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ABSTRACT

Citation KNN is an important but compute-intensive algorithm for

multiple instance learning (MIL). This paper presents FALCON, a

fast replacement of Citation KNN. FALCON accelerates Citation

KNN by removing unnecessary distance calculations through two

novel optimizations,multi-level triangle inequality-based distance fil-

tering and heap optimization. The careful design allows it to produce

the same results as the original Citation KNN does while avoiding

84–99.8% distance calculations. On seven datasets of various sizes

and dimensions, FALCON consistently outperforms Citation KNN

by one or two orders of magnitude, making it a promising drop-in

replacement of Citation KNN for multiple instance learning.
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1 INTRODUCTION

Different from the traditional supervised learning problems where

an object is represented by an instance, in multiple-instance learn-

ing (MIL), an object is represented by a set of instances which is

defined as a bag. Labels are assigned to bags rather than individ-

ual instances. Based on a collection of labeled bags, MIL classifier

attempts to classify unknown bags. MIL is an important way es-

pecially for modeling many complicated learning problems in the

real world. For example, a whole image can be represented by a

bag while small patches of the image are described as instances; an

article could be represented as a bag while paragraphs or sentences

are described as instances. In the most common case of MIL binary
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classification, a bag is labeled positive if there is at least one positive

instance, otherwise, the bag is labeled negative.

MIL is originally proposed by Dietterich et al. [7] to solve musky

molecule prediction task. Since then, the idea of MIL has rapidly

spread out to other fields. Maron and others [16] have applied

MIL on image classification for natural scene. An image is divided

into subimages (instances) and labeled based on the contents of

subimages. For example, the image is labeled as waterfall only if

there is at least one subimage is waterfall. If an image is labeled as

non-waterfall, none of these subimages contains a waterfall. Yang

and others [30] have explored the application of MIL on image

retrieval in a similar approach. MIL has also been introduced to

document categorization [2, 21], web mining [34], computer aided

diagnosis [8, 9, 22], spam detection [10], stock selection [15], remote

sensing imagery data mining [25], object tracking [5, 32], human

action recognition [1], and so on.

A number of MIL algorithms have been developed throughout

the years [2, 4, 15, 19, 27, 31]. For instance, Citation KNN [27] pre-

dicts the label of a new bag by examining both its nearest neighbors

and citers (explained later); MI-DD tries to find a concept point

that is close to at least one instance of every positive bag and no

instances from any negative bag and then use distances to the con-

cept point for classification [15]; and MI-SVM [2] extends SVM

in the MIL settings to maximize the margin around a hyperplane

which separates positive from negative instances/bags. There are

many other work on MIL that we cannot include here for sake of

space; readers may see a prior reference [18] for a comprehensive

survey. Recently, DNN is also introduced into MIL [28, 29].

One of the most important barriers for the use of MIL algorithms

is their long running time. As the nature of MIL requires the con-

siderations of the relations among many bags of instances, these

algorithms are compute-intensive, taking lots of time to run.

This work aims to address the main barrier for MIL. Particularly,

it concentrates on Citation KNN, for three reasons.

(1) First, Citation KNN is one of the most effective algorithms

for MIL. Since its introduction [27], Citation KNN has repeatedly

shown superior performance over alternative MIL algorithms. For

instance, Nguyen and others [18] compared the performance of

21 MIL algorithms on 26 datasets, and Citation KNN consistently

remains in the most competitive list in terms of both accuracy

and speed. A similar observation has been made in some earlier

work [33] as well as in the later many applications of Citation KNN

in various fields [14, 24, 26].

(2) Second, Citation KNN is robust and generally applicable.

Unlike some other MIL algorithms which are based on certain

assumptions on data distributions and other properties of the prob-

lem [25], or designed for specific applications [7], Citation KNN



is not subject to any of those assumptions and is general-purpose.

Experiments have shown its effectiveness on various kinds of data

and problems [14, 18, 24, 26, 27].

(3) Third, Citation KNN is easy to use and intuitive to interpret.

As a non-parametric method, Citation KNN is easy to deploy and

the results are intuitively interpretable. In comparison, DNN-based

methods require a long training process on a large amount of well-

labeled data, and the results are often difficult to interpret.

For these reasons, despite the proposals of many other methods

throughout the years, Citation KNN remains one of the most im-

portant and popular MIL algorithms. A dramatic improvement of

its efficiency could hence help advance the practical adoptions of

MIL in a broader range of machine learning problems.

Citation KNN is based onHausdorff distance, and is time-consuming

due to themany costly high-dimensional distance calculations. Even

if we avoid repetitive calculations, the number of distance calcu-

lations is still quadratic to the number of instances which could

be large in many MIL datasets. Moreover, the distance calculation

is usually between high-dimensional vectors. In most MIL appli-

cations, an instance is often characterized by a high-dimensional

vector of over 100 dimensions [11, 12, 34]. These factors make Cita-

tion KNN computationally expensive. Two previous proposals tried

to alleviate the issue by replacing Hausdorff distance with other

similarity measures. Vatsavai [25] modeled each bag as a Gauss-

ian distribution, thus Hausdorff distance calculation is replaced

by measuring difference between probability distributions. Li and

others [13] treated each bag as a graph and then replaced Hausdorff

distance with graph similarity. These proposals unfortunately are

unable to maintain the same results as Citation KNN gives.

This paper tries to solve the problem at a different level, aiming to

speed up Citation KNN without altering its results at all. By strictly

preserving its semantic, the method ensures that the optimized

algorithm can serve as a safe drop-in replacement of the popular

algorithm in all scenarios.

