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Abstract. Recent studies have showed the effectiveness of job co-scheduling
in alleviating shared-cache contention on Chip Multiprocessors. Althoughpro-
gram inputs affect cache usage and thus cache contention significantly, their
influence on co-scheduling remains unexplored. In this work, we measure that
influence and show that the ability to adapt to program inputs is important for
a co-scheduler to work effectively on Chip Multiprocessors. We then conduct
an exploration in addressing the influence by constructing cross-inputpredic-
tive models for some memory behaviors that are critical for a recently proposed
co-scheduler. The exploration compares the effectiveness of bothlinear and non-
linear regression techniques in the model building. Finally, we conduct asystem-
atic measurement of the sensitivity of co-scheduling on the errors of the predictive
behavior models. The results demonstrate the potential of the predictive models
in guiding contention-aware co-scheduling.

1 Introduction

As industry rapidly switches to multi-core processors, on-chip cache sharing is becom-
ing common on modern machines. Although the sharing is good for hiding inter-thread
communication latency and permitting flexible cache usage,it results in cache con-
tention on Chip Multiprocessors (CMP), often causing cachethrashing and consider-
able performance degradation [3,5–7,15,17].

Recent studies have shown that co-scheduling—that is, assigning suitable jobs onto
the same chip—is beneficial for alleviating cache contention. The previous research on
co-scheduling falls into two categories. The first relies onruntime sampling [5, 7, 15,
17]. Symbiotic scheduling, for example, samples program runtime performance under
various schedules and picks the best one as the optimal schedule [15]. Although runtime
sampling works well for a small number of programs, it may be difficult to scale up
because the number of possible schedules is exponential in the number of jobs.

The second category includes profiling-directed techniques. These techniques first
conduct a profiling run of the executions and then co-schedule them accordingly [3,
6]. Although they showed effectiveness, it is unclear how they would work if the real
executions’ inputs differ from the training ones.
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On a given CMP architecture, cache contention depends on twofactors: the pro-
grams that run together, calledcorunners, and their inputs. The first factor has been the
main focus of previous studies. This work is distinctive in concentrating on the second
factor. The goal is to uncover the effects of program inputs on CMP co-scheduling and
to explore the solutions.

This study contains two major components. First, we conducta systematic mea-
surement to the influence of program inputs on corun performance. The experiments
employ hardware performance counters in an Intel quad-coremachine to measure all
possible coruns of a dozen programs on different inputs. Theresults show that a sched-
ule, although suitable for runs on one set of inputs, may cause 4 times more performance
degradation to the runs on a different set of inputs. A CMP co-scheduler, therefore, must
have the capability to adapt to different program inputs.

To address the effects of program inputs, in the second part of this work, we ex-
plore the construction of cross-input predictive models. We model the relation between
program inputs and memory behavior through statistical learning techniques, and com-
pare the effectiveness of both linear and non-linear regression techniques. We use a
recently proposed cache-contention-aware proactive scheduler, CAPS [12], to evaluate
the predictive models. A broader sensitivity study shows the different effects of various
memory behaviors on co-scheduling, suggesting the opportunities for further improve-
ment of the predictive models. The evaluation on CAPS shows an accuracy of over 85%
for memory behavior prediction and a 26.3% reduction of the performance degradation
that the default coruns cause.

In the rest of the paper, Section 2 uncovers the influence of program inputs on
corun performance on CMPs. Section 3, after giving an overview of CAPS, concentrates
on the approaches to constructing predictive models for a set of memory behaviors.
Section 4 reports the sensitivity of CAPS on the prediction errors of memory behaviors.
Section 5 discusses related work, followed by a summary in Section 6.

2 Influence of Program Inputs on Corun Performance

To explore the influence of program inputs on co-scheduling,we measure the coruns
of a dozen SPEC CPU2000 programs on theirtest, train, andref inputs. The machine
we use is a Dell PowerEdge 1850 server with two Intel Xeon 51502.66 GHz dual-
core processors, each equipped with a 4MB shared L2 cache. The machine runs Fedora
Core 5 Linux x8664 distribution with a Linux kernel of 2.6.17. We use Gcc 4.1 as
our compiler. For performance measurement, the Linux kernel is patched to support
Performance API (PAPI) version 3.5, which collects performance events by accessing
the hardware performance counters on the machine [2].

