Exploiting Statistical Correlations for Proactive Prediction of
Program Behaviors

Yunlian Jiang, Eddy Z Zhang', Kai Tianf, Feng Maof, Malcom Gethers', Xipeng Shen',
Yaoqing Gao*
fComputer Science Dept., The College of William and Mary, Williamsburg
* IBM Toronto Lab

Abstract

This paper presents a finding and a technique on program be-
havior prediction. The finding is that surprisingly strong statisti-
cal correlations exist among the behaviors of different program
components (e.g., loops) and among different types of program-
level behaviors (e.g., loop trip-counts versus data values). Fur-
thermore, the correlations can be beneficially exploited: They
help resolve the proactivity-adaptivity dilemma faced by exist-
ing program behavior predictions, making it possible to gain the
strengths of both approaches—the large scope and earliness of
offline-profiling—based predictions, and the cross-input adaptivity
of runtime sampling-based predictions.

The main technique contributed by this paper centers on a new
concept, seminal behaviors. Enlightened by the existence of strong
correlations among program behaviors, we propose a regression-
based framework to automatically identify a small set of behaviors
that can lead to accurate prediction of other behaviors in a program.
We call these seminal behaviors. By applying statistical learning
techniques, the framework constructs predictive models that map
from seminal behaviors to other behaviors, enabling proactive and
cross-input adaptive prediction of program behaviors. The predic-
tion helps a commercial compiler, the IBM XL C compiler, gener-
ate code that runs up to 45% faster (5%—13% on average), demon-
strating the large potential of correlation-based techniques for pro-
gram optimizations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—optimization, compilers

General Terms Performance, Measurement

Keywords Program behavior prediction, Dynamic optimizations,
Seminal behaviors, Feedback directed optimizations, Program be-
havior correlations

1. Introduction

Accurate prediction of program behaviors is the basis of various
program optimizations. Program behaviors in this paper refer to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CGO’10, April 24-28, 2010, Toronto, Ontario, Canada.

Copyright © 2010 ACM 978-1-60558-635-9/10/04. . . $5.00.

operations of a program and the ensuing activities of the computing
system, in relation to the input and running environment. Exam-
ples include memory references, data values, function calling fre-
quencies, and so on. The prediction of program behaviors critically
determines how optimizers transform a program and the resulting
performance. As the complexity in modern hardware and software
continuously grows, accurate behavior prediction becomes both
more important and more challenging than before.

Besides accuracy, two other properties of behavior prediction
are essential for optimizations: scope and timing. The scope of a
prediction may be a small execution interval, a loop, a procedure,
or the entire program. The larger the scope is, the more likely
the optimizer is able to avoid local-optimum traps when making
optimization decisions. The third property, the timing of prediction,
refers to when a prediction can occur. The earlier the prediction
occurs, the earlier an optimization can happen, and the larger the
portion of the execution that may benefit from the resulting code.
We also call the earliness the proactivity of a prediction.

In existing program optimizers, behavior predictions are based
on either training runs (in profiling-based optimizers) or runtime
sampling (in runtime optimizers). Their strategies are essentially
the same: using the behaviors of a program component (e.g., a
procedure or loop) observed previously (in either a training run
or the earlier part of the current execution) to predict the future
behaviors of the same component. This strategy, although effective
for many programs, can lead to a proactivity-adaptivity dilemma:
Predictions based on training runs have a large scope and good
proactivity, but cannot adapt to input changes, whereas, predictions
based on runtime sampling have good adaptivity but limited scope
and proactivity.

Recent studies show that prediction based on program inputs
may gain the strengths of both approaches, improving optimiza-
tions significantly. For instance, improvements of 7%-21% have
been observed on a variety of Java programs [14]. However, that
approach relies on programmers’ manual specifications on program
inputs. An automatic solution to the proactivity-adaptivity dilemma
remains an open question.

In this paper, we attack the problem by exploiting the correla-
tions among the behaviors of program components. The intuition
is simple. Consider the trip-counts (number of iterations) of two
loops, L1 and L2. Suppose that they strongly correlate with each
other (e.g., the trip-counts of L1 are always about double those of
L2). Then, as soon as the trip-counts of one of them become known
in an execution, the trip-count of the other will be easily predicted.

A set of questions must be answered for using those correlations
for behavior prediction. How common are such correlations in

programs? How can they be identified? And how can they be
exploited?

This paper presents our explorations in answering those ques-
tions. It first reports a systematic measurement (Section 2), showing
that strong statistical correlations exist not only among the behav-
iors of different program components commonly, but also among
different types of program-level behaviors (e.g., loop trip-counts
versus data values).