Specifically, this paper introduces a fast multi-level optimization

algorithm for citation KNN named FALCON, which accelerates Ci-

tation KNN by avoiding most distance calculations without chang-

ing the final results. FALCON employs two novel optimizations.

The first is multi-level triangle inequality-based distance filtering. It

efficiently maintains a series of lower bounds and upper bounds of

distances at both bag and instance levels. Equipped with a sequence

of carefully designed computation filters, it avoids unnecessary dis-

tance calculation by examining the two kinds of bounds against the

filtering conditions. The second is heap optimization, which helps

avoid even more distance calculations by controlling the examina-

tion order of instances. Neither optimization alters the semantics

or results of Citation KNN.

Experiments on seven datasets of various sizes and dimensions

confirm that the FALCON algorithm produces the same results

as the original Citation KNN does. At the same time, FALCON

avoids 84–99.8% distance calculations, and consistently outperforms

Citation KNN by one or two orders of magnitude in terms of speed,

making it a promising drop-in replacement of Citation KNN for

MIL studies and applications.

We organize the rest of this paper as following, in section 2 we

give a brief introduction about key ideas in Citation KNN. Section 3

describes the optimization approaches in detail. Section 4 presents
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Figure 1: Maximal Hausdorff distance

the experimental results and comparison with Citation KNN. The

last section summarizes the work.

2 BACKGROUND ON CITATION KNN

The scenarios in MIL problems differ from those in the classic KNN.

In classic KNN, each instance corresponds a single point, but in a

MIL problem, the distance is measured between bags which each

contains a set of instances. Hausdorff distance is used to characterize

the distance between two sets of instances.

2.1 Hausdorff Distance

In Citation KNN, two kinds of Hausdorff distance have been used [27]:

minimal Hausdorff distance and maximal Hausdorff distance. They

have a slight difference in definition, which leads to quite different

optimization strategies in FALCON as we will show later.

Definition 2.1. Given two sets of points A = {a1, ...,am } and

B = {b1, ...,bn }, the minimal Hausdorff distance is defined as:

Hmin (A,B) = max{hmin (A,B),hmin (B,A)} (1)

where

hmin (A,B) = min
i

min
j

| |ai − bj | | (2)

Definition 2.2. Given two sets of points A = {a1, ...,am } and

B = {b1, ...,bn }, the maximal Hausdorff distance is defined as:

Hmax (A,B) = max{hmax (A,B),hmax (B,A)} (3)

where

hmax (A,B) = max
i

min
j

| |ai − bj | | (4)

Although in the definition, Hmin (A,B) equals to the larger one

between hmin (A,B) and hmin (B,A), they actually always have the

same value as hmin is symmetric. Both of them equal to the dis-

tance between two closest instances in two bags. Therefore, we

only need to calculate one of them to get the minimal Hausdorff

distance between two bags. However, this is not the case for maxi-

mal Hausdorff distance in which hmax (A,B) and hmax (B,A) may

differ.

Let d(ai ,bj ) represent the Euclidean distance between instance

ai andbj andd(ai ,B) is the smallest distance from instanceai to bag

B. As shown in Figure 1, hmax (A,B) = maxi d(ai ,B) = d(a1,b1)

while hmax (B,A) = maxj d(bj ,A) = d(a2,b2). Clearly, d(a1,b1) is

not necessarily the same as d(a2,b2). To get maximal Hausdorff

distance, we have to calculate both hmax (A,B) and hmax (B,A).
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Figure 2: R-nearest references and C-nearest citers of an un-

known bag A

2.2 Reference and Citer

Besides Hausdorff distance, the other important concepts in Citation

KNN are reference and citer. Citation KNN borrows the notion of

citation from library and information science: if a paper cites a

previously published paper, the paper is deemed to be related to the

reference. Similarly, if a paper is cited by a subsequent paper, the

citer is also regarded relevant to the paper. When this idea comes

to the context of MIL, it suggests that when labeling a bag, the

algorithm should take into account not only its neighbors but also

the bags that count the concerned bag as a neighbor. For example, as

shown in Figure 2, we have an unknown bag A to label. Firstly, we

find its R-nearest neighbors. Subsequently, we probe each bag other

than bag A to see whether it has bag A in its C-nearest neighbors.

If it does, that bag is a citer of bag A. In this example, it is easy to

see that references of bag A are bags B and C while citers of bag A

are bags B, C, D. Both references and citers will vote to determine

the label of bag A. It is worth noting that bags B and C are both

references and citers of bag A. They thereby each have two votes. In

our example, bag B and bag D are positive while bag C is negative.

Bag A is labeled positive due to 3 positive votes over 2 negative

votes.

2.3 Citation KNN Algorithm

In Citation KNN, for a given unknown bag, the key step is to find

its references and citers. References are the nearest neighbors of

the concerned bag, while for a bag to be a citer of the concerned

bag, its nearest neighbors must include the concerned bag. These

two notions are closely related. If we have an algorithm that finds

K nearest bags for a specific bag, the algorithm can be applied not

only on the concerned bag to find out its references but also on

other bags to find their K nearest bags to see whether the concerned

bag is one of them. This is the essential idea underlying the de facto

implementation of Citation KNN.