In the experiment, each time we bind two programs on a dual-core processor and
start running them at the same time. To avoid the distractionfrom the difference be-
tween programs’ executions, we follow Tuck and Tullsen’s method [16], letting each
program run 10 times consecutively, and only collecting thebehavior of those runs that
overlap with the other’s execution. In that way, we conduct all possible coruns of the 12
programs for each kind of input, totally 198 coruns. For eachcorun, PAPI reports, for
each of the two programs, the average cycles per instruction(CPI), denoted bycCPI (c
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stands for corun). We also measure the CPI of the single run ofeach program, denoted
by sCPI (s for single-run). Single-runs are subject to no cache contention. We define a
program’s performance degradation (because of cache contention) as follows:

corun degradation =
cCPI − sCPI

sCPI
.

The larger a degradation is, the worse the cache sharing affects the program’s running
speed.

The boxplots in Figure 1 show the results. The differences among the boxplots
inside a group reveal the strong influence of program inputs on corun performance.
Among the 12 benchmarks,twolf andvpr are the two that have the largest performance
variation across inputs. Thetest runs of both of them have no performance degradation,
no matter which program is their corunner. Whereas, theirtrain runs show up to 15%
and 36% degradations, and theirref runs show up to 76% and 64% degradations. For
the other programs, thetrain andref runs are 15% to 564% worse than those of their
respectivetest runs (in terms of median values). The results demonstrate that program
inputs affect corun performance significantly.

The results also show a second phenomenon. Although the working sets of the
programs usually increase as input size increases, the corun performance degradation
doesn’t necessarily increase. For instance, theref runs ofequake, mcf, andparser clearly
have less degradation than theirtrain runs. This phenomenon shows that corun degra-
dation does not necessarily increase when the single-run cache miss rate increases. An
extreme case may convey the intuition behind: A program whose single run has no
cache hits clearly won’t have any more cache misses when it coruns with other pro-
grams; hence, its corun performance degradation must be negligible. This observation
suggests that in the design of co-scheduler, cache miss ratemay not provide the suffi-
cient information.
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Fig. 1. The boxplot showing the distribution of the performance degradation of each program
when it coruns with the other 11 programs. The three boxplots in a grouprespectively correspond
to the executions ontest, train, andref inputs.

To see the influence of inputs on corun scheduling, we use CAPS(described next) to
find three best schedules, respectively for thetest, train, andref runs of the 12 programs.
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We then apply the best schedule ofref runs to the other two sets of runs. The two sets
show up to 4.3 times more performance degradation than theirexecutions under their
own best schedules. These results suggest the great importance for a scheduler to adapt
to different program inputs when dealing with cache contention on CMPs.

3 Handling Program Inputs for Co-scheduling

Our approach to addressing the influence of program inputs isto build predictive input-
behavior models, which can predict program memory behaviorfrom a given input. Be-
cause some co-schedulers can estimate corun performance from single-run memory
behavior and then derive the best schedules, we need only themechanism to accurately
predict the memory behavior of a program’s single-runs (on arbitrary inputs).

Before describing the model construction, we briefly describe a contention-aware
scheduling system, CAPS [12], as it is our underlying framework for evaluation. We
choose CAPS for two of its desirable features. First, CAPS isable to efficiently produce
the schedule that minimizes the total degradation given theperformance of all possible
coruns. Thereby, we can easily use the desirable schedule asthe baseline to evaluate
the schedules produced upon the input-behavior models. Second, some of the memory
behaviors (e.g., reuse signatures) used by CAPS have been showed to be cross-input
predictable [4], which simplifies some parts of the construction of the input-behavior
models.

3.1 Overview of CAPS
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Fig. 2.The key components of the cache-contention-aware proactive scheduler (CAPS).

CAPS is a system for proactive job-scheduling on CMPs by exploiting the predic-
tion of cache contention. It has two versions, respectivelyfor runtime process schedul-
ing and batch job scheduling. This work uses the version for batch processing, in which
case, all jobs to be scheduled are known beforehand.

