
becoming the new computing systems. Eventually, a new computer system will emerge: a planet-
scale, geographically distributed, heterogeneous large-scale IoT system, which has the same effi-
ciency, maintainability, and usability as one of today’s data centers. In this environment, energy
efficient operation is a primary concern. This vision calls for innovations in a variety of systems
technologies and ultra-low power devices.

2.1 Useable Planet-Scale Internet of Things

Enabling the full capabilities of IoT is an exciting challenge for interdisciplinary computer sys-
tems research. Individually, IoT devices have limited functionality, are energy constrained and
computationally limited, and often have intermittent network connectivity. Together, however,
IoT devices can build the new computer systems of the future. Helping to create such computer
systems is one of the challenges.

Challenge: Usable planet-scale IoT: develop a highly-available, geographically distributed, heterogeneous
large-scale IoT-based system that has the same efficiency, maintainability, and usability as today’s data
centers.

For this vision to happen, the research community needs to advance in multiple areas, learning
from and leveraging past efforts such as the GRID and the World Wide Web. In addition, it should
collaborate with industry and emphasize the development of standards.
Scalable models and abstractions of physical systems and computer systems. To construct a
planet-scale IoT, we require understanding how its many components operate and interact with
each other. For that, we need models of subsystems, such as a region’s mobile infrastructure, clus-
ters of sensors, or city-wide device infrastructure. To build such models, we can gain inspiration
from work in cyber-physical systems.
Scalable distributed algorithms that can operate in disconnected or long-latency mode. We
need to develop highly-scalable distributed algorithms that can operate in a three-level hierarchi-
cal system — static and mobile clients, fog computing infrastructure, and cloud computing infras-
tructure. The system will be of large scale and some nodes will have intermittent connectivity.
The algorithms must be able to meet guarantees of safety and timeliness, either deterministically
or stochastically, in this environment. Examples of algorithms are those that perform data replica-
tion across multiple sites, support queries that are partially satisfied at multiple devices, and assist
for human cognition that is available partially at multiple devices.

There is much prior work that we can build upon in scalable distributed algorithms [51, 7],
fault-tolerant distributed algorithms [38, 97], network protocols with intermittent connectivity [96,
85], and delay tolerant networking [44, 45].
Programming models, communication protocols, and runtimes for heterogeneous collections of
systems. The IoT is composed of highly heterogeneous systems. Such heterogeneity occurs across
levels (clients, fog, and cloud), and within each level (e.g., one edge device can be a laptop, another
a cellular base station, and a third the cash register of a coffee shop). We need programming
models, communication protocols, and runtimes that we can use to program and manage such

4

heterogeneous collections of systems.
Available and reliable safety-critical IoT systems using unreliable devices. IoT devices such as
vehicles, virtual reality headsets, and smart digital assistants are becoming ever more complex.
While IoT systems have seen significant innovations in recent years, critical issues remain in sys-
tem availability and reliability. There are substantial new challenges. First, the mission-critical
functions of many emerging IoT systems require unparalleled reliability and fault tolerance guar-
antees. One example is a connected autonomous (or even semi-autonomous) car. If the system
fails to recover from failures, the consequences are potentially disastrous. Second, fault tolerance
and recovery methods used in servers and traditional mission-critical systems cannot easily be
adopted to new scenarios with vastly different application properties. Finally, IoT systems in-
stalled or embedded into industrial control systems or smart city networks will have much longer
lifespans than the consumer electronics devices that industry is used to producing. Therefore, one
critical goal for IoT infrastructure research is to enhance the reliability of IoT systems with reliable
and cost-efficient data management, storage, and system recovery.
Live-updatable IoT systems. IoT systems will need to evolve with time due to various factors,
such as changes in version of the application, updates to some parameters of the application (in
turn brought on by changes in the requirements from the application), or changes in the physical
environment in which the IoT devices are embedded. Hence, it will be important to perform live
updates to the IoT system. This means that the devices must not be brought offline to upgrade
them; rather, the upgrade should happen in a graceful manner while the devices are still exe-
cuting the application. This will become a requirement for highly-available IoT systems, where
downtime could lead to danger to human wellbeing.

There has been significant work on live-updatable systems, from the server and enterprise
class systems [22, 29] to low-end wireless sensor nodes [73, 28]. Such works have developed pro-
tocols to update a distributed set of nodes, performed over wired or wireless networks, for differ-
ent capabilities on the nodes (e.g., ability to dynamically link modules), and optimizing different
metrics (e.g., number of wireless packets or length of time to update).

An IoT domain introduces some unique challenges to this problem. First, the update process
needs to attain near perfect reliability. This is important because, even if only a few blocks of
a program are received incorrectly, the operation of the node may be impaired. Second, there
needs to be higher-level guarantees that mixed-mode operation (i.e., old and new versions of the
software co-existing on different nodes of the network) will not lead to failures or unpredictable
behavior. Third, the update protocol must be able to handle the heterogeneity of devices, which
is expected in IoT systems. For example, one node may have the capability for broadcasting in an
omnidirectional manner while another may be unidirectional.
New capabilities and services enabled by new types of device sensors. The popularity of smart-
phones has resulted in the development of sophisticated sensors, and of many applications that
leverage these sensors. Examples of such sensors are accelerometers, proximity sensors, gyro-
scopes, and magnetometers. As these and other sensors are embedded into more and more IoT
infrastructure, novel and unexpected capabilities may be provided by IoT systems. Research into
applications that leverage new sensors may provide good payoffs.
Modeling reliability at multiple scales, such as device, communication network, and system.
The reliability of an IoT system depends on the reliability of the devices plus the network that con-
nects these devices. It is expected that, for most production deployments of any importance, there
will be some redundancy, such that failures in a subset of devices will still allow the application to
meet its requirements. To understand the failure modes, and to have some predictive ability about
what conditions any element may fail in, it will be important to develop models for the reliability
of the elements and then models that compose individual models.

5

Reliability modeling has to happen at different levels. Such levels have to include those of
low-level sensors; microcontroller, memory, and storage media; low-level firmware; resource-
constrained software executing on the devices; networking medium; and networking software.
There is abundant literature in the reliability community on modeling at most of these levels. Some
notable works focus on flash-based storage reliability [11], embedded software reliability [52], and
Wi-Fi network reliability for IoT [89].

Further, reliability models have to include the effect of the environment. Environmental effects
are key because many IoT devices are embedded in the environment, and thus environmental
characteristics like moisture, chemical composition of soil, or corrosion, affect the device reliability.

2.2 Provably Energy-Efficient Devices

Improving the energy efficiency of our computing infrastructure is at the center of computer sys-
tems research. Hence, a second challenge relates to developing ultra-low power IoT devices and
infrastructure. We refer to these devices as “provably energy-efficient” to denote that they should
be designed from the ground-up for energy efficiency, using a reasoned methodology rather than
ad-hoc procedures.

Challenge: Provably energy-efficient devices: Ultra-low power and energy-independent operation of
computationally-sophisticated IoT devices.

For this vision to happen, we need aggressive research advances in multiple areas.
Robust capabilities under intermittently-available energy. We envision that an increasingly
larger fraction of the devices that are embedded in deployed IoT infrastructure will have to collect
from the environment the energy that they need to sense, compute, and communicate. This is be-
cause wired power is too expensive to deploy in many circumstances, and impossible to deploy in
others. Batteries degrade with use, introduce maintenance issues that are not well-suited to many
applications, and can be hazardous.

Environmentally-available energy sources are often very weak (e.g., radio waves, small so-
lar panels, or vibration), and sufficient energy to operate usefully may not always be available.
Systems can no longer assume that energy is a continuously-available resource but, at the same
time, systems must continue to robustly support the sophisticated capabilities that applications
demand. Robust, capable operation with intermittently-available energy is in itself a grand chal-
lenge because it requires rethinking systems to include efficient mechanisms to collect and store
energy, and to dynamically manage and control its consumption. Intermittent operation requires
new programming languages, runtime systems, architectures, and circuits that are robust to in-
terruption, that dynamically adapt energy and power availability with time, and that provide
fine-grained control of the power system [18, 62].
Formal reasoning about energy use. In an IoT system, energy is a first-class measure that is as
important as or more than performance. Unfortunately, while the analysis of the performance
bottlenecks in a complex system such as an IoT system is relatively easy to perform, the same is
not true for an analysis of the energy consumption bottlenecks. We require the development of
tools, methodologies, models, and sensor hardware to identify the most energy-consuming parts
of a cluster of IoT devices, and reason about how the energy is spent in such a system.
Tradeoffs among energy efficiency, correctness, programmability, and precision. In physical
systems, there is often a trade-off between the energy consumed in an operation and other charac-
teristics of the operation. Examples of such characteristics are correctness, reliability, programma-
bility, and precision of approximate solutions. Since energy consumption is so important in IoT
systems, it is important to model and understand how energy can be traded off with these other

6

characteristics.
Use of control-theoretic approaches to improve the efficiency of IoT systems. IoT systems maxi-
mize their efficiency through the use of hardware or software controllers. In the general case, such
controllers monitor several measures, such as power and performance, and actuate on multiple
measures, such as frequency and thread scheduling. Typically, controllers use algorithms based on
heuristics, produced by profiling representative applications. Unfortunately this ad-hoc approach
is not robust [91]. The resulting algorithms tend to be bug-prone and hard to change. Further,
as the algorithm executes, there is the danger that unexpected corner cases cause large deviations
from the targets, resulting in inefficient executions.

