Exploration of the Influence of Program Inputs
on CMP Co-Scheduling

Yunlian Jiang Xipeng Shen

Department of Computer Science
The College of William and Mary, Williamsburg, VA, USA 23185
{j i ang, xshen}@s. wm edu

Abstract. Recent studies have showed the effectiveness of job co-scheduling
in alleviating shared-cache contention on Chip Multiprocessors. Althpugh
gram inputs affect cache usage and thus cache contention sigtyfichetr
influence on co-scheduling remains unexplored. In this work, we unedhat
influence and show that the ability to adapt to program inputs is important for
a co-scheduler to work effectively on Chip Multiprocessors. We thardact

an exploration in addressing the influence by constructing cross-predic-

tive models for some memory behaviors that are critical for a recentiygsed
co-scheduler. The exploration compares the effectiveness ofibetlr and non-
linear regression techniques in the model building. Finally, we condsystem-

atic measurement of the sensitivity of co-scheduling on the errorg girtidictive
behavior models. The results demonstrate the potential of the prediabidelsn

in guiding contention-aware co-scheduling.

1 Introduction

As industry rapidly switches to multi-core processorscbip cache sharing is becom-
ing common on modern machines. Although the sharing is gooki€ling inter-thread
communication latency and permitting flexible cache us#gessults in cache con-
tention on Chip Multiprocessors (CMP), often causing cattinashing and consider-
able performance degradation [3,5-7, 15, 17].

Recent studies have shown that co-scheduling—that is,rasgiguitable jobs onto
the same chip—is beneficial for alleviating cache contenfidw previous research on
co-scheduling falls into two categories. The first reliesrontime sampling [5, 7, 15,
17]. Symbiotic scheduling, for example, samples prograntime performance under
various schedules and picks the best one as the optimalidetj&é]. Although runtime
sampling works well for a small number of programs, it may Hécdlt to scale up
because the number of possible schedules is exponentia imuimber of jobs.

The second category includes profiling-directed techriqlibese techniques first
conduct a profiling run of the executions and then co-scleethdm accordingly [3,
6]. Although they showed effectiveness, it is unclear hoaytivould work if the real
executions’ inputs differ from the training ones.

* Supported by the National Science Foundation (CNS-0720499) anddBS®!Fellowship.

On a given CMP architecture, cache contention depends orfastors: the pro-
grams that run together, calledrunners, and their inputs. The first factor has been the
main focus of previous studies. This work is distinctive @mcentrating on the second
factor. The goal is to uncover the effects of program inpat€MP co-scheduling and
to explore the solutions.

This study contains two major components. First, we condusystematic mea-
surement to the influence of program inputs on corun perfoomaThe experiments
employ hardware performance counters in an Intel quad+o@ehine to measure all
possible coruns of a dozen programs on different inputs.réfiglts show that a sched-
ule, although suitable for runs on one set of inputs, mayedusnes more performance
degradation to the runs on a different set of inputs. A CMRBduweduler, therefore, must
have the capability to adapt to different program inputs.

To address the effects of program inputs, in the second pahiowork, we ex-
plore the construction of cross-input predictive models.Médel the relation between
program inputs and memory behavior through statisticaihieg techniques, and com-
pare the effectiveness of both linear and non-linear regyastechniques. We use a
recently proposed cache-contention-aware proactivedsiée CAPS [12], to evaluate
the predictive models. A broader sensitivity study shovesdifferent effects of various
memory behaviors on co-scheduling, suggesting the oppitigs for further improve-
ment of the predictive models. The evaluation on CAPS shovexauracy of over 85%
for memory behavior prediction and a 26.3% reduction of #xdggmance degradation
that the default coruns cause.

In the rest of the paper, Section 2 uncovers the influence ajrpm inputs on
corun performance on CMPs. Section 3, after giving an oearaf CAPS, concentrates
on the approaches to constructing predictive models fort @fsmemory behaviors.
Section 4 reports the sensitivity of CAPS on the predictiwars of memory behaviors.
Section 5 discusses related work, followed by a summary atiGe6.