As depicted in Figure 2, at the heart of CAPS are two components. The first com-
ponent predicts the performance degradation of each possible corun using the memory
behavior of single-runs of each program. The second component maps the corun per-
formance to a fully connected graph, with each vertex representing a program, and each
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edge having a weight equal to the total performance degradation of the corun of the
two vertices. It then applies the minimum-weight perfect matching algorithm to effi-
ciently determine the schedule that minimizes the total of the corun degradation of all
the programs.
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Fig. 3.An example of cache-block reuse signature

CAPS complements previous co-scheduling in that it is proactive, relying on pre-
dicted corun performance rather than runtime sampling, andthus overcoming the scal-
ability issue of previous techniques. The details of CAPS are out of the scope of this
paper. Here we only describe the single run behaviors used bythe mixing model in
CAPS; they are the prediction targets of the input-behaviormodels that are to be built.

– Reuse Signature: a histogram showing the distribution of data reuse distances in
an execution.Reuse distance, also called LRU stack distance, is the number of
distinct data elements accessed between this and the previous accessto the same
data element [4]. For the second access to “a” in the reference trace “a b b c d
a”, the reuse distance is 3 because “b”,“c” and “d” are accessed in the between.
Figure 3 illustrates a reuse signature, with reuse distanceon the horizontal axis
and the percentage of memory references on the vertical axis. Each bar on the
graph shows the percentage of memory references whose reusedistances are in
a particular range. If the counting unit for reuse distance is a cache line, a reuse
signature can be used to approximate the cache miss rate of the execution for a
cache of arbitrary size: All accesses with reuse distance larger than the cache size
are simply considered as misses. The approximation has shown an accuracy of over
94% for both fully-associative and set-associative caches[18]. CAPS uses reuse
signatures of single runs as the basis to estimate corun cache performance.

– Accesses per Instruction: the average number of memory accesses per instruc-
tion. This statistic reflects the density of memory references in an execution. It is
one of the factors CAPS uses to approximate program performance from memory
behaviors (for both single-run and coruns).

– Distinct Blocks per Cycle: the average number of distinct memory blocks that are
accessed in a CPU cycle. This statistic reflects how aggressive a process competes
for caches. CAPS uses it for the prediction of corun cache performance. In CAPS,
the counting unit of memory blocks is simply a cache block.
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Next, we focus on the construction of the predictive models for each of the three
kinds of memory behaviors through statistical learning techniques.

3.2 Constructing Predictive Input-Behavior Models

The memory behavior of a single-run of a program, denoted byB, depends on the run-
ning environmentE, the program codeP , and the inputI. In this work,E andP are
given, and the goal is to find the functionf() mapping fromI to B. With such a func-
tion, plugging any input intof() will generate the predicted behavior of the program’s
corresponding single-run execution. We formalize the taskas a statistical learning prob-
lem. By feeding a program with different inputs,I1, I2, . . . , IN , we observe the corre-
sponding behavior of the program’s executions, represented by B1, B2, . . . , BN . The
input-behavior pairs,< Ii, Bi > (i = 1, 2, . . . , N), compose a training set, from which
we use regression techniques to approximate functionf .

Linear and Non-Linear Regression Regression techniques are designed to discover
the relation between a set of input attributes and a set of outputs. Linear regression
assumes that the relation can be expressed by a linear function; non-linear regression
permits more sophisticated functions.

Least Mean Squares (LMS) is a commonly used linear regression technique. Sup-
posef is a linear function mapping input

−→

I to a behaviorB for a given program. Given
training data set<

−→

Ii , Bi > (i=1,2,. . .,N), the goal of LMS is to find the approxima-
tion of functionf , represented bŷf , such that the mean error squares,1

N

∑
N

i=1
(Bi −

f̂(
−→

Ii ))
2, is minimized.

LMS is simple and efficient, but applies to only linear functions. For non-linear re-
gression, we choose thek-Nearest-Neighbor method. This method is an instance-based
learning technique. For a new query instance, it retrieves aset of similar instances from
memory and uses them to estimate the new output value. Whenk = 1, the method
is named the Nearest-Neighbor method, orNN in short. The approximated function
f̂() has an implicit and usually non-linear form [8]. The model building is simple, just
recording the training instances into a data structure thatcan be efficiently searched.
There are many other statistical learning techniques, suchas Regression Trees and Sup-
port Vector Machines; they are more complex and costly. We restrain ourselves to a
small number of training runs in order to limit the overhead of the offline profiling.
Those more complex learning techniques often require a larger training data set.