The alternative is to design software or hardware controllers using control-theoretic ap-
proaches [63, 65, 78]. With formal approaches, designers have a systematic way to quantify the
knowledge and expectations they have about the design [61, 94]. For example, they know how
important each of the output targets is relative to each other. They also know the overhead of ac-
tuating on different inputs. Hence, they provide this information, and then, proven methodologies
generate a controller that actuates on the most convenient and fastest inputs to safely converge to
the desired output targets. This approach ensures the effective control of interdependent measures
and, as a result, attains provably-optimal resource efficiency.
Rethinking the storage stack to fully leverage Non-Volatile Memory (NVM). Data-intensive IoT
devices generate high pressure on storage systems. Existing flash-based storage has a high write
cost and induces significant software complexity in the runtime and file systems. Emerging NVM
technologies such as PCM [58, 10], ReRAM [86], and STT-MRAM [4] promise both to increase
density and to lower write cost. At the same time, their byte addressability means that they can be
accessed with ordinary load and store instructions, and raises the intriguing prospect of retaining
pointer-rich in-memory data across application invocations and even system crashes.

A key challenge to this prospect is the need to maintain memory consistency below the level
of the caches [75, 43]. There are proposals to do this in hardware [46, 56, 68], in specialized data
structures [72, 15, 70], or in more general transactional [92, 17, 36, 79] or lock-based [13, 42, 41]
systems.

We envision re-architecting the storage stack for IoT devices with a system-wide and cross-
layer approach, taking advantage of NVM in new systems software [19, 76, 93, 26]. With carefully
designed APIs [82] and hardware-software co-design, one should be able, simultaneously, to in-
crease energy efficiency, density, and reliability; reduce application complexity and production
costs; and facilitate the use of energy harvesting.

For IoT devices that work in conjunction with the cloud, much current software complex-
ity is devoted to the management of logically shared information. Infrastructure for long-lived
in-memory data may allow much of the complexity of consistency, locality management, and
partitioning and reconciliation to be moved out of the application and into standard system soft-
ware [88, 14].

2.3 Built-Environments as Computing Platforms

With the proliferation of computing devices, networking, embedded sensing, and actuation, so-
cietal lifelines like transportation and energy and water networks have emerged as examples of
cyber-physical systems (CPS). The emerging CPS vision presents an exciting universe of societal
infrastructures that are efficient, available and increasingly responsive to changing user needs and
environmental conditions. These systems are also changing the notion of what underlying com-
puting systems are. Consider, for example, a commercial building. The Heating, Ventilation and
Air Conditioning (HVAC) systems are managed by the operators using a building management

7

system provided by commercial vendors such as Johnson Controls. More recently, buildings have
seen the integration of sensors for wireless finger printing of the environment, occupancy detec-
tion, human comfort feedback, and air flow control.

Increasing use of computing devices such as desktops and servers also makes some buildings
“mixed use”, hosting both human and IT equipment along with their requirements for energy use.
These are increasingly interdependent systems where optimization opportunities have exploited
human activities such as in the SleepServer system [2]. As these attempts at large scale energy use
optimizations mature, a compelling vision of the building itself as a new computing platform has
emerged. Such a platform has resources, such as various sensors for environmental conditions
and human feedback. It has actuators, such as variable air valves, heaters, and door locks, many
of which are IOT devices themselves. Reading such devices and commanding them is typically
done by control algorithms.

The entire distributed system of a commercial building can then be treated as a computing
platform. It has the actions of reading from sensors (or memory locations) and performing actions
as processes on a distributed computing system. Such a platform can have its own “applications”,
and these applications may port across buildings as programs do on computing devices.

The current attempts to standardize the abstraction of the resources for applications in build-
ings [6] and IoT scenarios [1] provide common representations of the physical and virtual re-
sources in the domain. Applications can run on top of those representations instead of adapting
themselves per target system. There are many technical challenges to realizing this vision.

Challenge: Built environments as computing platforms: Large cyber-physical systems of systems as com-
puting platforms (buildings, critical infrastructures, etc).

For this exciting vision to become reality, many fundamental questions need to be answered.
Further, models and methods need to be created that cross the boundary between computing
and physical systems. For instance, how does one discover a device or its capabilities? How
does one address them in a manner that they can be built into a programming environment? Is
it done through structured queries or through special brokerage services that maintain a record
of devices and capabilities? How does one program such a sensorized distributed system? Is it
done via a collection of programs that follow a specific programming pattern or through macro-
programming facilities? What is a runtime system for such a platform? The list of questions is
long because it reopens a number of foundational concepts used to build conventional computing
systems.

To address these questions, we need interdisciplinary research in several areas. First, we need
to expand system architecture to include sensors and actuators. Sensing and actuating are a cen-
tral part of the operation in built environments. Second, we need new virtualization methods for
sensors and actuators, since such devices will be used concurrently by different processes. Third,
building on the previous point, it is required that built environments support multi-tenancy. This
means that all of the components in such systems must support multiprogramming with differ-
ent administrative domains. Fourth, researchers should strive to support application portabil-
ity across these new computing platforms. Ideally, interfaces and functionally should be similar
across groups of built environments, to make portability easy. Finally, we need to work toward
defining what a runtime system for these platforms is, and what is its basic functionality.

All of these issues broadly intersect with the research agenda of the CPS initiative [69]. For this
reason, we do not elaborate further.

8

3 Security and Privacy

Headlines about cyber-security have become increasingly commonplace. It has been shown that
attackers can steal user social security or credit card numbers from financial companies’ computer
systems, grab passwords from social media sites, and loot company secrets from the cloud. Fur-
ther, new side channels are periodically being discovered in various layers of computer systems.
In addition, privacy has become a crucial issue as online services powered by diverse distributed
systems collect and aggregate data for billions of users. The black-box aspect of current online
systems introduces the challenge of understanding the provenance of data when a breach occurs.
Overall, the security and privacy areas present some of the most significant research challenges
for computer systems researchers today.

3.1 Rethinking the Hardware-Software Security Contract

Hardware is the new front line of the cyber-security battle. In recent years, the threat surface has
widened and deepened with the trends of IoT, mobility, and the cloud. As such, it is impossible to
truly secure today’s computer systems without beginning from the hardware level. If hardware or
firmware is compromised, the threat can evade detection and escape from most software security
tools.

The Spectre [55] and Meltdown [60] attacks have demonstrated the gap between the hardware
behavior and the software assumptions on the hardware behavior. The abstraction between hard-
ware and software is specified in the instruction set architecture (ISA), which describes the behav-
ior of each instruction as it commits. However, the hardware performs speculative execution of
instructions which, even after being squashed, leave a certain footprint in the system. Hence, the
traditional abstraction between hardware and software leaks [35]. This points to a major research
challenge.

Challenge: Rethinking the hardware-software security contract.

To address this challenge, we need research advances in multiple areas.
Building hardware abstractions that communicate security guarantees. Closing the semantic
gap requires building hardware abstractions that communicate the security guarantees provided
by the hardware. In particular, they must specify which side channel leakage is closed and which
is left open. With such primitives, software can reason about what it needs to do to provide the
desired security guarantees [33].
Allowing software to communicate its security and privacy requirements to the hardware. To-
day, there is no mechanism available for the software to communicate its security requirements
to the hardware. There is no interface that allows software to specify whether it can or cannot
tolerate various types of side channel leakage. For example, some cryptographic primitives re-
quire running in constant time in order to avoid timing side channel leakage. This requirement
cannot be communicated to hardware in the absence of a software-hardware security interface.
Research is needed to design an interface that allows software to specify its security requirements
to hardware.
Designing a Trusted Execution Environment (TEE) that specifies and eliminates side channel
leakage. Currently, Intel SGX [20, 21], AMD SEV [3], and ARM TrustZone [5] provide TEEs that
do not address side channel leakage. Given the reach of the recently discovered micro-architecture
side channel vulnerabilities, the coverage of a TEE should be expanded to include side channel
leakage. Research is needed on new mechanisms to close various side channel leakage (timing,
power, branch, cache, access pattern, fault, etc.) in a way that introduces as little performance and

9

power overheads, and additional cost, as possible.
Mitigating side channel leakage in accelerator-based systems, including GPU, FPGA, and ASIC
accelerators. Datacenters in the cloud will increasingly rely on non-CPU hardware such as GPUs,
FPGAs and ASIC accelerators. Research is needed to provide TEEs and eliminate side channel
leakage in the presence of such disparate hardware. It is also important to identify the best layer
(e.g., hardware or software) to address a particular side channel vulnerability.
Developing security metrics, methodologies, tools and open source platforms to reason about
the trade-offs between security, cost, and overheads. Research is needed to develop security
metrics to measure the effectiveness of various security mitigation techniques. Methodologies
and tools need to be developed to support measurements, metrics collection, risk assessment, and
quantification of the trade-offs between security, cost, and various overheads such as performance,
power, and area. In addition, we need to design new hardware and software systems to allow
security mitigation to be deployed cheaply when a new security vulnerability is discovered post-
production. More research and development efforts are needed to continue and strengthen recent
initiatives on open source secure hardware (e.g., Keystone [53]).
Designing new hardware and software mechanisms for introspection of security modules. Re-
search is needed to develop means for introspection of security mechanisms. Today, the parts of
the system that are used to enforce security are typically black boxes (e.g., proprietary code run-
ning inside the system management engine on Intel processors). In the event of a security breach,
there is no way to examine the state of these protection mechanisms. Attackers may find a way
to break the protections, but ordinary users have no way to defend themselves. New mechanisms
are needed to allow users (applications, operating system, or even other hardware modules) to
observe the health of the security-critical modules, and then react in case there is any problem.
Software could, for example, start to erase its data if the system management engine is broken
and the computer is compromised.