It then introduces a technique to exploit the correlations for pro-
gram behavior prediction and optimizations. The technique centers
on a new concept (Section 3.1), seminal behaviors, which refers to
a small set of behaviors that strongly correlate with most other be-
haviors in the program, and meanwhile, expose their values early
in typical executions. Section 3.2 presents a framework for identi-
fying seminal behaviors and building predictive models that map
from seminal behaviors to other behaviors. Section 3.3 and Sec-
tion 3.4 discuss how to use seminal behaviors for behavior predic-
tion and program optimizations, respectively. Experimental results
in Section 4 show that seminal behaviors can lead to accurate pre-
diction of several types of program behaviors. The prediction is
distinctive in being both cross-input adaptive and proactive—the
whole-program behaviors can be predicted as soon as the values of
the seminal behaviors get exposed (no later than 10% of the execu-
tion). The prediction helps a commercial compiler, IBM XL C/C++
Enterprise Edition 10.1, generate code that runs up to 45% faster
(5%—-13% on average).

In summary, this work makes three main contributions.

e To the best of our knowledge, this work is the first study that
systematically explores and exploits the statistical correlations
among different types of program-level behaviors for dynamic
program optimizations.

e This work introduces the concept of seminal behaviors and
their identification, laying the foundation for correlation-based
behavior prediction.

e The proposed seminal-behavior-based prediction offers an au-
tomatic way to predict program behaviors proactively and
cross-input adaptively, resolving the proactivity-adaptivity
dilemma in existing techniques.

2. Correlations Among Program-Level Behaviors

In this section, we first present a qualitative view of the behavior
correlations, using an example to illustrate the intuition behind in.
‘We then report the measurement of the correlations in 14 programs,
quantitatively examining the properties and strength of the correla-
tions.

2.1 A Qualitative View

Formally, we define behavior correlations as follows. The behav-
iors of two program components are correlated if, when the inputs
to the program change, their values vary together in a way not ex-
pected on the basis of chance alone.

The existence of behavior correlations is due to the connections
inherent in program code. Take Figure 1 as an example. It outlines a
simplified code for mesh generation. The “main” function invokes
a recursive function “genMesh” to create a mesh for the vertices
listed in an input file. Before the creation, it reads vertices and a
reference mesh in the function “mesh_init” in preparation; after the
creation, it verifies the generated mesh in the function “verify”.

The example illustrates both deterministic and non-deterministic
connections among program behaviors. A deterministic example is
the relation between the value of “vN” and the trip-counts of the
two “for” loops in “mesh_init”. Once the value of “vN” is known,
the numbers of the iterations are easily determined. Similar re-

lations exist between “vN” and the number of times the recursive
function “genMesh” is invoked, and the size of the vertex array “v”.
A non-deterministic connection exists between the “while” loop in
the function “mesh_init”and the “for” loop in the function “ver-
ify”. Although these two loops tend to have the same trip-counts,
they may differ with each other when the generated mesh is wrong.
Some of these relations may be detectable by compilers, but many
of them are undetectable because of the complexities in pointer
analysis, alias analysis, and interprocedure analysis.

The existence of the correlations can be explained from another
perspective. For a given program in a given environment, all the
behaviors essentially stem from the same entity—the inputs to the
program. They are hence likely to correlate with one another (al-
though do not necessarily correlate, if two behaviors stem from the
different parts or features of an input) .

2.2 Quantitative Measurements
2.2.1 Methodology

Behaviors under Study In this experiment, we concentrate on
the following program-level dynamic behaviors: loop trip-counts
(numbers of iterations), procedure calling frequencies, the number
of times a basic block is accessed (data profiles), the counts of cer-
tain values from some special expressions, referenced by the nodes
and edges in the control flow graph, (edge profiles and node pro-
files, respectively), which are important for program optimizations
(judged by the IBM XL C/C++ compiler v10.1). We choose these
types of behaviors because of their importance for program opti-
mizations. In fact, the final three kinds of profiles compose the en-
tire feedback the IBM XL compiler uses for its profiling-directed
compilation. The other two kinds of behaviors are important for
loop optimizations and function inlining.

We collect the loop trip-counts through a modified GCC (v4.3.1),
and obtain the calling frequencies through GNU gprof (v2.19). The
machine is equipped with Intel Xeon 5310 quad-core processors
running the Linux 2.6.22 operating system. We get the other three
kinds of profiles using IBM XL C/C++ Enterprise Edition 10.1 on
IBM Power5 processors (with the IBM AIX 5.3.8 operating sys-
tem installed). The compiler is the primary commodity compiler
on AIX platforms. The use of two different platforms offers the
opportunity for studying the correlations between the behaviors of
a program on different platforms.