2 Influence of Program Inputs on Corun Performance

To explore the influence of program inputs on co-schedulivegymeasure the coruns
of a dozen SPEC CPU2000 programs on thest, train, andref inputs. The machine
we use is a Dell PowerEdge 1850 server with two Intel Xeon 5156 GHz dual-
core processors, each equipped with a 4MB shared L2 cacken@bhine runs Fedora
Core 5 Linux x8664 distribution with a Linux kernel of 2.6.17. We use Gcc 4€l a
our compiler. For performance measurement, the Linux kesnpatched to support
Performance API (PAPI) version 3.5, which collects perfante events by accessing
the hardware performance counters on the machine [2].

In the experiment, each time we bind two programs on a dua-pmcessor and
start running them at the same time. To avoid the distradtiom the difference be-
tween programs’ executions, we follow Tuck and Tullsen'dhrod [16], letting each
program run 10 times consecutively, and only collectinga@leavior of those runs that
overlap with the other’s execution. In that way, we condligt@ssible coruns of the 12
programs for each kind of input, totally 198 coruns. For eamtun, PAPI reports, for
each of the two programs, the average cycles per instru@fiBh), denoted bgCPI (c

stands for corun). We also measure the CPI of the single readt program, denoted
by sCPI (s for single-run). Single-runs are subject to no cache cdittienWe define a
program’s performance degradation (because of cachercantgas follows:

corun degradation = M
' g T s0PI
The larger a degradation is, the worse the cache sharingtaffee program’s running

speed.

The boxplots in Figure 1 show the results. The differencesrgrthe boxplots
inside a group reveal the strong influence of program inpatgarun performance.
Among the 12 benchmarksyolf andvpr are the two that have the largest performance
variation across inputs. Thest runs of both of them have no performance degradation,
no matter which program is their corunner. Whereas, tinain runs show up to 15%
and 36% degradations, and thegf runs show up to 76% and 64% degradations. For
the other programs, thieain andref runs are 15% to 564% worse than those of their
respectivetest runs (in terms of median values). The results demonstrateptiogram
inputs affect corun performance significantly.

The results also show a second phenomenon. Although theingoslets of the
programs usually increase as input size increases, the pemfiormance degradation
doesn’t necessarily increase. For instancereheins ofequake, mcf, andparser clearly
have less degradation than th&#in runs. This phenomenon shows that corun degra-
dation does not necessarily increase when the single-chreaaiss rate increases. An
extreme case may convey the intuition behind: A program whsisgle run has no
cache hits clearly won’t have any more cache misses wherrineawith other pro-
grams; hence, its corun performance degradation must bigibégy This observation
suggests that in the design of co-scheduler, cache missatanot provide the suffi-
cient information.

max

1.6

test train ref __75%
14 t«—median
1.2 — 25%

min

%o.s
go.e T T
oa 1| Ll
oa 1] jﬁ] \Ql ﬁé % 1] é
o LI 2 10 gad 00]
0@(@ & G é’é@ &6@ fihm §V:Q <& &Q’éb &@e} &

Fig. 1. The boxplot showing the distribution of the performance degradaticgach program
when it coruns with the other 11 programs. The three boxplots in a gesyectively correspond
to the executions otest, train, andref inputs.

To see the influence of inputs on corun scheduling, we use Gd&ssribed next) to
find three best schedules, respectively fortdst train, andref runs of the 12 programs.

We then apply the best scheduleref runs to the other two sets of runs. The two sets
show up to 4.3 times more performance degradation than elxetutions under their
own best schedules. These results suggest the great imp@ftar a scheduler to adapt
to different program inputs when dealing with cache combenbn CMPs.

3 Handling Program Inputs for Co-scheduling

Our approach to addressing the influence of program inptsasild predictive input-
behavior models, which can predict program memory behdxréon a given input. Be-
cause some co-schedulers can estimate corun performamesingle-run memory
behavior and then derive the best schedules, we need ontydbleanism to accurately
predict the memory behavior of a program’s single-runs (bitrary inputs).

Before describing the model construction, we briefly désca contention-aware
scheduling system, CAPS [12], as it is our underlying fram@wfor evaluation. We
choose CAPS for two of its desirable features. First, CARBIs to efficiently produce
the schedule that minimizes the total degradation givempénm®rmance of all possible
coruns. Thereby, we can easily use the desirable schedtlie dmseline to evaluate
the schedules produced upon the input-behavior modelsn8esome of the memory
behaviors (e.g., reuse signatures) used by CAPS have beemdho be cross-input
predictable [4], which simplifies some parts of the congtaicof the input-behavior
models.