3.2 Security and Privacy in the Age of AI

Two common concerns in many of the emerging AI applications such as self-driving cars, Un-
manned Aerial Vehicles (AUVs), precision medicine [59], and assistive technologies for disabled
people, are that they all deal with sensitive user data and directly impact the safety of human lives.
Hence, the data must be kept private. Moreover, cars, drones, and implanted devices should not
be altered by malicious agents. Hence, these computing devices must also be kept secure.

In addition, in many AI applications, researchers often have to ship code or use models that
they do not fully understand. Code and models are shipped with relatively little understanding
of how or why they work. This makes it hard to reason about attacks and information leaks, and
also how the model can be deceived. Overall, for all these reasons, researchers must create strong
security and privacy policies, mechanisms, and algorithms for emerging AI applications.

Challenge: Security and privacy in the age of AI: Protecting unexplained systems.

To address this challenge, we need research advances in multiple areas.
Integrating security and privacy mechanisms into the disruptive emerging technologies that
support AI algorithms and applications. AI algorithms and applications use emerging tech-
nologies such as NVM, near-data processing, and accelerators. NVM products such as Intel and
Micron’s 3D-XPoint memory [67] are being shipping. Such memory devices introduce new vul-
nerabilities. For example, a malicious agent can simply pull out a non-volatile DIMM, walk away,
and decipher the contents of the DIMM. This DIMM will contain not only persistent files, but also
intermediate objects created by the application.

10

Given the high cost of data movement in modern systems, there is a strong push towards near-
data processing paradigms. In traditional systems, the processor remains the hub of all activity
and represents a localized trusted execution environment. But in a system with near-data pro-
cessing, the processing power is scattered across the entire system, with parts of the computation
potentially being performed on a buffer-on-board, a DIMM buffer chip, a memory chip itself, or
an SSD module. The attack surface thus becomes broader.

Finally, accelerators are growing in prominence. GPUs are already commonplace, and ML
accelerators like Google’s TPU [47] are available to consumers. Trusted Execution Environments
have only recently been introduced into commercial server-class processors. For accelerators, se-
curity and privacy have barely been considered. Therefore, much work remains in defining side
channels, attack vectors, and defense strategies for these accelerators.
Developing security and privacy abstractions, specifications, and interfaces for each technol-
ogy. To formally verify and reason about the security properties of any system, it is necessary to
have an abstraction of the system, plus the system’s specifications and interfaces. As industry and
researchers are developing new disruptive technologies such as those listed above, it is important
to derive detailed specifications and abstractions of the resulting components.
Anticipating and mitigating attacks before they happen. It is important to expose and elimi-
nate underlying vulnerabilities ahead of attackers. In the age of AI, with many disruptive new
technologies, research is needed in discovering new types of attacks and methods to mitigate
them. Findings from such vulnerability research will serve to better protect users and systems.
In addition to discovering security holes, researchers should also design effective test practices,
methodologies and frameworks for emerging AI applications.

3.3 System Support for End-to-End Privacy

As more data is processed on systems owned by parties other than the data owners, and moved
across interconnected systems, it becomes harder to reason about the privacy guarantees of the
system. Users are most often given only one option when interacting with a remote system: either
they fully trust it or fully distrust it. Systems lack application-independent capabilities for owners
of the data to define, control, and audit the computing done on their data, and as well as the
lifetime of their data.

These trends have led to the introduction of privacy-oriented design principles such as
Cavoukian’s Privacy by Design [12], and privacy-oriented regulation such as the European
Union’s General Data Protection Regulation (GDPR) [30]. While well intentioned, these privacy-
oriented design frameworks are insufficient. We must develop systems that provide end-to-end
privacy via hardware and system software capabilities to track user data and enforce user-specific
policies on its use, independent of the application software.

The challenge we propose is to enhance the systems powering distributed applications that
process user data. We need to enhance such systems with privacy mechanisms, techniques, and
building blocks that respect user privacy. The goal is to build systems that guarantee a privacy
regime that is centered around the user as owner of data, is socially responsible, and is deployed
end-to-end, independently of system scale.

Challenge: System support for end-to-end privacy.

To address this challenge, we need the following research.
Accelerating advanced privacy-preserving techniques, including computing over encrypted
data and differential privacy. There have been significant advances in cryptography and sta-
tistical analysis in support of privacy. Fully homomorphic encryption, secure multiparty compu-

11

tation, and differential privacy have shown the feasibility of end-to-end privacy at the algorithmic
level. There is a large performance gap to be bridged for such methods to be practical, applicable,
and adopted widely. The systems community must research hardware acceleration and energy-
efficient solutions for privacy-preserving techniques, in order to scale them from IoT devices to
cloud applications.
Developing composable mechanisms for tracking data provenance and information flow
within a system and across systems. Today’s complex applications often combine functionality
provided by services from various vendors, resulting in highly interconnected, interdependent,
distributed systems in which data privacy is hopelessly opaque end-to-end. Transparency re-
quires that each component of a large system can be audited for privacy guarantees, and that the
data flows can be similarly audited for compliance with privacy policies. We need novel system
mechanisms to audit the privacy guarantees of software running on trustworthy execution envi-
ronments. We also need novel system mechanisms to efficiently construct data provenance and
information flow tracking histories. These mechanisms will form the basis of any privacy auditing
and verification function.
Developing efficient and auditable system-wide mechanisms for users to control their data.
To afford users control over their data, it is important for systems to provide the primitives that
allow data management irrespective of the application processing such data. Functionality such
as data masking, deletion, expiration, and access control must be efficient, auditable, and available
system-wide. This also implies the need for hardware and system-software mechanisms that can
enforce user-defined policies building on this data-management functionality.
Designing domain-specific privacy models to inform system designers and to serve as privacy
benchmarks. While privacy policies vary significantly from domain to domain, a common set
of privacy models is needed for system designers to validate their systems against. At a mini-
mum, a privacy-preserving social network and a privacy-preserving health information system
are two examples of privacy models with opposing characteristics, yet of similar complexity. So-
cial networks are built around the idea of data sharing as default operation, where privacy controls
should be applied only when sharing should be restricted in some way. Health information sys-
tems default to isolation between patient records, with infrequent sharing when really required.
Both systems have a variety of parties (data owners, data users, etc.) that wish to obtain access to
the data. Precise models of these and other systems will form the basis for evaluating any system
design that supports privacy. In addition to capturing types of sensitive data and types of users,
such models must be developed to take into account cost models and payment mechanisms to
discourage the abuse of private data.

3.4 Tools, Testbeds, and an Ecosystem for Security and Privacy Research

Finally, there is a major challenge that pervades all security and privacy research.

Challenge: Develop tools, testbeds, and a complete ecosystem for security and privacy research.

Some of the research needed to address this challenge is as follows.
Developing metrics for security and privacy. One of the challenges in security research is how to
quantify the security and the privacy of a system. What does it mean to say that a system is 95%
secure? What does it mean that the privacy level of a system is 85%? Such metrics would play an
essential role in the quantification of a system’s performance under attack. Being able to define
such metrics, even if only to a certain extent, would greatly benefit system researchers, and would
provide a fair ground for cross-comparison and validation of various schemes.
Developing a methodology for specifying threats and quantifying the strength of a mitigation.

12

Threat analysis is key in security research. It specifies in a proactive manner how the attackers
could exploit a system’s weaknesses. It can also be used to guide how to design counter measures
to mitigate such threats. However, such analysis is commonly done in an ad-hoc fashion. We
need a systematic methodology to specify the threat models under different scenarios, as well as
to quantify the effectiveness or strength of mitigation schemes.
Developing security and privacy tools, open-source testbeds, and datasets. Currently, the re-
search community is missing well recognized, widely adopted toolsets to conduct security and
privacy research. It also lacks open-source testbeds that can be accessed by the wider research
community. Developing such tools and testbeds is a necessity, as they would be great enablers
for advanced research in this area. Research on hardware vulnerabilities is often hampered by a
lack of visibility into underlying implementations. Security researchers have therefore engaged
in efforts that involve reverse-engineering and trial-and-error. Many years of such research have
led to the Meltdown and Spectre attacks that have uncovered decades-old vulnerabilities in pro-
cessor implementations. We must, therefore, invest in more open-source hardware platform in-
frastructures (e.g., RISC-V), that can help researchers discover and mitigate vulnerabilities be-
fore attackers find them. Research on privacy and security is also hampered by limited access to
data. While companies have access to substantial user information, geophysical data, and health
records, academia has limited access to this data, or receives severely scaled down versions of
it. While such sensitive data is understandably protected, there must be a greater investment in
approaches that can create versions of datasets that preserve anonymity and yet retain the scale
and features of the original dataset.