Algorithm 1 gives the pseudo code. It works for either min Haus-

dorff or max Hausdorff. It first calculates the distance between each

pair of bags. Since Hausdorff distance is symmetric, for each pair

of bags, the distance only needs to be computed once. For the con-

cerned bag, the algorithm finds its R-nearest bags as its references

and put them into the voter list. For any other bag, if the concerned

bag is one of its C-nearest bags, it is considered as a citer of the

concerned bag; it is also put into the voter list. Finally, all the bags

in the voter list vote to determine the label of the concerned bag.

Most time is taken by the calculations of the distances between

bags. As Hausdorff distance of two bags is based on the distances

between all instances in the two bags, the complexity is quadratic

to the total number of instances.

Citation KNN

input :Bags from input dataset, bag A is the query bag to be

labeled,the number of bags is N

output :Label for bag A

for i ← 1 to N − 1 do

for j ← i + 1 to N do

H (baдi ,baдj ) = HausdorffDist(baдi ,baдj );

H (baдj ,baдi ) = H (baдi ,baдj ) ;

end

if i == A then

find R smallest values in H (baдi ,baдt ) (t=1,2,...,N);

Insert the R baдt s into VoterList;

else

find C smallest values in H (baдi ,baдt ) (t=1,2,...,N);

if bag A is one of the C baдt s then

Insert baдi into VoterList;

end

end

end

return the majority bag label in VoterList ;

Algorithm 1: Original Citation KNN algorithm

3 OPTIMIZATION APPROACHES

FALCON speeds up Citation KNN by avoiding most of the distance

calculations. It has two key ideas, multi-level triangle inequality-

based distance filtering and heap optimization.

3.1 Multi-Level Filtering

The first key idea tries to avoid unnecessary distance calculations

through bounds-based filtering. FALCON does it at both bag level

and instance level.

In the subsequent sections, we introduce filtering conditions

and bounds of distances used by FALCON. To make used notations

easily accessible, they are organized in Table 1.

Our optimization is based on the well-known triangle inequality

and its definition is given as follows:

Theorem 3.1. The sum of the lengths of any two sides of a triangle

must be greater than or equal to the length of the remaining side.



Table 1: Notations Used in the Paper

Notations Definitions

d(ai ,bj )
Euclidean distance between instance ai and in-

stance bj

d(ai ,B)
The smallest Euclidean distance between in-

stance ai and bag B, d(ai ,B) = minj d(ai ,bj )

dcur (ai ,B)
The currently smallest Euclidean distance be-

tween instance ai and bag B

hmin (A,B)
The smallest Euclidean distance from bag A to

bag B, hmin (A,B) = mini d(ai ,B)

hmax (A,B)

The largest one of all smallest Euclidean

distances between instance ai and bag B,

hmax (A,B) = maxi d(ai ,B)

hcur−min (A,B)
The currently smallest Euclidean distance from

bag A to bag B

hcur−max (A,B)
The currently largest one of all smallest Eu-

clidean distances between instance ai and bag

B

Hmin (A,B)
Minimal Hausdorff distance, Hmin (A,B) =

max(hmin (A,B),hmin (B,A))

Hmax (A,B)
Maximal Hausdorff distance, Hmax (A,B) =

max(hmax (A,B),hmax (B,A))

H (A,B)
Hausdorff distance between bag A and bag B,

representing both Hmin (A,B) and Hmax (A,B)

UB/LB(A,B)
Upper/ Lower bound of Hausdorff distance be-

tween bag A and bag B, can represent both min-

imal and maximal Hausdorff distance

UB/LB(ai ,bj )
Upper/ Lower bound of Euclidean distance be-

tween ai and bj

In the context of Citation KNN, letd(x ,y) represent the Euclidean

distances between instance x and y. For any three instances a,b, c ,

we have:

|d(a,b) − d(b, c)| � d(a, c) � d(a,b) + d(b, c) (5)

As long as d(a,b) and d(b, c) are known, triangle inequality pro-

vides a lower bound and an upper bound for d(a, c). These bounds

will be further used to avoid unnecessary calculations. For example,

we want to find the nearest neighbor for instance a, if the lower

bound of d(a, c) is larger than current shortest distance, there is

no need to calculate the exact value of d(a, c). This theorem can be

easily extended to include four instances which form a quadrilateral

(or skew quadrilateral if instances are not on the same plane) as

shown in Figure 3. Similarly, the sum of lengths of any three edges

of this quadrilateral/skew quadrilateral must be greater than or

equal to the length of the remaining edge. Therefore, for instance

a,b, c,d , we have:

max{d(a,b)−d(b, c)−d(c,d), 0} � d(a,d) � d(a,b)+d(b, c)+d(c,d)

(6)

3.1.1 Bag-level Filtering. FALCONhas two levels of filtering. Firstly,

bag-level filtering is applied. If the filtering condition is satisfied,

Figure 3: The extension of triangle inequality to quadrilat-

eral / skew quadrilateral

the whole bag is filtered out and won’t be considered further. If it

fails, FALCON needs to go inside the bag and calculate distances

between instances. Then instance-level filtering applies.

Due to the difference between minimal Hausdorff distance and

maximal Hausdorff distance, we derive different bounds.