3.1 Overview of CAPS

Prog-1 single Corun-1

run behavior behavior

Prog-2 single Corun-2

run behavior behavior] Minimum-Weight Optimal
Perfect Matching schedule

Prog-N single Corun-M

run behavior behavior

Fig. 2. The key components of the cache-contention-aware proactivesenéCAPS).

CAPS is a system for proactive job-scheduling on CMPs byatipy the predic-
tion of cache contention. It has two versions, respectif@yuntime process schedul-
ing and batch job scheduling. This work uses the versionditetbprocessing, in which
case, all jobs to be scheduled are known beforehand.

As depicted in Figure 2, at the heart of CAPS are two compandihite first com-
ponent predicts the performance degradation of each pessilbun using the memory
behavior of single-runs of each program. The second contanaps the corun per-
formance to a fully connected graph, with each vertex reirsg a program, and each

edge having a weight equal to the total performance degeoadaf the corun of the
two vertices. It then applies the minimum-weight perfectehang algorithm to effi-

ciently determine the schedule that minimizes the totahefdorun degradation of all
the programs.

20%
,Cache size
15% !

10%

SO 211

Percent of references

Reuse distance (cache block

Fig. 3. An example of cache-block reuse signature

CAPS complements previous co-scheduling in that it is greacrelying on pre-
dicted corun performance rather than runtime sampling tlamsl overcoming the scal-
ability issue of previous techniques. The details of CARSaurt of the scope of this
paper. Here we only describe the single run behaviors usettidoynixing model in
CAPS; they are the prediction targets of the input-behaviodels that are to be built.

— Reuse Signature a histogram showing the distribution of data reuse digaric
an executionReuse distancealso called LRU stack distance, is the number of
distinct data elements accessed between this and the previous smtbessame
data element [4]. For the second access to “a” in the referénace “a b b c d
a”, the reuse distance is 3 because “b”,“c” and “d” are acm$s the between.
Figure 3 illustrates a reuse signature, with reuse distamcthe horizontal axis
and the percentage of memory references on the vertical Bash bar on the
graph shows the percentage of memory references whose detiseces are in
a particular range. If the counting unit for reuse distarsca tache line, a reuse
signature can be used to approximate the cache miss rate exécution for a
cache of arbitrary size: All accesses with reuse distarrgetdahan the cache size
are simply considered as misses. The approximation hagstwoaccuracy of over
94% for both fully-associative and set-associative ca¢h8s CAPS uses reuse
signatures of single runs as the basis to estimate corure gasformance.

— Accesses per Instruction the average number of memory accesses per instruc-
tion. This statistic reflects the density of memory refeemnin an execution. It is
one of the factors CAPS uses to approximate program perfarenftom memory
behaviors (for both single-run and coruns).

— Distinct Blocks per Cycle the average number of distinct memory blocks that are
accessed in a CPU cycle. This statistic reflects how aggeeagirocess competes
for caches. CAPS uses it for the prediction of corun cachfspaance. In CAPS,
the counting unit of memory blocks is simply a cache block.

Next, we focus on the construction of the predictive modetsefach of the three
kinds of memory behaviors through statistical learnindniggues.

3.2 Constructing Predictive Input-Behavior Models

The memory behavior of a single-run of a program, denotef bgepends on the run-
ning environment, the program codé’, and the inputl. In this work, £ and P are
given, and the goal is to find the functigit) mapping from/ to B. With such a func-
tion, plugging any input intgf () will generate the predicted behavior of the program’s
corresponding single-run execution. We formalize the #ask statistical learning prob-
lem. By feeding a program with different inputg,, I, ..., I, we observe the corre-
sponding behavior of the program’s executions, repreddoyeB,, Bs, ..., By. The
input-behavior pairsg I;, B; > (i = 1,2,..., N), compose a training set, from which
we use regression techniques to approximate fungtion

Linear and Non-Linear Regression Regression techniques are designed to discover
the relation between a set of input attributes and a set qfubsit Linear regression
assumes that the relation can be expressed by a lineardonathn-linear regression
permits more sophisticated functions.