4 Artificial Intelligence and Augmenting Human Abilities

Recent years have witnessed the rapid progress of Artificial Intelligence (AI) and Machine Learn-
ing (ML). Deep neural network models with many layers have demonstrated state-of-the-art accu-
racy in speech recognition, computer vision, robotics, information retrieval, and natural language
processing. The demanding computational characteristics of deep learning has led to the emer-
gence of many open-source and in-house frameworks including Torch, TensorFlow, Caffe, Theano,
CNTK, MxNet, and TVM, and various AI accelerators. Further development is needed to make AI
a truly dependable technique that can meet real-world needs in various settings. As an important
pillar of modern AI, computer system support plays an essential role in ensuring the efficiency,
scalability, power efficiency, responsiveness, security, productivity, and ultimately, dependability
of modern AI. Innovations are needed at all levels of computer systems.

4.1 Dependable AI

There are many implementations of AI frameworks, using a variety of hardware and software sup-
port. Many such implementations make critical decisions. Hence, one of the research challenges
is to ensure their dependability.

Challenge: Dependable AI: Making AI a truly dependable technology, both in isolation and when inte-
grated with other (non-AI) systems.

The effort of making AI dependable is motivated by the increasing adoption of AI frameworks
to automate operations in various strategic fields, such as in automotive, aerospace, and military
applications. For instance, neural networks have been deployed in self-driving cars to dynami-
cally identify and classify objects, and in unmanned aerial vehicles (UAVs) for homeland security
missions. NASA’s Jet Propulsion Laboratory (JPL) is working on taking advantage of AI to au-

13

tomate deep-space exploration. GPU-accelerated MRI analysis has been used to avoid invasive
procedures such as biopsies.

Dependable AI relates with traditional software and hardware reliability, but differs in its em-
phasis on the end results of the AI models. An AI product on reliable software and hardware is
not necessarily dependable for a particular AI task; the results from the model may still lead to
catastrophic consequences in some occasions (e.g., fatal car accidents). The dependability hence
requires considerations of all layers, from requirements in the application domain to AI algorithms
or models, training datasets, and reliability of the software and hardware.

The complexity, heterogeneity, and rapid evolution of AI software makes it challenging to
assess and ensure AI dependability. There is not a full understanding yet of how AI algorithms
reach a solution, which implies a lack of understanding of how a fault could impact reaching
the solution. Additionally, the need for fast (or efficient) AI has led to a proliferation of non-
traditional, AI-specific hardware architectures, such as GPUs, FPGAs, Heterogeneous System on
Chips (SoCs), Tensor Processing Units (TPUs), and ASICs.

AI dependability in these novel architectures suffers for several reasons. First, these platforms
have high transistor counts, which match or exceed CPU transistor counts — e.g., NVIDIAs GV100
GPU includes 21.1 billion transistors, whereas an 18-core server CPU includes 5–7 billion tran-
sistors [32]. Second, these platforms have immature verification and validation processes [71],
compared to the over 40 years of verification experience in CPUs. Finally, such platforms have
traditionally focused more on performance than on correctness and, therefore, have little or no
fault tolerance. To address this challenge, research in several directions is needed.
End-to-end dependable AI. We need a holistic, integrated approach, where both the hardware
and the software are verified, first in isolation and then end-to-end. It is important to understand
not only the dependability of the AI algorithms but also how a fault, or unexpected behavior, in
any of the AI hardware and software layers, impacts the system they are integrated with. There
are several sources of transient and permanent errors that can undermine AI reliability, including
environmental perturbations, software errors, variations, and radiation-induced soft errors.
Better programming languages and models. Theorem provers and proof assistants such as Coq
and Isabelle/HOL have been instrumental in creating formal specifications. They have helped
produce certified compilers, translators, hypervisors, and OS kernels, and generally formally-
specified and correct-by-construction software layers and software tools. We now need advances
in theorem provers and specifiers that allow formal reasoning on AI data and AI algorithms. Re-
cent years have seen some incipient efforts (e.g., Deep Neural Network (DNN) robustness [34]
and formal specification and correct implementation for algorithms on stochastic computation
graphs [81].) More research is needed in this direction.
Handling software faults. Incorrect results in AI software could be due to incorrect training sets
(i.e., bad data), programming errors (i.e., bugs), and possibly other factors. A taxonomy of AI-
specific faults is needed. Also, we need programming models that allow faults to be detected
and handled — similarly to how exceptions are handled in traditional programming. Finally, we
need to understand how faults propagate upwards and downwards across software and hardware
layers, so we can reason about such faults and possibly contain them.
Toward debuggable AI. Current AI framework implementations offer little support for tracing
bad results to their causes. For example, it is hard to trace an incorrect outcome in ML to the
training sample(s) or model parts (i.e., clusters, nodes, or network weights) responsible for it.
Moreover, after training with bad data, it is hard to identify the model parts contaminated by
bad or adversarial samples. In addition, AI errors can be introduced during learning or inference.
Overall, to achieve debuggable AI, we need to be able to collect end-to-end traces during learning
and inference. The tracing must strike a precision and overhead balance. It has to be detailed

14

enough so that executions can be analyzed or replayed when the output is incorrect, but low-
overhead enough so that tracing can be used in production and avoid performance penalties.
Developing dependable new hardware architectures. As new architectures are invented to ac-
celerate AI applications, new failure mechanisms will emerge. For example, memristor-based
accelerators exhibit a relatively high defect rate [31]. It is important to develop models for how
hardware failures occur, propagate, and influence training and inference in these new architec-
tures. Conventional failure models are unlikely to apply. In addition, after developing the mod-
els, we need to implement the hardware supports to prevent critical errors from occurring and
propagating.

4.2 Ubiquitous AI (Democratizing AI)

To fully materialize the potential of modern AI, it is necessary to make the AI technology ready
for adoption by the ordinary citizens for all kinds of application domains in various settings.

Challenge: Democratizing AI: Turning AI from a centralized tool into a capability easily usable by all
citizens in all settings to meet an ever expanding range of needs.

Meeting the goal of ubiquitous AI requires solving a multitude of problems, ranging from
dealing with the need for multiple scales of AI, to making AI affordable for the masses, overcom-
ing (labeled) data sparsity and bias, enabling holistic considerations of integrated AI systems, and
establishing social and ethical standards for utilizing AI-powered tools.
Dealing with multiple scales for personalized AI. The broad range of AI applications causes di-
verse needs for AI, in terms of both models and deployment contexts. Some applications may
need very large scale models running on supercomputers, while others need tiny models operat-
ing in real time on very small IoT devices. Effectively dealing with such a large variety is a major
challenge for computing systems to help democratize AI and create personalized AI-based tools.
It calls for heterogeneous systems to support arbitrary precision and mixed learning algorithms,
and requires rapid hardware reconfigurability without hurting programmability. The solution
must be able to adaptively meet the various constraints at various scales, and effectively capital-
ize on model compression and quantization. It needs to enable automatic model discovery and
simplification based on constraints, supporting controllable precision through automatic scaling.
A gap that needs to be narrowed is the lack of principled understanding of fundamental proper-
ties in trading off accuracy for performance (time/computational complexity) of AI models. This
is a major hurdle for guided exploration and efficient model scaling and adaptation of AI.
Making AI universally affordable. A major barrier for democratizing AI is the cost of AI systems,
in both AI model construction and model deployment. A deep learning model typically requires
expensive massively-parallel systems to train; the hardware cost and long training time are pro-
hibitive to many users. Meanwhile, energy consumption, space, and maintenance cost of the
trained models form the major concerns in the usage of the trained models. Research is needed
to reduce the various types of costs to make AI affordable and accessible to everyone, ranging
from AI system designers to end-users, and in every possible setting. Opportunities may exist
in the use of low-end, cheap IoT devices (potentially in a distributed fashion) to assist or replace
high-end, costly devices such as GPUs and TPUs. Other opportunities may exist in the creation of
system support for decentralized model training (e.g., Federated Learning on edge devices) and
in the design of new versatile hardware that is easily reconfigurable. The latter may eliminate the
need to design specialized hardware for every new model. These optimizations are inherently
multi-objective, given the multi-faceted cost associated with AI.
Embedded machine learning at uW and mW, and tradeoffs with accuracy. We are used to neu-

15

ral network training and inference executions that consume tens or hundreds of watt. However,
many IoT devices have much lower power envelopes. If we want to use neural network infer-
ence in such environments, we need to develop machine learning algorithms that consume uW-
or mW-level power. Such goal requires redesigning the machine learning algorithms and the
hardware. For example, it may involve running DNNs that use single-bit data and algorithms
that aggressively exploit data sparsity. Using such optimizations may have an impact on DNN
accuracy.
Data and ecosystem. Modern AI depends on data. The availability of a large volume of high-
quality labeled data is crucial for many AI models. But often, such datasets are either unavailable
or inaccessible to general users. Research in computer systems is needed to create better infras-
tructure (e.g., effective crowd-sourcing) to facilitate the acquisition of more (labeled) data with
improved quality control. It is also important to foster an ecosystem to promote data sharing
without compromising privacy, and to help data de-biasing. In addition, we need advances in
generative adversarial networks [37], novel models (e.g., CapsNet [80]), and other emerging tech-
niques to address the data demands of AI.
Holistic consideration and deployment. In practice, AI models are rarely used alone. They are of-
ten integrated into a system that consists of other computing or non-computing components (e.g.,
a cyber physical system). An intelligent virtual reality system, for instance, may encompass the
domains of AI, imaging, vision, graphics, video processing, and acoustics, requiring components
from all these domains to operate collectively and synergistically in a single system.