Lemma 3.2. ∀a1 ∈ A,b1 ∈ B,

Hmin (A,B) � d(a1,b1) −max
t

d(a1,at ) −max
u

d(b1,bu ) (7)

Proof. According to Definition 2.1, Hmin (A,B) equals to the

distance between two closest instances in bag A and bag B. Let ai
and bj be the two closest instances. Using the Formula (6), we have:

Hmin (A,B) = d(ai ,bj ) � d(a1,b1) − d(a1,ai ) − d(b1,bj )

Although the values of i and j are unknown, the distance between

a1 and ai must be less than or equal to the longest distance from a1
to all other instances in bag A: d(a1,ai ) � maxt d(a1,at ). Similarly,

d(b1,bj ) � maxu d(b1,bu ), thus:

Hmin (A,B) = d(ai ,bj ) � d(a1,b1) − d(a1,ai ) − d(b1,bj )

� d(a1,b1) −max
t

d(a1,at ) −max
u

d(b1,bu )

�

Lemma 3.3. ∀a1 ∈ A,b1 ∈ B,

Hmax (A,B) � d(a1,b1) −min(max
t

d(a1,at ),max
u

d(b1,bu )) (8)

Proof. Assume Hmax (A,B) equals d(ai ,bj ) and the closest in-

stance in bag B to a1 is bk . Thus, d(ai ,bj ) � d(a1,bk ). Instances

a1,bk ,b1 form a triangle, as shown in Figure 4. Using Formula 5,

we have:

Hmax (A,B) = d(ai ,bj ) � d(a1,bk ) � d(a1,b1) − d(b1,bk )

� d(a1,b1) −max
u

d(b1,bu )

Assume the closest instance in bag A to b1 is ah . Using the same

strategy to get another lower bound:

Hmax (A,B) = d(ai ,bj ) � d(ah ,b1) � d(a1,b1) − d(a1,ah )

� d(a1,b1) −max
t

d(a1,at )

Since bounds are supposed to be tight, we always use the larger

one of the lower bounds, which is shown as Formula (8). �
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Figure 4: Bag-level filtering for maximal Hausdorff distance

Lemma 3.2 and 3.3 give the lower bounds of the Hausdorff dis-

tance between bag A and bag B. These lower bounds are used in

filtering conditions.

Filtering condition 1: Assume currently, bag T is the farthest

bag among bag A’s current K nearest neighbors in terms of Haus-

dorff distance (either min or max). If LB(A,B) � H (A,T ), bag B

is not one of K nearest neighbors of bag A. (H (A,T ) is defined in

Table 1)

Because we know bag B is not in bag A’s K nearest neighbors, it’s

unnecessary to calculate the exact Hausdorff distance between bag

A and bag B. This bag-level filtering brings benefits but also incurs

overhead, because the distances from the chosen instance (a1 or

b1) to all other instances in the same bag need to be calculated. For

each bag, the incurred calculations are O(t + 1), t is the number of

instances in the bag, 1 represents the distance calculation between

a1 and b1. If one bag is skipped, the avoided calculations are O(t2).

Even though the overhead is much smaller than the benefits, it

is always good to minimize the overhead. FALCON avoids the

overhead by using landmarks as a1 and b1. A landmark is just a

point in the data space that is used to form triangles with the points

in the space. There could be multiple landmarks; each instance

is often associated with the landmark that is closest to it. In our

design, the landmarks are chosen such that the distances between

them and other instances in the same bag are already known before

we do this filtering; that helps minimize the overhead. More details

are given in Section 3.1.3.

3.1.2 Instance-level Filtering. If bag-level filtering fails, we have to

calculate the distance between two bags. Instance-level filtering is

used to avoid unnecessary distance calculations for instances.

Instance-level filtering leverages landmarks to construct trian-

gles. The landmarks and the instances form many triangles, based

on which, the bounds of instance distances can be attained. The

distance between a landmark and an instance can be reused for all

the triangles involving that edge.

This part presents three instance-level filters used in FALCON.

In the following discussion, we use ac and bc to represent the

landmarks that ai and bi are associated with, respectively.

Lemma 3.4.

d(ai ,bj ) � max(|d(ac ,bj ) − d(ai ,ac )|, |d(ai ,bc ) − d(bj ,bc )|) (9)

d(ai ,bj ) � min(d(ac ,bj ) + d(ai ,ac ),d(ai ,bc ) + d(bj ,bc )) (10)

ac

Bag A Bag B

ai

bj

bc

Figure 5: Instance-level filtering

Proof. ai and bj are any two instances in bag A and bag B. Let

ac and bc be landmarks of ai and bj , respectively. As shown in

Figure 5, there are two triangles: �aibjac and �aibcbj . For each

of them, using Formula 5, we can get a lower bound and an upper

bound for d(ai ,bj ):

�aibjac : |d(ac ,bj ) − d(ai ,ac )| � d(ai ,bj ) � d(ac ,bj ) + d(ai ,ac )

�aibcbj : |d(ai ,bc ) − d(bj ,bc )| � d(ai ,bj ) � d(ai ,bc ) + d(bj ,bc )

Since bounds are supposed to be tight, we use the larger one of

lower bounds and the smaller one of upper bounds which lead to

Formula (9) and (10). �

A series of filtering conditions have been carefully designed to

leverage these bounds.

Filtering condition 2: If LB(ai ,bj ) � dcur (ai ,B), there is no

need to calculate d(ai ,bj ).

This idea is straightforward. To calculate Hausdorff distance, the

first step is to find out shortest distances from every instance in

one bag to another bag. Since LB(ai ,bj ) � dcur (ai ,B), d(ai ,bj )will

not be the shortest distance. Therefore, we do not need to know its

exact value.

Filtering condition 3: For minimal Hausdorff distance calcula-

tion, if LB(ai ,bj ) � hcur−min (A,B), there is no need to calculate

d(ai ,bj ).