Least Mean Squares (LMS) is a commonly used linear regression technique. Sup-

posef is a linear function mapping inpu_f to a behaviomB for a given program. Given
—

training data se« I;, B; > (i=1,2, ..,N), the goal of LMS is to find the ?\\Pproxima-

tion of function f, represented by, such that the mean error squar%Eizl(Bi —

F(17))?, is minimized.

LMS is simple and efficient, but applies to only linear fuonats. For non-linear re-
gression, we choose tiieNearest-Neighbor method. This method is an instance-based
learning technique. For a new query instance, it retrievaes af similar instances from
memory and uses them to estimate the new output value. When1, the method
is named the Nearest-Neighbor method N\ in short. The approximated function
f() has an implicit and usually non-linear form [8]. The modeilding is simple, just
recording the training instances into a data structure ¢hatbe efficiently searched.
There are many other statistical learning techniques, asigegression Trees and Sup-
port Vector Machines; they are more complex and costly. Ve&raa ourselves to a
small number of training runs in order to limit the overheddhe offline profiling.
Those more complex learning techniques often require aidrgining data set.

Besides LMS and NN, we also use a hybrid method. For a givegrano, it chooses
the better one between LMS and NN in termgrafning errors. (The training error of a
model is the prediction error of the model when being applietthe training data.) For
each program showed in Figure 1, besidesats train, andref inputs included in the
SPEC suite, we obtained another input from the collectioadudfitional representative
inputs attained by Berube and Amaral [1]. For programs nadtiohed in the collection
(ammp, art, equake, mesa, andtwolf), we created an input by modifying the correspond-
ing ref input. We usdrain inputs for model testing, and the others for training.

Next, we show the effectiveness of the three regressiomigebs on each of the
three kinds of memory behavior that are used in CAPS.

Prediction of Accesses per Instruction The first question for building a model be-
tween program inputs and accesses per instruction is thhesemation of program
inputs. Given the close relation between program data s&e the number of distinct
data items) and memory behavior, we adopt the approach gedgdry Ding and Zhong,
characterizing a program input by the estimated data satectim be obtained through
distance-based sampling. Distance-based sampling @ssdata reuses at the begin-
ning of an execution and estimates data size based on losg distances [4]. So, in
this and the rest experiments, data size isfthia the input-behavior paik I;, By >,
whereas theB; is specific to each experiment; it is the accesses per inigruin this
experiment.

The left half of Table 1 reports the accuracy in predictingesses per instruction.
The three methods produce similar accuracies: 86.43% by,18827% by NN, and
88.69% by the hybrid method. Prograsguake shows the lowest accuracy (54.58%)
mainly because of its more complex relations between ingutlsaccesses per instruc-
tion. More training inputs and more sophisticated modelg behelpful.

Table 1.Prediction accuracies of linear (LMS) and non-linear (NN and Hybridjlets.

ProgramgAccesses per instructign DPI

LMS [NN [Hybrid LMS [NN |Hybrid
ammp [89.5898.7698.76 39.8386.7286.72
art 98.8694.2598.86 98.9694.2598.96
bzip 75.7978.6278.62 67.6964.0567.69
crafty [99.5499.2499.54 76.3172.5076.31
equake [54.5854.4254.58 82.2782.1382.27
gap 74.7979.3579.35 79.8778.0879.87
gzip 82.7686.9886.98 77.8566.4777.85
mcf 90.2592.4592.45 89.7388.1189.73
mesa |96.3996.9896.98 89.4393.3393.33
parser |96.0298.6198.61 89.4970.4289.49
twolf 97.1198.1098.10 52.1286.7586.75
vpr 81.5081.5081.50 96.3095.2896.30
Average |86.4388.2788.69 78.3281.5185.44

Prediction of Distinct Blocks per Cycle The statistic, distinct blocks per cycle, reflects
the average cache requirement of a process. It can be relgasda product of two
factors:

DPC = DPI*IPC

where, DPI is the average number of distinct blocks accgsseidstruction, and IPC is
the instructions per cycle. DPIl is an attribute solely deiaed by the program; whereas
IPC is a runtime behavior, attainable from hardware peréoroe counters. The predic-
tion of DPC therefore can be conducted in two steps. Givermainput, an offline-
trained model predicts the DPI of the new execution. Durimg new execution, the

DPC can be obtained by multiplying the predicted DPI with tthetime IPC. There-
fore, building a predictive model for DPI is the key to thedintion of distinct blocks
per cycle.