Programs Table 1 lists the programs used in our experiments.
They include 14 C programs in SPEC CPU2000 and SPEC CPU2006.
We include no C++ or Fortran programs because the instrumentor
we implement (the modified GCC) currently works only for C pro-
grams. We exclude those programs that are either similar to the
ones included (e.g., bzip2 versus gzip) or have special require-
ments on their inputs and make the creation of extra inputs (which
are essential for this study) very difficult.

Although each benchmark comes with several sets of inputs by
default, more inputs are necessary for a systematic study of statisti-
cal correlations. We collect more inputs as shown in the fourth col-
umn of Table 1. During the collection, we try to ensure that the in-
puts are typical in the normal executions of the benchmarks. Specif-
ically, we collect those inputs by either searching the real uses of
the corresponding applications or deriving the inputs after gaining
enough understanding of the benchmark through reading its source
code and example inputs. Some of those inputs come from Ama-
ral’s research group [6]. The sixth column of Table 1 shows the
changes that different inputs brought to the loop trip-counts, re-
flecting the large differences among those inputs.

main(int argc, char * argv){

Fn.esh_init (dataFile,mesh,refMesh);
genMesh (mesh,0,mesh->vN);
verify (mesh, refMesh);

}

/I recursive mesh generation
void genMesh (Mesh *m, int left, int right){

Mesh * mesh_init
(char * initinfoF, Mesh* mesh, Mesh* refMesh)

{

FILE * fdata = fopen (initlnfoF, uru);

fscanf(fdata, "%d\n", &vN);

mesh->vN = vN;

v = (vertex*) malloc (VN*sizeof(vertex));
/I read positions of vertices
for (i=0; i<vN; i++) {

if (right>3+left){

genMesh (m, left, (left+right)/2);

genMesh (m, (left+right)/2+1, right);
.}

.

void verify (Mesh *m, Mesh *mRef){

fc;.r.(i=0; i< m->edgesN; i++){

=
}

fscanf(fdata, "%f %f\n", &v[il.x, &v[il.y);

//"s;oﬂ vertices by x and y values
for (i=1; i< vN; i++){
for (j=vN-1; j>=i; j--X

}
while (feof(fd))}

}

/’: .read edges into refMesh for

later verification */

Figure 1. A simplified mesh generation program.

Table 1. Benchmarks

Program Factor of changes Mean corr coef from loop to
name description lines | inputs | loops caused by inputs || loop | call | edge | node | data
ammp Computational Chemistry 13263 20 425 9.9 x 10* || 1.00 | 0.97 | 0.97 | 0.91 | 1.00
art Image Recognition / Neural Networks 1270 108 101 4.0 x 10* [1.00 | 1.00 | 0.99 | 0.88 | 0.70
crafty Game Playing: Chess 19478 14 425 4.6 x 10° || 0.99 | 0.97 | 1.00 | 0.99 | 0.98
equake | Seismic Wave Propagation Simulation 1513 100 106 1.0 x 107 1.00 | 1.00 | 0.99 | 0.15 | 1.00
gap Group Theory, Interpreter 59482 12 | 1887 1.1x10% [[099 [098 | 0.93 | 0.77 | 0.91
gcc C Compiler 484930 72 | 7615 1.1x 10° [098 [0.98 | 0.97 | 0.94 | 0.92
gzip Compression 7760 100 223 43x107 || 098] 094 | 095 | 0.86 | 0.98
h264ref | Video Compression 46152 20 | 2074 2.1 x 10° 1.00 | 1.00 | 1.00 | 0.98 | 1.00
Ibm Fluid Dynamics 875 120 27 6.0 x 10° || 1.00 | 0.93 | 1.00 | 1.00 | 1.00
mcf Combinatorial Optimization 1909 64 76 1.4x10° [094 1099 | 0.99 | 030 | 1.00
mesa 3D Graphics Library 50230 20 995 2.0 x 10" || 1.00 | 1.00 | 1.00 | 0.28 | 1.00
milc Physics / Quantum Chromodynamics 12837 10 473 2.1x10%][0.98 | 0.98 | 1.00 | 0.70 | 1.00
parser Word Processing 10924 20 | 1350 2.1x10° [[0.99 | 1.00 | 0.99 | 0.97 | 0.98
vpr FPGA Circuit Placement and Routing 16976 20 435 3.9%10° [[0.99 | 0.98 | 0.99 | 0.84 | 0.64

2.2.2 Calculation of Correlations

We use the standard way in statistics, the Pearson product-moment
correlation coefficient [10], to quantify the correlations. Let X and
Y represent two behaviors of a program, such as the trip-counts of
two different loops. Suppose we run the program for n times, each
time on a different input data set. We get n measurements of both
X and Y, written as x;, y; where ¢ = 1,2, ..., n. The correlation
coefficient of X and Y is calculated as follows:

> (i —7)(yi —)

(n—1)sxsy

Xy =

where, Z and § are, respectively, the mean values of X and Y, and
sx and sy are the sample standard deviation of X and Y.