The filtering condition works for minimal Hausdorff distance

calculation. Since the goal is to find the shortest distance between

bag A and bag B and there is already a distance hcur−min (A,B) less

than or equal to d(ai ,bj ), we know d(ai ,bj ) cannot be the shortest

distance. Therefore we can skip the calculation.

Filtering condition 4: For maximal Hausdorff distance, if we

have UB(ai ,bj ) � hcur−max (A,B), then we can skip ai . Also, if

UB(ai ,bj ) > hcur−max (A,B) but d(ai ,bj ) � hcur−max , we still

can skip subsequent calculations for ai .

Maximal Hausdorff distance is the largest one of all shortest

distances from instances in bag A to bag B. IfUB(ai ,bj ) or d(ai ,bj )

is less than or equal to hcur−max (A,B), for both cases, we have

d(ai ,B) � d(ai ,bj ) � hcur−max (A,B). It means d(ai ,B) will not be

the largest one among all shortest distances from instances in bag

A to bag B. Thus, it’s not necessary to calculate the exact value of

d(ai ,B).

3.1.3 Selecting Landmarks. In previous sections, we have men-

tioned how to capitalize on landmarks to construct triangles so as



Figure 6: Dividing instances into groups

to apply filtering conditions. This part explains our strategies in

setting these landmarks.

Good landmarks are essential for the tightness of the bounds.

There are three criteria in setting landmarks: (1) They should be

close to instances: Landmarks close to instances are helpful for

constructing tighter bounds per triangle inequality; (2) Landmarks

ideally should be sharable among multiple instances: Landmarks

introduce extra calculations and the sharing lowers the overhead;

(3) Landmarks should be fast to compute.

We draw on the ideas of clustering (e.g. KMeans) for selecting

landmarks. Instances are divided into groups based on distances to

group centers. Instances in one group share the group center as the

landmark. As shown in Figure 6, instances inside one dot line cycle

form a group. They all use the group center, shown as yellow star,

as their landmark.

To compute the group center, classic KMeans runs for many

iterations until convergence. That is often too costly for our usage.

Though more iterations tend to give tighter bounds, it also incurs

more overhead.We have analyzed cost-benefit trade-offs of different

numbers of iterations. We find that using the initial centers chosen

by KMeans++ [3] works well for us. What it does is: (1) choosing

the first center randomly from all the instances; (2) After that,

each subsequent center is chosen from remaining instances with

probability proportional to its distance to the closest centers. The

centers are directly taken as our landmarks. Another benefit this

method brings is that since no further iterations are executed, all

the centers are instances. The distance calculations, during instance-

level filtering, between centers and instances are actual distances

between instances. Therefore these results can be reused when

calculating distance between instances.

It is easy to see that the filtering conditions described so far can

be applied to the calculations of both references and citers. There

are some filtering conditions specific to the calculations of citers.

As they are related with heap optimization, we explain them in the

next part.

3.2 Heap Optimization and Citer-Specific
Filtering

Recall that the basic Citation KNN computes the K nearest neigh-

bors of all bags. The second key optimization in FALCON is named

heap optimization, which is based on the following observation:

To get the references of a bag A, it is necessary to

get the K nearest neighbors of A, but to determine

whether a bag B is the citer of bag A, we do not have

to compute all the K nearest neighbors of bag B; we

only need to know whether bag A is one of the K

nearest neighbors of bag B.

Based on this observation, we design a strategy which keeps

track of the concerned bag in other bags’ K nearest neighbor lists.

3.2.1 Heap Optimization. Let’s assume the concerned bag is bag

A and we would like to know whether bag B is A’s citer. For bag

B, we maintain a list of its current K nearest neighbors. Every

time when the distance between bag B and another bag has been

calculated, that bag is compared with the largest distance of the

current list of K nearest neighbors; the list is updated accordingly.

In our strategy, the distance between bag B and the concerned bag

(i.e.,A) is calculated first such that the concerned bag is put into

that list first. Then distances between bag B and other bags are

calculated and bags are inserted into that list one by one. The bag

with the largest distance will be removed when the list has more

than K bags. If the bag removed is bag A, we can stop and skip all

the subsequent calculations of nearest neighbors of bag B. Because

it is certain that A cannot be in that list again, which means that

bag B is not a citer of bag A.

We find that the idea can be effectively materialized through

the use of heap data structure. Since we need to find the bag with

largest distance and remove it from the list when there are more

than K bags in that list, iterating through the whole list is inefficient.

Maintaining a sorted list can help but is still not the optimal choice

either. Because we are only interested in the one with the largest

distance, keeping other bags in order causes unnecessary overhead.

Max-heap has some properties that make it a desirable choice. On

max-heap, finding the bag with the largest distance takesO(1) time

while inserting and deleting a bag take O(log(K)) time. Figure 7

gives an example to show the process of checking whether bag B is

a citer of bag A. Let K = 3. Concerned bag is calculated first, then

distances to every other bag are calculated and bags are inserted

into the max-heap. We get an early stop when bag A is removed.

3.2.2 Citer-specific Filtering. Based on heap optimization, we iden-

tify more opportunities of distance filtering for citer calculations.

According to heap optimization, during the process of finding

citers, what we care about is whether the concerned bag is one of

the K nearest neighbors of other bags. For example, we check bag

B to see whether it’s a citer of bag A. Due to heap optimization,

bag A is the first one to be added to bag B’s K nearest neighbor list.

Thus, what interests us is whether bag A is removed from that list.