Because DPI is an average value for an interval, it is detexthby the interval
length. For an interval containing nothing except one mgnamcess instruction, the
DPI is 1, which is the upper bound of DPI under the assumptiai dne instruction
may conduct at most one memory access. As the interval beclamger, DPI changes
non-monotonically, determined by the ratio of non-memacgess instructions and the
frequency in which memory-access instructions access aoh@et. When the inter-
val length becomes large enough to cover at least one aaredisthe blocks in the
program, DPI decreases as the interval length increases.

The DPI used in CAPS is the average DPI of all the reuse in&veomputed in
the following formula:

Zf:l T Wi
Z?:l T
where,B is the number of bars in the reuse signature of the executiesithe number
of memory references in barandw; is the average of all the DPIs of the reuse intervals
in bari.
The right half of Table 1 shows that NN is slightly more actethan LMS, 81.51%
versus 78.3%. The hybrid model yields an accuracy of 85.4%.

w =

Reuse SignaturesPrevious work has explored the cross-input predictabdftyeuse
signatures. For example, Ding and Zhong have shown an agcofaover 94% for
the prediction of the reuse signatures of 15 complex progra Their technique is
based on a desirable property of reuse signatures: No r@&taack of an execution can
be larger than the data size of the execution. (This promeamyes from the definition
of reuse distance.) They therefore test a set of sub-lingentibns in training runs and
choose the best one as the model for the prediction of regisatsires. This work adopts
their established technique.

4 Influence of Prediction Errors on Co-Scheduling

We feed CAPS the predicted memory behaviors to test the irdluef the prediction
errors on co-scheduling. Figure 4 shows the average pesafwendegradation of the
benchmarks included in Figure 1.

The baseline is aa posteriori schedule, which is the best over all possible sched-
ules. We obtained it by applying the minimum-weight perfawtching to all real
coruns. (Recall that the algorithm minimizes the total dédgtion.) Therandom bar
shows the average result of 100 random schedules. It refleetgerformance of the
default scheduler in the current CMP system.

! The reuse interval of a data reuse is the interval between the previdtiseourrent access to
the same data item.

N
0

N

.
4]

[

©
o]
‘

Normalized Corun Degradation

o

a posteriori CAPS-real CAPS-pred random

Fig. 4. The average performance degradation under different sched@tiesa posteriori” sched-
ule is the best schedule obtained on all corun information; “CAPS-retifeischedule by CAPS
on real single-run behaviors; “CAPS-pred” is the schedule by CAPSr@le-run behaviors pre-
dicted by the models described in Section 3.2; “random” reflects thellstanedule in the CMP
system.

The difference betweetaps-pred andcaps-real shows the influence of the predic-
tion errors of the behavior models—0.28 more degradatioth Wiat influencecaps-
pred still reduces the performance degradation of the randoradidd from 1.99 to
1.46. The extra degradation thaps-real has over the posteriori schedule is due to
the inaccuracy inside CAPS (e.g., the mixing model).

To achieve a better understanding of the influence from ptiedi errors, we con-
ducted a broader study to the sensitivity of CAPS on eacheottttee kinds of memory
behaviors. We introduce a range of random errors into theetkinds of memory be-
havior, one kind per time, and then measure the resultinfipeance of CAPS.

For lack of space, we leave the detailed results in a techrgpart [9]. As a sum-
mary, CAPS is most sensitive to the errors in accesses pgandtisn and DPIs: an error
of 8% in them respectively causes the performance degoadtgiincrease by 12.3%
and 17.6%; 16% causes an increase of 18.3% and 18.8%. CABSisdnsitive to the
errors in reuse distance histograms: an error of 8% causegmase of 3.6%; 16%
causes an increase of 12.2%.

To improve the accuracy of the predictive models, more imgiinputs may help.
A combination with hardware performance counters may agsbdmeficial, especially
for accesses per instruction. In addition, it is potentiaBIpful to characterize program
inputs more sophisticatedly [13] rather than only relyimgsampled data size. Finally,
the combination of CAPS with locality phase analysis [14h caake the scheduler
adaptive to runtime program behavior changes.

We emphasize that the main contributions of this paper aretiploration of the
influence of program inputs on co-scheduling and crosstimgmory behavior model-
ing. The details on the integration of the models into CAP&tae extension to runtime
scheduling (presented in our technical report [12]) areobtiie scope.