To ensure the best synergy requires new holistic ways to design and build computer systems.
The design decisions ultimately depend on the requirements of the application and the underlying
device constraints (e.g., motion sensors, optical lens, or head-mounted displays). This underscores
the need to expand the systems research scope vertically, to tie it with the application scenarios
and with the hardware implementation technologies.

There are multiple open questions. One is to find the right programming and OS abstractions
to enable cross-domain design, while ensuring the compliance of application requirements. An-
other is to create tools and infrastructure support for whole-system profiling and debugging. Yet
another is to develop a scientific methodology to quantify user experience in different application
scenarios, and use it to evaluate AI systems.

4.3 Brain-Scale Deep Learning

One of the reasons why deep learning outperforms traditional ML methods is the superior expres-
siveness of a DNN, thanks to its large number of model parameters. In general, more complex
learning tasks demand larger models to capture the complexities of the tasks. For deep learning
to effectively deal with more complex AI problems in the future, the scale of the DNN models
is expected to grow. However, a larger model usually requires more (labeled) data to train. The
amount of computations, therefore, is expected to increase super-linearly with task complexity (il-
lustrated in Figure 1). Based on this analysis, a major challenge is how to provide effective system
support for efficiently training and deploying future DNNs of an extreme scale—including DNNs
with a scale like a human brain, with trillions of parameters.

Challenge: Brain-scale deep learning: Training and deploying ultra-scale DNNs with trillions of parame-
ters.

To address this challenge, we need aggressive research advances in multiple areas.
Reducing and streamlining data movements. Distributed systems are necessary for dealing with
an ultra-scale DNN, not only because a single node may not have enough storage to hold all the

16

Complexity of task Complexity of taskSize of model

 A

m
on

t o
f

(w
ea

kl
y

la
bl

ed
)

 d
at

a

Co
m
pu

ta
tio

n
re

qu
ire

d

Si
ze

 o
f M

od
el

Figure 1: Superlinear relationship between the complexity of a learning task and the scale of the
computation.

parameters of the DNN, but also because training a DNN of such a scale on a single node is time-
wise impractical. Distributed DNN training, regardless of which distributed training algorithm
is used, entails a large volume of cross-node data movement—including model parameters, error
gradients, and activation maps. Efficient and timely communication is essential. Running a DNN
of such a scale while meeting real-time latency constraints and minimizing total cost is especially
challenging. Further, when an ensemble of DNNs need to be trained for finding the best DNN
configurations, the challenge is orders of magnitude harder.

The problem calls for solutions from both system software and hardware designs. In software,
promising progress has shown in model compression [40], streamlining communications [77], and
direct data analytics on compressed data [95]. In hardware, in-memory and near-memory pro-
cessing [16, 54] reduces data movement by moving processing elements closer to the data. Recent
technological developments in monolithic 3D enable tight integration of high-density memories
and high-performance processing elements. However, for in- or near-memory processing, data
still needs to be moved around in the memory module. Designing many in- or near-memory pro-
cessing modules that work together in a scalable fashion still requires more research. Leveraging
processing capabilities throughout the system (e.g., in the network interface card) to accelerate AI
applications is another promising direction.

The data movement challenge is rooted in the execution model of Von Neumann architectures.
The brain does not have separate memory and processors, nor it uses instructions. New non-
Von Neumann architectures are needed that mimic how the brain works, where synapses store
information in a distributed manner, and information is mostly communicated among neighbor-
ing neurons. Emerging devices such as memristors exhibit neuron-like properties, which makes
them promising candidates as fundamental building blocks for new architectures. The probabilis-
tic nature of many AI workloads lends itself well to computing substrates with analog flavor and
extreme parallelism. For example, there are recent results using magnetic RAM and processing
in memory for accelerating inference, and progress in using quantum computers to train models.
There are wide open opportunities to explore superconducting logic, and molecular processing
and storage for AI.
TCO-oriented programming and run-time systems for ultra-scale AI. It is important that large-
scale distributed DNN training systems be built and run cost-effectively. The ultimate goal of users
of an AI system is to minimize the total cost of ownership (TCO), including both direct and indirect
costs associated with the AI system. Current software systems for deep learning are oblivious to
TCO, lacking the support for users to measure, model, or optimize the total cost when developing
or deploying an ultra-scale AI system. An important research direction is to reconsider the design
of AI/ML programming systems (programming languages, compilers, libraries, and runtimes)
towards a TCO-oriented paradigm.
Automated model training scaling. An important capability of future deep learning systems is
the ability to adapt the training algorithms and implementations based on the DNN scale, struc-

17

ture properties, data attributes, and underlying computing resources. Such a capability requires
a deep understanding and quantitative modeling of the fundamental properties of scaling DNN
training for performance, and the potential impact on the accuracy of training.
Co-design of training algorithm and computing systems. There is a rapid growth of hardware
accelerators for AI algorithms. Popular ideas in hardware/software co-design are to design dedi-
cated functional units for frequent operations (e.g., for activations and for linear algebra), support
data type quantization, and provide custom data-types at the hardware level. These have had
significant impact, but are just the tip of the iceberg. There are open possibilities in custom mem-
ory hierarchies, interconnection networks, and near-memory and storage processing. An exciting
hardware/software co-design opportunity is to use ML to design better ML accelerators. For
ultra-scale DNNs, it is essential to match the training algorithm with the underlying distributed
system design, to streamline the communications and avoid bottlenecks.
Domain-specific compilers and whole-stack optimizations. Integrating high-level frameworks
(e.g., Tensorflow, PyTorch, and MxNet) with compiler frameworks (e.g., XLA, TensorComprehen-
sions, and TVM) enables joint high-level and low-level optimizations that would be difficult to
implement otherwise. For example, fusing high-level operators (e.g., convolutions and activation
functions) might enable better low-level code mapping to hardware and data locality optimiza-
tions. An important research aspect of such systems is extensibility to new ML techniques and
hardware backends. Equally important is the development of domain-specific compilers that are
capable of automatically generating high-quality code for any upcoming layer — targeting a wide
variety of architectures/accelerators without relying on vendor-specific libraries. Unfortunately,
existing frameworks heavily use library-specific implementations of layers, forgoing any bene-
fit of cross-layer fusion that increases computational density and improves data locality. It is also
necessary to use analytical models to accurately determine optimization parameters (e.g., tile sizes
and unroll factors) specific to the underlying hardware.
System support for augmented and assisted AI. As Figure 1 illustrates, as the scale of deep learn-
ing models grows, the amount of labeled data needed to train a model increases quickly. Attaining
a large amount of well-labeled training data is often difficult. Addressing this problem is essential
for ultra-scale deep learning, due to the complexity of its models. We may need to augment deep
learning with reinforcement learning or leverage generative methods (e.g., generative adversarial
networks [37]) to reduce or eliminate the amount of training data needed for training the mod-
els. A direction worth pursuing is developing the system and hardware needed for effectively
supporting such mixed learning models.

5 Complexity Management

Taming complexity has been a major challenge and success story throughout the history of com-
puting systems. We identify three challenges specific to this area. Many of the underlying motiva-
tions and technological solutions are well known. However, existing approaches remain far from
satisfactory, and the new demands on complexity management call for reanalyzing the problem.

5.1 Taking up the Challenges of Diversity, Scale, and Change

Heterogeneous platforms, cloud-scale systems, and cross-cutting and cross-layer concerns like
security, performance, and reliability all add substantially to the complexity of designing systems.

Challenge: Celebrating diversity, scale, and change: taming system complexity and heterogeneity, and
broadening applications; looking for future-proof solutions in a dynamically evolving software and hardware
environment, acknowledging that these trends are here to stay.

18

Developing new mapping specifications for heterogeneous platforms at multiple scales. We
need new specifications to map software components to hardware in today’s heterogeneous plat-
forms. Software abstractions go through numerous transformations and refinements, as they are
being lowered to FPGA bitstreams, mapped onto transaction-oriented on-chip networks, com-
piled for unusual core and memory architectures, or mapped to manycore platforms [25]. These
operations include a variety of trade-offs, such as those between parallelism and locality, and
between re-computation and communication. They also impact data structures and algorithmic
choices. Optimal choices for one level or scale may not be good or even relevant at another. Much
of this need to revisit mapping specifications and tools is driven by the increases in parallelism
and hardware complexity, and by both hardware and application specialization.
Creating new abstractions while avoiding leaks, inconsistencies, errors, and other hard to fore-
see problems. To tame complexity, we need to develop abstractions, preferably based on formal
methods techniques, and using models of computing systems that are more future-proof than in
the past. Indeed, abstractions have often created issues in the past. For example, abstractions
of the functional behavior of processors can leak information through side-channels that may be
exploited by attackers.

Another example is that abstractions are typically unable to isolate the upper layers from the
presence of errors in the system. It remains a challenge to model the effect of hardware errors
while formalizing an ISA or an OS interface — and such errors are typically ignored [64].