Because if bag A is removed from that list, we know bag B is not

the citer and thereby skip subsequent calculations for bag B.

Distance calculations fall into two categories: those that have no

influence on the position of bag A in the K nearest neighbor list,

and those that do. Distance calculations in the first category can be

avoided, since it makes no difference on the position of bag A. We

design some special filters for the second category.

Filtering condition 5: Assume the concerned bag is bag A and

we want to find out whether bag B is a citer of bag A. For minimal

Hausdorff distance, if LB(bi , c j ) � Hmin (A,B), we can skip the

calculation of d(bi , c j ), where, c j is an instance in another bag C .



A:30 A:30

C:20

A:30

C:20 D:25

A:30

C:20 D:25

A:30

C:20 D:25

F:15

D:25

C:20 F:15

Insert A into heap. Insert C into heap. Insert D into heap.

Do not Insert D. Try to Insert F.
A is removed, concluding
that B is not a 3-citer of A;
process terminates.

Figure 7: Process of inserting bags tomax-heap for determin-

ing whether bag B is a 3-citer of bag A (concerned bag).

The correctness can be proved by examining all scenarios of

d(bi , c j ). (1) If d(bi , c j ) � d(bi ,C), we do not need to calculate it,

since what we are interested in is d(bi ,C). (2) If d(bi , c j ) = d(bi ,C),

then there are still two possible cases: (2.1) d(bi , c j ) = d(bi ,C) �

Hmin (B,C). Because what we are looking for is Hmin (B,C) and

d(bi ,C) � Hmin (B,C), it’s unnecessary to calculate d(bi ,C); (2.2)

d(bi , c j ) = d(bi ,C) = Hmin (B,C). In this case, we haveHmin (B,C) =

d(bi ,C) = d(bi , c j ) � Hmin (A,B). Thus, the position of bag A will

not be affected, and the calculation of d(bi , c j ) can be avoided.

Filtering condition 6: Assume the concerned bag is bag A and

we want to find out whether bag B is a citer of bag A. For mini-

mal Hausdorff distance, if UB(bi , c j ) � Hmin (A,B) or d(bi , c j ) �

Hmin (A,B), we can skip all subsequent distance calculations be-

tween bag B and bag C and continue to the next bag (c j is an

instance in bag C).

This is becauseHmin (B,C) � d(bi ,C) � d(bi , c j ) � UB(bi , c j ) �

Hmin (A,B). We can infer Hmin (B,C) is smaller than Hmin (A,B)

without calculating its exact value. This time the position of bag A

will be changed. Since what we care about is the position change of

bag A and whether bag A is still in the list, we do not need to know

the exact value ofHmin (B,C): As long asHmin (B,C) is smaller than

Hmin (A,B), the influence it brings to the position change of bag A

is the same. The implementation can either explicitly change the

position of bag A or implicitly change it by assigning Hmin (B,C) a

very small distance value (e.g. 0) without calculating its exact value.

Filtering condition 7: Assume the concerned bag is bag A and

we want to find out whether bag B is a citer of bag A. For maximal

Hausdorff distance, if hcur−max (B,C) � Hmax (A,B), we can skip

all subsequent distance calculations for bag C.

This filtering condition is straightforward. Since Hmax (B,C) �

hmax (B,C) � hcur−max (B,C) � Hmax (A,B), therefore, the posi-

tion of bag A will not be affected. Calculating the exact distance of

Hmax (B,C) is not necessary. It’s worth noting that if Hmax (B,C)

is calculated, it may be reused in the future for labeling other bags.

Table 2: Datasets Used in Experiments

Dataset Type #bag #inst #dim

Musk2 mole. prediction 102 6598 166

Sival Apple img. retrieval 1500 47414 30

Breast Cancer img. classification 60 2002 708

Web Recom. 2 txt. classification 75 2219 6519

Harddrive fail. prediction 369 68411 61

Protein pro. prediction 193 26611 8

Corel African img. classification 2000 7947 9

FALCON calculates Hmax (B,C) at that time only when it turns out

to be necessary.

The two optimizations,multi-level filtering and heap optimization,

together form a synergy that drastically reduces the amount of

distance calculations needed in the original Citation KNN. They

form the core of the FALCON algorithm.

4 EXPERIMENTS

We evaluate the efficacy of FALCON on a variety of MIL benchmark

datasets as shown in Table 2. Musk2 [7] is for musky molecule pre-

diction. Each bag is a molecule and each instance is a conformation

of that molecule. SIVAL [20] is a dataset for image retrieval. Each

image is a bag and every segment is an instance. UCSB breast can-

cer [12] is a medical image dataset in which bags represent images

while instances are patches. Dataset of Web recommendation [34]

is used for text classification. Webpages are considered as bags

and links in the webpage are instances. Harddrive dataset [17] is

used for hard drive failure prediction, in which every instance is

measurements of harddrive at one time point. A Bag contains all

instances in a period of time. In Protein dataset [23], a bag is a pro-

tein and an instance corresponds to the amino acid sequence. The

goal is to predict whether a protein is a TrX-fold protein. Corel [6]

is for image classification. Like other image classification datasets,

bags represent images and instances correspond to patches.

The datasets are chosen to be diverse. The numbers of bags range

from 60 to 2000, instances range from 2002 to 68411, and dimensions

range from 8 to 6519.

Our experiments measure the efficacy of FALCON based on

the number of distance calculations avoided as well as speedups

it achieves. All the experiments are conducted in the following

experimental environment: PowerEdge R620 equipped with 2 Xeon

E5-2670 CPUs, 128GB memory, Ubuntu 14.04.