Besides LMS and NN, we also use a hybrid method. For a given program, it chooses
the better one between LMS and NN in terms oftraining errors. (The training error of a
model is the prediction error of the model when being appliedto the training data.) For
each program showed in Figure 1, besides itstest, train, andref inputs included in the
SPEC suite, we obtained another input from the collection ofadditional representative
inputs attained by Berube and Amaral [1]. For programs not included in the collection
(ammp, art, equake, mesa, andtwolf), we created an input by modifying the correspond-
ing ref input. We usetrain inputs for model testing, and the others for training.

Next, we show the effectiveness of the three regression techniques on each of the
three kinds of memory behavior that are used in CAPS.
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Prediction of Accesses per Instruction The first question for building a model be-
tween program inputs and accesses per instruction is the representation of program
inputs. Given the close relation between program data size (i.e., the number of distinct
data items) and memory behavior, we adopt the approach proposed by Ding and Zhong,
characterizing a program input by the estimated data size that can be obtained through
distance-based sampling. Distance-based sampling observes data reuses at the begin-
ning of an execution and estimates data size based on long reuse distances [4]. So, in
this and the rest experiments, data size is theIi in the input-behavior pair< Ii, BI >,
whereas theBi is specific to each experiment; it is the accesses per instruction in this
experiment.

The left half of Table 1 reports the accuracy in predicting accesses per instruction.
The three methods produce similar accuracies: 86.43% by LMS, 88.27% by NN, and
88.69% by the hybrid method. Programequake shows the lowest accuracy (54.58%)
mainly because of its more complex relations between inputsand accesses per instruc-
tion. More training inputs and more sophisticated models may be helpful.

Table 1.Prediction accuracies of linear (LMS) and non-linear (NN and Hybrid) models.

ProgramsAccesses per instruction DPI
LMS NN Hybrid LMS NN Hybrid

ammp 89.5898.7698.76 39.8386.7286.72
art 98.8694.2598.86 98.9694.2598.96
bzip 75.7978.6278.62 67.6964.0567.69
crafty 99.5499.2499.54 76.3172.5076.31
equake 54.5854.4254.58 82.2782.1382.27
gap 74.7579.3579.35 79.8778.0879.87
gzip 82.7686.9886.98 77.8566.4777.85
mcf 90.2592.4592.45 89.7388.1189.73
mesa 96.3996.9896.98 89.4393.3393.33
parser 96.0298.6198.61 89.4970.4289.49
twolf 97.1198.1098.10 52.1286.7586.75
vpr 81.5081.5081.50 96.3095.2896.30
Average 86.4388.2788.69 78.3281.5185.44

Prediction of Distinct Blocks per Cycle The statistic, distinct blocks per cycle, reflects
the average cache requirement of a process. It can be regarded as a product of two
factors:

DPC = DPI ∗ IPC

where, DPI is the average number of distinct blocks accessedper instruction, and IPC is
the instructions per cycle. DPI is an attribute solely determined by the program; whereas
IPC is a runtime behavior, attainable from hardware performance counters. The predic-
tion of DPC therefore can be conducted in two steps. Given a new input, an offline-
trained model predicts the DPI of the new execution. During the new execution, the
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DPC can be obtained by multiplying the predicted DPI with theruntime IPC. There-
fore, building a predictive model for DPI is the key to the prediction of distinct blocks
per cycle.

Because DPI is an average value for an interval, it is determined by the interval
length. For an interval containing nothing except one memory access instruction, the
DPI is 1, which is the upper bound of DPI under the assumption that one instruction
may conduct at most one memory access. As the interval becomes larger, DPI changes
non-monotonically, determined by the ratio of non-memory-access instructions and the
frequency in which memory-access instructions access a newobject. When the inter-
val length becomes large enough to cover at least one access to all the blocks in the
program, DPI decreases as the interval length increases.

The DPI used in CAPS is the average DPI of all the reuse intervals1, computed in
the following formula:

w =

∑
B

i=1
riw̄i

∑
B

i=1
ri

where,B is the number of bars in the reuse signature of the execution,ri is the number
of memory references in bari, andw̄i is the average of all the DPIs of the reuse intervals
in bari.

The right half of Table 1 shows that NN is slightly more accurate than LMS, 81.51%
versus 78.3%. The hybrid model yields an accuracy of 85.4%.

Reuse SignaturesPrevious work has explored the cross-input predictabilityof reuse
signatures. For example, Ding and Zhong have shown an accuracy of over 94% for
the prediction of the reuse signatures of 15 complex programs [4]. Their technique is
based on a desirable property of reuse signatures: No reuse distance of an execution can
be larger than the data size of the execution. (This propertycomes from the definition
of reuse distance.) They therefore test a set of sub-linear functions in training runs and
choose the best one as the model for the prediction of reuse signatures. This work adopts
their established technique.