Finally, abstractions may themselves be erroneous, unclear or inconsistent. Formalization
helps, and mechanized ones with proof assistants even more so, but specifications may still in-
correctly model the system. The history of the C11/C++11 memory model provides some exam-
ples [90, 57, 49, 9].
Developing abstractions that work and scale in a changing environment. We need system-
atic methods and tools to bridge abstractions when interfaces change. We want to automate the
process of porting software or architecture components from one abstraction of the underlying
system to another. Such process should possibly involve the automatic inference of the system’s
properties, using automatic testing (such as fuzzing or the automatic generation of litmus tests),
and relying on software synthesis. ML is emerging as a systematic tool in this area, and has also
played an important role in the construction of compilation heuristics [50, 74, 24, 23]. When in-
stantiating or modifying abstractions, one needs to preserve compatibility. The goal is to avoid
introducing impedance mismatch or unnecessary overhead.

However, it should also be noted that automation can worsen complexity, making it harder to
understand how one abstraction was converted into another, especially if something goes wrong
or an unexpected result occurs. The benefits of automation must be carefully weighed against new
sources of complexity it introduces.
New ways of thinking about abstractions that go beyond layers, are future-proof, and maxi-
mize reuse. The traditional layered system design has many advantages, such as allowing us to
revisit concepts from one layer in another layer, or ripping apart one layer of abstraction while
keeping a manageable system overall. Still, there is much to gain in broadening the interfaces. It
may be helpful to facilitate the co-existence and composition of parameterized abstractions. Such
approach may offer higher productivity without sacrificing efficiency. Examples of this approach
include the design of type systems for dynamic languages [83], separation logic for low-level but
safe programming languages [66, 48], and multi-stage programming [87, 27].

19

5.2 Complexity-effective Design and Implementation for Emerging Applications

One of the consequences of the diversification of applications and hardware designs is the need
for more accessible complexity management — i.e., to make it easier to use complexity-effective
design tools and formal methods.

Challenge: Adoption and application of complexity management solutions. Make these solutions accessible
to domain experts, automating much of the process, and facilitating reuse across domains.

Heterogeneity and specialization can be observed at multiple levels and scales. For example,
there are heterogeneous memory technologies, microprocessors, accelerators, and programming
languages, all for general purpose computing. There is burgeoning support for specialized com-
puting targeting AI and IoT with domain-specific languages and tools. In this environment, we
would like to encourage research aiming to reduce the complexity faced by domain experts in need
of advanced design. It should be possible for a domain expert to easily construct and validate spe-
cialized hardware and programming environment for a new application domain. Simultaneously,
reuse across domains should be encouraged.
Facilitating the construction, dissemination and evolution of formally-defined abstractions.
The value of formal methods and logic-based design, synthesis, and verification is widely rec-
ognized. Yet the accessibility of formal methods and logic-based programming is lagging. We
need to make formal methods more accessible to college students. Also, we need to empower
engineers and scientists from all areas with modern versions of these tools. Domain experts need
our help to construct their own domain-specific frameworks and tools. One promising avenue
for research is to automate the design and implementation of type systems and other logic-based
automated reasoning about programs and systems.
Facilitating communication across communities, encouraging reuse. Different research com-
munities typically use different abstractions, models, and approximations. The pervasiveness of
heterogeneous and specialized systems requires that abstractions, models, and approximations
become more portable and interoperable across communities. The scale of the systems and their
rapid evolution require much more automation, reuse, and parameterization of abstractions de-
signed by different communities. This goal is challenged by the lack of composition of abstrac-
tions, the diversity in non-functional properties and optimizations, and the difficulty to reconcile
these with modular design principles. Typically, organically grown interfaces provide a more ag-
ile means for such reuse and communication. One good example is the success of the REST API
for web services and storage, which permeates a rapidly growing range of services and platforms.
We need more systematic means to construct and adapt such APIs.

5.3 Formal Methods for the Real World

Formal methods are one of the best tools we have to tame the growth of complexity. They also
provide a level of design verification that is sorely needed, as discussed in all three earlier sec-
tions. Yet the adoption and suitability of formal methods remains sparse and insufficient. This
motivates a coordinated approach across computer science and applied domains to make their
use ubiquitous.

Challenge: Scale out and extend formal methods for the real world.

Logic-based synthesis everywhere. Verification and, to a lesser extent, testing have been at the
core of the development of formal methods in the computing systems area. The most successful
developments have probably taken place in the verification of complex circuits. Now, security and

20

safety are becoming first-class objectives in a growing number of domains. While this is an area
that is ripe for formal methods, the practice of formal methods cannot be limited to the verification
of systems. We need to use them to generate designs that are correct by construction.

One example of how we envision formal methods to be used is the so-called model-based
design of embedded software. It involves the integration of a formal specification and a synthe-
sizable model from a single source (sometimes called an executable specification) [39], enabling
efficient code generation, verification, and testing. It is essential to scale and generalize such meth-
ods beyond safety-critical applications.

Algorithmic program synthesis is another approach. It uses declarative specifications —
sketches (i.e., partial programs) — to simplify programming by delegating coding tasks to a con-
straint solver [84]. This approach has potential in the synthesis of formal models and type systems,
the mining of information from programs, and possibly in correctness and security [8].

Unfortunately, the theory underpinning formal methods tends to lag behind practice. One
major challenge is scalability: model checkers, SMT solvers, optimization research tools, theorem
provers, and proof assistants need to scale more. In addition, formalization often appears to en-
gineers as a scalability and expressiveness limitation, in the face of real world development and
validation practices. This implies that the scalability and expressiveness of tools should be a focus
for improvement, but also, that engineers need better training in the use of formal methods so that
they will be seen as an essential ingredient in system design.
Taming abstractions with formal methods. Chapters 2, 3, and 4 discuss many properties, con-
straints, and optimization objectives that currently evade formal modeling. The thirst for formal
reasoning in these areas should encourage a massive effort to apply formal methods across broad
areas of computer science. One direction is to capitalize on the success of type systems in program-
ming languages, and apply similar ideas to side channel defenses, security policies, and resource
management for IoT.

One weakness of most abstractions is that they are not fully enforceable, in other words, there
are few, if any, systematic or formal ways of ensuring an implementation adheres to all the rules
of the abstraction. Making them robust to malicious attacks is a challenge in secure systems. Good
areas to apply formal methods to are hardware isolation and capability management, as one can
focus the formalization and verification requirements onto limited secure enclaves and specific
privilege enforcement mechanisms.
Understanding the emergence and limitations of standards, and alternatives to the current prac-
tice. With rising levels of complexity, emerging and future standards should integrate more and
more formal specifications. Much scientific progress has been made through industry standards.
However, it is worth noting that the majority of computing system innovation does not adhere
to any organized standardization process. Open source developer communities often prefer de-
centralized, agile development. Further, specialization pushes for optimizations across standards
boundaries, breaking existing ones when higher efficiency ends up mattering more than portabil-
ity. There is a need for better characterization of these ecosystems, and how to provide stronger
guarantees (portability, maintainability, sustainability) to contributors and users.
Enhancing education and training. The integration of formal methods into standard tool-chains
will help their dissemination and adoption. It is important to scale up the education and training
initiatives, offering courses on formal methods and tools through a variety of university curricula.

6 About this Document

This report summarizes the findings in the NSF-sponsored “Workshop on Inter-disciplinary
Research Challenges in Computing Systems”, held in Williamsburg, Virginia on May 24-25, 2018

21

(https://www.asplos2018.org/grandchallenges/). This was a community visioning workshop
to identify inter-disciplinary research challenges in computer systems to be addressed in the
next 10 years. It was organized by Albert Cohen, Xipeng Shen, Josep Torrellas, James Tuck, and
Yuanyuan Zhou. The first day of the workshop was open to everyone, and about 150 researchers
attended. The second day was open only to researchers who had submitted position papers in
advance. About 50 researchers participated in the discussions of the second day and helped write
this report. Participants came from academia, industry, and government, representing multiple
research communities, including computer architecture, programming languages, compilers, and
operating systems, among others. The workshop included invited presentations and in-depth
discussions. The workshop program is listed as follows.

Saturday March 24 2018 (Open to Public)
7:00 Breakfast
8:00 Introduction (Workshop organizers and Samee Khan, NSF)
8:30–10:10: Internet of Things and Infrastructure

8:30–9:00 Keynote: Marilyn Wolf (Georgia Tech)
9:00–10:10 Panel Moderators: Rajesh Gupta (UCSD) and Lin Zhong (Rice)

10:00–10:30 Break
10:30–12:15: Security and Privacy

10:30–11:00 Keynote: Dawn Song (UC Berkeley)
11:00–12:15 Panel Moderators: Sam King (UC Davis) and Yan Solihin (NC State Univ)

12:15–1:45 Lunch
1:45–3:30:Augmenting Human Abilities/AI

1:45–2:15 Keynote: Trishul Chilimbi (Amazon)
2:15–3:30 Panel Moderators: Hillery Hunter (IBM), Yuan Xie (UC Santa Barbara)

3:30–4:00 Break
4:00–5:45 Complexity Management

4:00–4:30 Keynote: Ras Bodik (University of Washington)
4:30–5:45 Panel Moderators: Gernot Heiser (University of New South Wales)

and Keshav Pingali (UT Austin)
***** Open Session Ends *****
6:30 Dinner (Invitation Only)

Summary points
Open mike

Sunday March 25 2018 (Invitation Only)
7:00 Breakfast
8:30–9:30 Recap of the previous day
9:30–10:45 Breakout into groups
10:45–11:15 Break (make slides)
11:15–12:15pm Plenary: Presentations from each group
12:15–1:30 Lunch
1:30–2:15 Plenary: Continuation of presentations
2:15–3:30 Breakout into groups. Incorporate feedback and initial writing
3:30–4:00 Break
4:00–5:30 Continue writing
5:30–6:15 Plenary: Status report and feedback

22

Acknowledgment. This material is based upon work supported by NSF under Grant No. CNS-
1823068. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of NSF.