Experiments are conducted on original Citation KNN, Citation

KNN + Heap Optimization and FALCON can be considered as

Citation KNN + Heap Optimization + Multi-level Filtering. R and C

are set to 2 and 4 in our experiments, which is the setting used by

Wang et al. in their original Citation KNN paper [27]. In FALCON,

the number of landmarks computed and used for each bag is �Z/10�

whereZ is the number of instances in a bag.We explored a spectrum

of values, and found that that setting gave the best overall results.

In all experiments, the optimized algorithms produce exactly the

same results as the original Citation KNN does. We hence focus

the following discussions on speedups. The times reported in this

section include all runtime overhead.



Table 3: Distance Calculations and the Reductions by Proposed Optimizations

dataset distance type Distance Calculations Avoided Calculations

Citation KNN Citation

KNN + Heap

Optimization∗

FALCON∗ Citation KNN +

Heap Optimiza-

tion

FALCON

Musk2 min HD 19995014 5252878 (26.27%) 1622628 (1.7%) 73.8% 91.9%

max HD 19995014 9462090 (47.32%) 857137 (1.09%) 52.7% 95.7%

Sival Apple min HD 1123294157 78164942 (6.96%) 15178458 (0.1%) 93.0% 98.6%

max HD 1123294157 37995169 (3.38%) 10156332 (0.41%) 96.6% 99.1%

Breast Cancer min HD 1968726 569047 (28.9%) 119847 (1.61%) 71.1% 93.9%

max HD 1968726 1104097 (56.08%) 301751 (7.15%) 43.9% 84.7%

Web recom.2 min HD 2400819 577808 (24.07%) 256519 (6.44%) 75.9% 89.3%

max HD 2400819 782251 (32.58%) 180961 (3.58%) 67.4% 92.5%

Harddrive min HD 2330996059 126960690(5.45%) 3919790 (0.01%) 94.6% 99.8%

max HD 2330996059 87705823 (3.76%) 3649975 (0.03%) 96.2% 99.8%

Protein min HD 352014663 72952148 (20.7%) 3537020 (0.03%) 79.3% 99.0%

max HD 352014663 68280722 (19.4%) 2506547 (0.17%) 80.6% 99.3%

Corel African min HD 31557751 1190722 (3.77%) 587124 (0.3%) 96.2% 98.1%

max HD 31557751 1837272 (5.82%) 802156 (1.02%) 94.2% 97.5%
∗ : the distance calculations in columns 4 and 5 include both those left from original Citation KNN and those newly introduced for optimizations. The percentages in parentheses

show the numbers of distance calculations left from original Citation KNN divided by column 3.

Table 4: Running Time Comparison For Different Algorithms

dataset distance type Running time (ms) Speedups (X) over Citation KNN

Citation KNN Citation KNN +

Heap Optimiza-

tion

FALCON Citation KNN +

Heap Optimiza-

tion

FALCON

Musk2 min HD 53882 14075 6011 3.8 9.0

max HD 64839 25937 2965 2.5 21.9

Sival Apple min HD 674207 46865 31070 14.4 21.7

max HD 760075 25593 10379 29.7 73.2

Breast Cancer min HD 22571 6415 1622 3.5 14.0

max HD 22878 12963 3755 1.8 6.1

Web recom.2 min HD 248650 61088 28329 4.1 8.8

max HD 253788 82795 21164 3.1 12.0

Harddrive min HD 2336980 127052 19741 18.4 118.4

max HD 2416732 91120 7225 26.5 334.5

Protein min HD 62669 12627 10765 5.0 5.8

max HD 73666 13861 2169 5.3 34.0

Corel African min HD 28238 943 1494 29.9 18.9

max HD 38769 1739 1453 22.3 26.7

4.1 Avoided Calculations

Table 3 reports the numbers of distance calculations each of versions

has on every dataset to label an unknown bag. For all datasets,

the first bag is treated as the test bag, all other bags are used as

training bags. Except for the numbers in the parentheses, all the

numbers are based on the total distance calculations. For FALCON,

it includes both the ones left from the original Citation KNN and

those introduced by our optimizations. The percentages shown in

parentheses of columns four and five show the fractions of distance

calculations left from the original citation CNN.

According to column six, on average, 80% distance calculations

are avoided by Heap Optimization. The benefits vary on these

datasets. For example, when we use maximal Hausdorff distance

(maxHD) in Breast Cancer dataset, it only reduces less than 50%

distance calculations. But for Sival Apple dataset, more than 90%

distance calculations can be avoided by this approach. FALCON

manifests consistent superior performance. On average, FALCON

avoids more than 94% distance calculations compared with the orig-

inal Citation KNN. It shows significant improvements, especially

on datasets where Heap Optimization does not perform very well.

For the Breast Cancer dataset with maxHD, FALCON attains 84.7%

reduction which is about 2 time more than what Heap Optimization

gets. On Musk2 dataset with maxHD, FALCON improves the result

from 52.7% to 95.7%. For some other datasets, the improvement is



Figure 8: Breakdown of distance calculations of FALCON.

not that large. One important reason is that Heap Optimization has

done a good job on those datasets. There is not much space left for

multiple-level filtering to improve. It is worth noting that according

to Table 3, the best results are on dataset Harddrive, Protein, and

Sival Apple which happen to have the most bags and instances

among all datasets. This is consistent with our intuition that more

bags and instances lead to more space for improvement. With the

growing size of dataset, FALCON is expected to have even better

performance.