5 Related Work

We are not aware of any work on the study of program inputs éesacheduling on
CMPs. The closest work on program inputs exists in runtimeptide optimizations

10

and feed-back directed optimizations behavior (e.g., 02), Most recent studies on
CMP (or SMT) co-scheduling either rely on runtime estimatad cache usage from
hardware performance counters [5, 7, 15, 17], or offline [imgfi[3, 6]. None of them

systematically explores the effects of program inputs esateduling. Although run-
time techniques implicitly adapt to input changes, theyunegperiodic sampling of
many different coruns, making them subject to some scéhabil applicability limita-

tions as discussed in Section 1. Architecture extensiogscache activity vector [11],
are complementary to software co-scheduling in offering-finrained cache behavior.

6 Conclusion

This work focuses on the exploration of the influence of panginputs on corun per-

formance of programs running on CMPs equipped with sharelde=a It draws the con-

clusion that the influence of program inputs is so strongahzdche-contention-aware
scheduler has to adapt to them. The second part of the papenilois our practice in

constructing cross-input predictive models for a set of menbehaviors that are used
in a recently proposed proactive co-scheduling system.ekperiments show reason-
ably accurate prediction through the uses of linear andiimaar regression techniques.
The paper then presents a systematic measurement of thenicdlof the prediction er-

rors on co-scheduling. The results suggest that the cnpeg-prediction models are
able to help the scheduler significantly reduce cache ctiatean shared caches.

References

1. P. Berube and J. N. Amaral. Benchmark design for robust profile-directed optonizdh Sandard Performance
Evaluation Corporation (SPEC) Workshop, 2007.
2. S.Browne, C. Deane, G. Ho, and P. Mucci. Papi: A portable interface to hardwarewmerfee counters. IRroceedings
of Department of Defense HPCMP Users Group Conference, 1999.
3. D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread caafiterciion on a chip multi-processor archi-
tecture. InProceedings of HPCA, 2005.
4. C.Ding and Y. Zhong. Predicting whole-program locality with reuseadist analysis. IRroceedings of PLDI, 2003.
5. A.El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas. Compatihéese co-scheduling on a cmp of multi-threaded
processors. liProceedings of IPDPS, 2006.
6. A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of medtithd chip multiprocessors and implica-
tions for operating system design. Pnoceedings of USENIX Annual Technical Conference, 2005.
7. A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance isolatiochgmmultiprocessors via an operating
system scheduler. IRroceedings of PACT, 2007.
8. T. Hastie, R. Tibshirani, and J. Friedmdfne elements of statistical learning. Springer, 2001.
9. Y.Jiang and X. Shen. Study of cross-input predictability of inclisause distance. Technical Report WM-CS-2007-13,
Computer Science Department, The College of William and Mary, 2007.
10. X. Li, M. J. Garzaran, and D. Padua. A dynamically tuned sorting librarréneedings of CGO, 2004.
11. A. Settle, J. L. Kihm, A. Janiszewski, and D. A. Connors. Architectsugport for enhanced smt job scheduling. In
Proceedings of PACT, 2004.
12. X. Shen, Y. Jiang, and F. Mao. Caps: Contention-aware proactive sefgethrlicmps with shared caches. Technical
Report WM-CS-2007-09, Computer Science Department, The College of WlimhMary, 2007.
13. X. Shenand F. Mao. Modeling relations between inputs and dynamic bef@avgeneral programs. IRroceedings of
LCPC, 2007.
14. X. Shen, Y. Zhong, and C. Ding. Locality phase predictiorProceedings of ASPLOS, 2004.
15. A. Snavely and D. Tullsen. Symbiotic jobscheduling for a siendbus multithreading processor. Rroceedings of
ASPLOS 2000.
16. N.Tuckand D. M. Tullsen. Initial observations of the simultaneoubithreading Pentium 4 processor.Froceedings
of PACT, 2003.
17. X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen. Processor hardwatercstatistics as a first-class system
resource. IrProceedings of HotOS, 2007.
18. Y. Zhong, S. G. Dropsho, X. Shen, A. Studer, and C. Ding. Misspegdiction across program inputs and cache
configurations| EEE Transactions on Computers, 56(3), 2007.