23

References Cited

[1] IoT and Schema.org: Getting Started. https://iot.schema.org/docs/
iot-gettingstarted.html, 2017.

[2] Yuvraj Agarwal, Stefan Savage, and Rajesh Gupta. Sleepserver: A software-only approach
for reducing the energy consumption of pcs within enterprise environments. In Proceedings
of the USENIX Annual Technical Conference, 2010.

[3] Advanced Micro Devices (AMD). AMD Secure Encrypted Virtualization. https://
github.com/AMDESE/AMDSEV. 2018.

[4] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watta, Valdimir Nikitin, Xueti Tang, Daniel
Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexander Driskill-Smith, and
Mohamad Krounbi. Spin-transfer torque magnetic random access memory (STT-MRAM). In
ACM Journal on Emerging Technologies in Computing Systems (JETC)—Special issue on memory
technologies, pages 13:1–13:35, 2013.

[5] ARM. Armsecurity technology – building a secure system using trustzone technol-
ogy. ARM Technical White Paperhttp://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf. 2009.

[6] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck, Dezhi Hong,
Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al. Brick: Metadata schema
for portable smart building applications. Applied Energy, 2018.

[7] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A distance
routing effect algorithm for mobility (DREAM). In International Conference on Mobile Comput-
ing and Networking, 1998.

[8] Rastislav Bodı́k. Program synthesis: opportunities for the next decade. In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, Vancouver,
BC, Canada, September 1-3, 2015, page 1, 2015.

[9] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency memory model. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’08, pages 68–78, New York, NY, USA, 2008. ACM.

[10] Geoffrey W. Burr, Matthew J. Breitwisch, Michele Franceschini, Davide Garetto, Kailash
Gopalakrishnan, Bryan Jackson, Bulent Kurdi, Chung Lam, Luis A. Lastras, Alvaro Padilla,
Bipin Rajendran, Simone Raoux, and Rohit S. Shenoy. Phase change memory technology.
Journal of Vacuum Science and Technology, 28(2):223–262, 2010.

[11] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Threshold voltage distribution in MLC
NAND flash memory: Characterization, analysis, and modeling. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2013.

[12] Ann Cavoukian. Privacy by Design. The 7 Foundational Principles. https://www.ipc.
on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf, 2011.

24

https://iot.schema.org/docs/iot-gettingstarted.html
https://iot.schema.org/docs/iot-gettingstarted.html
https://github.com/AMDESE/AMDSEV
https://github.com/AMDESE/AMDSEV
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf

[13] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging locks for
non-volatile memory consistency. In Intl. Conf. on Object Oriented Programming Systems Lan-
guages & Applications (OOPSLA), pages 433–452, Portland, OR, 2014.

[14] DeQing Chen, Chunqiang Tang, Brandon Sanders, Sandhya Dwarkadas, and Michael L.
Scott. Exploiting High-Level Coherence Information to Optimize Distributed Shared State.
In Conference on Principles and Practice of Parallel Programming, 2003.

[15] Shimin Chen and Qin Jin. Persistent B+-trees in non-volatile main memory. Proc. of the VLDB
Endowment, 8(7):786–797, Feb. 2015.

[16] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and
Yuan Xie. PRIME: A novel processing-in-memory architecture for neural network computa-
tion in ReRAM-based main memory. In 43rd ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2016, Seoul, South Korea, June 18-22, 2016, pages 27–39, 2016.

[17] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit
Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories. In 16th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 105–118, Newport Beach, CA, 2011.

[18] Alexei Colin, Emily Ruppel, and Brandon Lucia. A Reconfigurable Energy Storage Archi-
tecture for Energy-harvesting Devices. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018.

[19] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug
Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent memory. In
22nd Symp. on Operating Systems Principles (SOSP), pages 133–146, Big Sky, MT, 2009.

[20] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology ePrint Archive,
2016:86, 2016.

[21] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Secure processors part I: background,
taxonomy for secure enclaves and Intel SGX architecture. Foundations and Trends in Electronic
Design Automation, 11(1-2):1–248, 2017.

[22] Olivier Crameri, Nikola Knezevic, Dejan Kostic, Ricardo Bianchini, and Willy Zwaenepoel.
Staged deployment in mirage, an integrated software upgrade testing and distribution sys-
tem. ACM SIGOPS Operating Systems Review, 41, 2007.

[23] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Compiler fuzzing
through deep learning. In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, pages
95–105, 2018.

[24] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end deep
learning of optimization heuristics. In 26th International Conference on Parallel Architectures
and Compilation Techniques, PACT 2017, Portland, OR, USA, September 9-13, 2017, pages 219–
232, 2017.

[25] Benoı̂t Dupont de Dinechin. Kalray mppa R©: Massively parallel processor array: Revisit-
ing DSP acceleration with the kalray MPPA manycore processor. In 2015 IEEE Hot Chips 27
Symposium (HCS), Cupertino, CA, USA, August 22-25, 2015, pages 1–27, 2015.

25

[26] Justin DeBrabant, Joy Arulraj, Andrew Pavlo, Michael Stonebraker, Stan Zdonik, and Sub-
ramanya Dulloor. A prolegomenon on OLTP database systems for non-volatile memory. In
Intl. Wkshp. on Accelerating Data Management Systems Using Modern Processor and Storage Ar-
chitectures (ADMS@VLDB), pages 57–63, Hangzhou, China, 2014.

[27] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: A multi-
stage language for high-performance computing. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages 105–116, New
York, NY, USA, 2013. ACM.

[28] W. Dong, Y. Liu, C. Chen, J. Bu, and C. Huang. Reprogramming Using Relocatable Code in
Networked Embedded Systems. In Proc. IEEE INFOCOM, 2011.

[29] Tudor Dumitras and Priya Narasimhan. Why do upgrades fail and what can we do about
it?: toward dependable, online upgrades in enterprise system. In International Conference on
Middleware, 2009.

[30] European Union. European Union’s General Data Protection Regulation (GDPR). https:
//en.wikipedia.org/wiki/General_Data_Protection_Regulation, 2018.

[31] B. Feinberg, U. Vengalam, N. Whitehair, S. Wang, and E. Ipek. Enabling scientific computing
on memristive accelerators. In International Symposium on Computer Architecture (ISCA), 2018.

[32] V. Fratin, D. Oliveira, C. Lunardi, F. Santos, G. Rodrigues, and P. Rech. Code-dependent
and architecture-dependent reliability behaviors. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 13–26, June 2018.

[33] Qian Ge, Yuval Yarom, and Gernot Heiser. No security without time protection: We need a
new hardware-software contract. In Asia-Pacific Workshop on Systems (APSys), August 2018.

[34] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In IEEE S&P, 2018.

[35] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be with you: A microarchi-
tectural side channel attack on several real-world applications of curve25519. In CCS, pages
845–858. ACM, 2017.

[36] E. R. Giles, K. Doshi, and P. Varman. Softwrap: A lightweight framework for transactional
support of storage class memory. In 31st Symp. on Massive Storage Systems and Technology
(MSST), pages 1–14, Santa Clara, CA, 2015.

[37] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of
the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14,
pages 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

[38] Indranil Gupta, Tushar D. Chandra, and German S. Goldszmidt. On scalable and efficient
distributed failure detectors. In Symposium on Principles of Distributed Computing, 2001.

[39] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Springer-Verlag, Berlin,
Heidelberg, 2010.

26

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

[40] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In Proceedings of Interna-
tional Conference on Learning Representations (ICLR), 2018.

[41] Terry Ching-Hsiang Hsu, Helge Bruegner, Indrajit Roy, Kimberly Keeton, and Patrick Eug-
ster. NVthreads: Practical persistence for multi-threaded applications. In 12th ACM European
Systems Conf. (EuroSys), pages 468–482, Belgrade, Republic of Serbia, 2017.

[42] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory up-
dates via JUSTDO logging. In 21st Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 427–442, Atlanta, GA, 2016.

[43] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In 30th Intl. Conf. on Distributed
Computing (DISC), pages 313–327, Paris, France, 2016.

[44] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a delay tolerant network. In Conference
on applications, technologies, architectures, and protocols for computer communications (SIGCOMM
’04), 2004.

[45] Evan Jones, Lily Li, Jakub K. Schmidtke, and Paul Ward. Practical routing in delay-tolerant
networks. IEEE Transactions on Mobile Computing, 6, 2007.

[46] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Efficient persist barriers for
multicores. In 48th Intl. Symp. on Microarchitecture (MICRO), pages 660–671, Waikiki, HI, 2015.

[47] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal, Ra-
minder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey,
Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Sama-
diani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance
analysis of a tensor processing unit. In ISCA, pages 1–12. ACM, 2017.

[48] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt: securing
the foundations of the Rust programming language. PACMPL, 2(POPL):66:1–66:34, 2018.