4 Influence of Prediction Errors on Co-Scheduling

We feed CAPS the predicted memory behaviors to test the influence of the prediction
errors on co-scheduling. Figure 4 shows the average performance degradation of the
benchmarks included in Figure 1.

The baseline is ana posteriori schedule, which is the best over all possible sched-
ules. We obtained it by applying the minimum-weight perfectmatching to all real
coruns. (Recall that the algorithm minimizes the total degradation.) Therandom bar
shows the average result of 100 random schedules. It reflectsthe performance of the
default scheduler in the current CMP system.

1 The reuse interval of a data reuse is the interval between the previous and the current access to
the same data item.
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Fig. 4.The average performance degradation under different schedules. The “a posteriori” sched-
ule is the best schedule obtained on all corun information; “CAPS-real” isthe schedule by CAPS
on real single-run behaviors; “CAPS-pred” is the schedule by CAPS on single-run behaviors pre-
dicted by the models described in Section 3.2; “random” reflects the default schedule in the CMP
system.

The difference betweencaps-pred andcaps-real shows the influence of the predic-
tion errors of the behavior models—0.28 more degradation. With that influence,caps-
pred still reduces the performance degradation of the random schedule from 1.99 to
1.46. The extra degradation thatcaps-real has over thea posteriori schedule is due to
the inaccuracy inside CAPS (e.g., the mixing model).

To achieve a better understanding of the influence from prediction errors, we con-
ducted a broader study to the sensitivity of CAPS on each of the three kinds of memory
behaviors. We introduce a range of random errors into the three kinds of memory be-
havior, one kind per time, and then measure the resulting performance of CAPS.

For lack of space, we leave the detailed results in a technical report [9]. As a sum-
mary, CAPS is most sensitive to the errors in accesses per instruction and DPIs: an error
of 8% in them respectively causes the performance degradation to increase by 12.3%
and 17.6%; 16% causes an increase of 18.3% and 18.8%. CAPS is less sensitive to the
errors in reuse distance histograms: an error of 8% causes anincrease of 3.6%; 16%
causes an increase of 12.2%.

To improve the accuracy of the predictive models, more training inputs may help.
A combination with hardware performance counters may also be beneficial, especially
for accesses per instruction. In addition, it is potentially helpful to characterize program
inputs more sophisticatedly [13] rather than only relying on sampled data size. Finally,
the combination of CAPS with locality phase analysis [14] can make the scheduler
adaptive to runtime program behavior changes.

We emphasize that the main contributions of this paper are the exploration of the
influence of program inputs on co-scheduling and cross-input memory behavior model-
ing. The details on the integration of the models into CAPS and the extension to runtime
scheduling (presented in our technical report [12]) are outof the scope.

5 Related Work

We are not aware of any work on the study of program inputs for co-scheduling on
CMPs. The closest work on program inputs exists in runtime adaptive optimizations



10

and feed-back directed optimizations behavior (e.g., [1, 10]). Most recent studies on
CMP (or SMT) co-scheduling either rely on runtime estimation of cache usage from
hardware performance counters [5, 7, 15, 17], or offline profiling [3, 6]. None of them
systematically explores the effects of program inputs on co-scheduling. Although run-
time techniques implicitly adapt to input changes, they require periodic sampling of
many different coruns, making them subject to some scalability or applicability limita-
tions as discussed in Section 1. Architecture extensions, e.g. cache activity vector [11],
are complementary to software co-scheduling in offering fine-grained cache behavior.

6 Conclusion

This work focuses on the exploration of the influence of program inputs on corun per-
formance of programs running on CMPs equipped with shared caches. It draws the con-
clusion that the influence of program inputs is so strong thata cache-contention-aware
scheduler has to adapt to them. The second part of the paper describes our practice in
constructing cross-input predictive models for a set of memory behaviors that are used
in a recently proposed proactive co-scheduling system. Theexperiments show reason-
ably accurate prediction through the uses of linear and non-linear regression techniques.
The paper then presents a systematic measurement of the influence of the prediction er-
rors on co-scheduling. The results suggest that the cross-input prediction models are
able to help the scheduler significantly reduce cache contention on shared caches.
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