4.2 Overall Speedups

Table 4 reports the run times and the overall speedups that the heap

optimization and FALCONbring. In the calculations of the speedups,

the run times of FALCON include all the overhead incurred by all

the filters and optimizations it uses. (We report a detailed analysis

of the overhead in the next subsection.)

FALCON brings one or two orders magnitude speedups for al-

most all the datasets. On average, Heap Optimization achieves 11

times speedups over Citation KNN. Based on that, multi-level opti-

mization further brings another four times speedups. One of results

we would like to highlight is that FALCON attains 334.5X speedups

in Harddrive dataset with maxHD. This attributes to FALCON’s

outstanding performance in reducing calculations. According to Ta-

ble 3, FALCON successfully avoids 99.8% calculations on Harddrive

dataset with maxHD.

Heap optimization alone leads to some substantial speedups (1.8–

29.9X), upon which, multi-level filtering adds significantly more on

most datasets. An exception is Corel African dataset with minHD,

heap optimization excels in this case. From our understanding, this

is because Corel African dataset has limited number of instances

per bag. Many bags only has two instances. There is not enough

space for multi-level filtering to take effect and extra calculations

associated with filtering make FALCON more expensive choice.

On average, FALCON gives more speedups on maxHD than on

minHD. It is due to Filtering condition 4, which helps remove a

large number of calculations in the maxHD case. Another reason is

that maxHD gets a much tighter bound at bag-level filtering. The

cost for filtering a distance calculation at bag-level is much cheaper

than that at instance level. That also explains why maxHD is faster

than minHD even if the avoided amounts of calculations are almost

the same.

Comparisons with Alternatives. Based on the relative speeds of

Citation KNN and other MIL algorithms reported in previous lit-

eratures [18], the significant speedups over Citation KNN make

FALCON the fastest MIL. For instance, on Musk2, one of the most

popular datasets used in almost every MIL literature, the speedup

from FALCONover Citation KNN (9X)makes it substantially outper-

form all the 10 MIL algorithms measured in the previous study [18]

(e.g., 22X over mi-DS, 114X over mi-DD, and 55X over mi-EMDD).

It is worth noting that the speedup of FALCON onMusk2 is actually

one of the most modest ones; it shows much larger speedups over

Citation KNN on other datasets as reported in Table 4.

4.3 Detailed Analysis

This part provides a breakdown of the distance calculations in FAL-

CON. They fall into four categories: (1) Calculations for grouping;

(2) Calculations for bag-level bounds; (3) Calculation for instance-

level bounds; (4) Unavoided calculations in Citation KNN.

Calculations for grouping: When FALCON divides each instances

into a group by KMeans++, the distance calculations take place

between instances and group centers in the same bag. This is an

extra overhead when compared with the original Citation KNN in

which distances between instances in the same bag need not to be

calculated. The amount of this type of calculations depends on the

size of the bag. Since we use k = �Z/10�, where k is the number of

groups in the bag and Z is the number of instance in the bag, it’s

easy to see this overhead is O(Z 2) for one bag. As Figure 8 shows,

as only one iteration of KMeans++ take places, this category does

not weigh heavily for most cases. On dataset Harddrive, grouping

calculations weight relatively a large portion. That is because it has

a much larger bag size than other datasets according to Table 2.

Calculations for bag-level bounds: This type of calculation is for

bag-level filtering. For each pair of bags, only the distance between

the first instances in two bags is calculated. In addition, distances

between the first instance and all other instances in the same bag

are calculated to find the longest one which is required by Formulas

8 and 9. The overhead is O(N +M2), where N is the total number

of instances and M is the number of bags. It is negligible when

compared with other types of distance calculations as shown in

Figure 8.

Calculations for instance-level bounds: This part is the heaviest

for most datasets in our experiments. When bag-level filtering fails,

calculations come to the instance level. Instances-level bounds are

much tighter than those at bag-level, but it also requires much more

calculations to build. One group center needs to have distance to

all instances in the other group so that the distance can be reused

by its group members to construct triangles. In the worst case, the

overhead is O(Z 2) for each bag. Fortunately, FALCON sees a much

smaller overhead than that: Since all the group centers are instances,

all of these distance are reusable in the subsequent steps.

Unavoided calculations in Citation KNN: This part of distance

calculations can not be avoided with any of the filters. Their exact

values must be calculated. As shown in Figure 8, the percentage of

remaining calculations in datasetWeb Recom.2 is relatively large



because the large ratio between its dimensionality and its number

of bags makes distance filtering relatively more challenging.

Overall, the experiments indicate that FALCON is effective across

the numbers of dimensions or dataset sizes. The benefits are the

greatest when the dataset is large (with many data instances and

bags), as the large number of distance calculations in such settings

provide a large room for the filters to take effects.

5 CONCLUSIONS

This work studies Citation KNN and proposes FALCON as a practi-

cal replacement of Citation KNN with one or two orders of mag-

nitude speedups. FALCON detects and avoids unnecessary calcu-

lations via carefully designed multi-level filtering and heap opti-

mization. Experiment shows that, FALCON reduces 84–99.8% dis-

tance calculations and achieves 6–334X speedups without affect-

ing the results of Citation KNN. FALCON shows the promise as

a drop-in replacement of Citation KNN for practical MIL stud-

ies and applications. (The source code of FALCON is available in

https://www.github.com/PICTureRG/FALCON)
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