[49] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. Strong
logic for weak memory: Reasoning about release-acquire consistency in iris (artifact). DARTS,
3(2):15:1–15:2, 2017.

[50] Neel Kant. Recent advances in neural program synthesis. CoRR, abs/1802.02353, 2018.

[51] David Karger and Matthias Ruhl. Simple efficient load balancing algorithms for peer-to-peer
systems. In Symposium on Parallelism in Algorithms and Architectures, 2004.

27

[52] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-integrated develop-
ment of embedded software. In Proceedings of the IEEE, 2003.

[53] Keystone. keystone: Open-source secure hardware enclave. https://
keystone-enclave.org.

[54] Duckhwan Kim, Jaeha Kung, Sek M. Chai, Sudhakar Yalamanchili, and Saibal Mukhopad-
hyay. Neurocube: A programmable digital neuromorphic architecture with high-density 3d
memory. In 43rd ACM/IEEE Annual International Symposium on Computer Architecture, ISCA
2016, Seoul, South Korea, June 18-22, 2016, pages 380–392, 2016.

[55] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Haburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwartz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In IEEE Symposium on Security
and Privacy, pages 19–37, May 2019.

[56] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and T. F. Wenisch.
Delegated persist ordering. In 49th Intl. Symp. on Microarchitecture (MICRO), pages 1–13,
Taipei, Taiwan, 2016.

[57] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in c/c++11. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, pages 618–632, New York, NY,
USA, 2017. ACM.

[58] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable DRAM alternative. In 36th Intl. Symp. on Computer Architecture (ISCA),
pages 2–13, Austin, TX, 2009.

[59] Michael K. K. Leung, Andrew Delong, Babak Alipanahi, and Brendan J. Frey. Machine Learn-
ing in Genomic Medicine: A Review of Computational Problems and Data Sets. In Proceedings
of the IEEE, 2016.

[60] Moritz Lipp, Michael Schwartz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. In USENIX Security Symposium, August
2018.

[61] Zhijian Lu, Jason Hein, Marty Humphrey, Mircea Stan, John Lach, and Kevin Skadron.
Control-theoretic Dynamic Frequency and Voltage Scaling for Multimedia Workloads. In In-
ternational Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES),
2002.

[62] Brandon Lucia and Benjamin Ransford. A Simpler, Safer Programming and Execution Model
for Intermittent Systems. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2015.

[63] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. Scalable power control for many-core archi-
tectures running multi-threaded applications. In International Symposium on Computer Archi-
tecture, 2011.

28

https://keystone-enclave.org
https://keystone-enclave.org

[64] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. Generating litmus tests for contrast-
ing memory consistency models. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,
Computer Aided Verification, pages 273–287, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

[65] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoffmann.
Automated Control of Multiple Software Goals Using Multiple Actuators. In European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2017.

[66] Nicholas D. Matsakis and Felix S. Klock, II. The Rust language. In Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology, HILT ’14, pages 103–
104, New York, NY, USA, 2014. ACM.

[67] Timothy Morgan. Intel Shows Off 3D XPoint Memory Performance. ARM
Technical White Paperhttps://www.nextplatform.com/2015/10/28/
intel-shows-off-3d-xpoint-memory-performance/. 2015.

[68] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kimberly
Keeton. An analysis of persistent memory use with WHISPER. In 22nd Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS), pages 135–148,
Xi’an, China, 2017.

[69] National Science Foundation. Cyber-Physical Systems Virtual Organization. https://
cps-vo.org, 2018.

[70] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey, Dhruva Chakrabarti, and
Michael L. Scott. Dalı́: A periodically persistent hash map. In 31st Intl. Symp. on Distributed
Computing, Vienna, Austria, 2017.

[71] D. Oliveira, L. Pilla, M. Hanzich, V. Fratin, F Fernandes, C. Lunardi, J. Cela, P. Navaux,
L. Carro, and P. Rech. Radiation-Induced Error Criticality in Modern HPC Parallel Accel-
erators. In Proceedings of 21st IEEE Symp. on High Performance Computer Architecture (HPCA).
ACM, 2017.

[72] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. FP-
Tree: A hybrid SCM-DRAM persistent and concurrent B-tree for storage class memory. In
Intl. Conf. on Management of Data (SIGMOD), pages 371–386, San Francisco, CA, 2016.

[73] Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff. Efficient incremental code
update for sensor networks. ACM Transactions on Sensor Networks (TOSN), 7, 2011.

[74] Emilio Parisotto, Abdelrahman Mohamed, Rishabh Singh, Lihong Li, Denny Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. In ICLR 2017, February 2017.

[75] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency. In 41st Intl. Symp.
on Computer Architecuture (ISCA), pages 265–276, Minneapolis, MN, 2014.

[76] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. Storage management in the
NVRAM era. Proc. of the VLDB Endowment, 7(2):121–132, Oct. 2013.

29

https://www.nextplatform.com/2015/10/28/intel-shows-off-3d-xpoint-memory-performance/
https://www.nextplatform.com/2015/10/28/intel-shows-off-3d-xpoint-memory-performance/
https://cps-vo.org
https://cps-vo.org

[77] Randall Pittman, Hui Guan, Xipeng Shen, Seung-Hwan Lim, and Robert M. Patton. Explor-
ing flexible communications for streamlining DNN ensemble training pipelines. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage, and
Analysis (SC), 2018.

[78] Raghavendra Pradyumna Pothukuchi, Amin Ansari, Petros Voulgaris, and Josep Torrellas.
Using Multiple Input, Multiple Output Formal Control to Maximize Resource Efficiency in
Architectures. In International Symposium on Computer Architecture, June 2016.

[79] Andy Rudoff. Persistent memory programming. http://pmem.io/. Accessed: 2017-04-21.

[80] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 2017.

[81] Daniel Selsam, Percy Liang, and David L. Dill. Developing bug-free machine learning sys-
tems with formal mathematics. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 3047–3056, 2017.

[82] Thomas Shull, Jian Huang, and Josep Torrellas. Defining a High-Level Programming Model
for Emerging NVRAM Technologies. In International Conference on Managed Languages and
Runtimes (ManLang), 2018.

[83] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, pages 81–92, 2006.

[84] Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Berkeley, CA, USA, 2008.
AAI3353225.

[85] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra. Efficient
routing in intermittently connected mobile networks: The multiple-copy case. Transactions on
Networking (ToN), 16, 2008.

[86] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley Williams. The miss-
ing memristor found. Nature, 453(7191):80–83, May 2008.

[87] Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. Delite: A compiler architecture for performance-oriented em-
bedded domain-specific languages. ACM Trans. Embedded Comput. Syst., 13(4s):134:1–134:25,
2014.

[88] Chunqiang Tang, DeQing Chen, Sandhya Dwarkadas, and Michael L. Scott. Efficient Dis-
tributed Shared State for Heterogeneous Machine Architectures. In International Conference
on Distributed Computing Systems (ICDCS), 2003.

[89] Serbulent Tozlu, Murat Senel, Wei Mao, and Abtin Keshavarzian. Wi-Fi enabled sensors for
internet of things: A practical approach. IEEE Communications Magazine, 50, 2012.

[90] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and
Francesco Zappa Nardelli. Common compiler optimisations are invalid in the C11 memory
model and what we can do about it. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, pages 209–220, 2015.

30

http://pmem.io/

[91] Augusto Vega, Alper Buyuktosunoglu, Heather Hanson, Pradip Bose, and Srinivasan Ra-
mani. Crank It Up or Dial It Down: Coordinated Multiprocessor Frequency and Folding
Control. In International Conference on Microarchitecture (MICRO), 2013.

[92] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persistent
memory. In 16th Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 91–104, Newport Beach, CA, 2011.

[93] Tianzheng Wang and Ryan Johnson. Scalable logging through emerging non-volatile mem-
ory. Proc. of the VLDB Endowment, 7(10):865–876, June 2014.

[94] Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. Formal Online Methods
for Voltage/Frequency Control in Multiple Clock Domain Microprocessors. In International
Conference on Architectural Support for Programming Languages and Operating Systems, 2004.

[95] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. Efficient docu-
ment analytics on compressed data: Method, challenges, algorithms, insights. In Proceedings
of the 44th International Conference on Very Large Data Bases (VLDB), 2018.

[96] Zhensheng Zhang. Routing in intermittently connected mobile ad hoc networks and delay
tolerant networks: Overview and challenges. IEEE Communications Surveys & Tutorials, 8,
2006.

[97] Ben Yanbin Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. In Technical Report UCB/CSD-01-1141, Computer
Science Division (EECS) University of California Berkeley, California 94720, 2001.

31

	Introduction
	Internet of Things and Infrastructure
	Useable Planet-Scale Internet of Things
	Provably Energy-Efficient Devices
	Built-Environments as Computing Platforms

	Security and Privacy
	Rethinking the Hardware-Software Security Contract
	Security and Privacy in the Age of AI
	System Support for End-to-End Privacy
	Tools, Testbeds, and an Ecosystem for Security and Privacy Research

	Artificial Intelligence and Augmenting Human Abilities
	Dependable AI
	Ubiquitous AI (Democratizing AI)
	Brain-Scale Deep Learning

	Complexity Management
	Taking up the Challenges of Diversity, Scale, and Change
	Complexity-effective Design and Implementation for Emerging Applications
	Formal Methods for the Real World

	About this Document