The value range of correlation coefficients is [-1,1]. The abso-
lute value of a correlation coefficient indicates the strength of a
linear relationship between two random variables. The higher the
absolute value is, the stronger the relationship is.

Correlation coefficients cannot directly reflect the non-linear re-
lationship between behaviors. (The regression to be presented in
Section 3 captures some of those relationships.) But that limita-
tion does not affect the conclusion of the experiment: The observed

correlations already confirm the common existence of strong cor-
relations among program behaviors, as shown next.

2.2.3 Measurement Results

In this section, we first report the correlation coefficients among
the trip-counts of different loops and then describe the coefficients
from loops to other types of behaviors. The concentration on loops
is because of their importance in programs and their critical roles
in the exploitation of correlations, as Section 3 will describe. In all
measurements, we ignore the behaviors that have never occurred in
any of the executions (correlations among them are trivially 1).

Inter-Loop Coefficients In the study of correlations among loops,
we compute the correlation coefficients between the trip-counts of
every pair of loops. For each loop, we find the highest correlation
coefficient between this loop’s trip-counts and all the other loops’.
We refer to such coefficient as the inter-loop coefficient of this loop.
If its inter-loop coefficient is high, this loop’s trip-count is likely
to be able to be predicted accurately as soon as the trip-count of
the other loop is known. The seventh column in Table 1 shows the
average of the absolute values of such coefficients across all loops
in each program. All numbers are greater than 0.98 except 0.94 for

mcf. Since the maximal correlation coefficient is 1, the inter-loop
correlations are remarkably strong.

More detailed information on the correlations appears in the first
column of Figure 2. Each pie shows the distribution of the values of
the correlation coefficients. The dominance of the high coefficients
further confirms the common existence of strong correlations be-
tween loop trip-counts.

Loops and Others We measure the correlation coefficients be-
tween loop trip-counts and each of the four other types of behav-
iors: procedure calling frequencies, edge, node, and data profiles.
The corresponding correlations are respectively denoted as loop-
call, loop-edge, loop-node, and loop-data.

For each target behavior (e.g., the calling frequency of a pro-
cedure), we compute the correlation coefficients between the trip-
counts of every loop and this target behavior. The highest value is
taken as the coefficient from loops to this target behavior. It (par-
tially) reflects the possibility to predict the value of the target be-
havior from a loop.

The rightmost four columns in Table 1 report the average of
such coefficients for each type of behaviors. The loop-call and
loop-edge coefficients are all greater than 0.93. The loop-node
coefficients are the lowest among the four, smaller than 0.84 for
five programs. The main reason is the many conditional statements
in their source code. The loop-data coefficients are higher than 0.92
for most of the programs. The two exceptions are programs, art
and vpr, 0.7 and 0.64 respectively. The rightmost four columns of
Figure 2 reveal the distribution of those coefficients.

Summary and Implications This section shows that even though
conditional branches in a program sometimes weaken the correla-
tions between loops and basic block execution frequencies, overall,
strong statistical correlations exist between loop trip-counts, and
from loop trip-counts to other types of behaviors. It suggests the
possibility of using the correlations for runtime behavior predic-
tion. When the values of certain types of behaviors of some pro-
gram components (e.g., a set of loop trip-counts) are exposed in
an execution, we may use them as the predictors of the behaviors
of other (to-be-executed) components in the program. This kind of
prediction is both proactive, occurring before the execution of the
other program components, and adaptive, being specific to the cur-
rent input data set.

The usefulness of the prediction is determined by its accuracy
and how early the predictors expose their values. The next section
describes a framework for identifying the appropriate set of predic-
tors and the use of them for program optimizations.

3. Exploitation of Behavior Correlations

In this section, we describe a framework and a set of techniques
for exploiting the correlations revealed in the previous section. The
framework has two functions: 1) to find the small set of behaviors
that expose their values early in an execution and strongly correlate
with other behaviors in the execution; 2) to build predictive models
that capture the correlations among program behaviors. At the
center of the framework is the concept of seminal behaviors.

3.1 Concept of Seminal Behaviors

Roughly speaking, seminal behaviors are those behaviors that are
suitable to be used for predicting other behaviors. Before presenting
the formal definition, we need to introduce two concepts.

DEFINITION 1. For a given set of behaviors B and a threshold r,
a set of behaviors S is a predictor set of B if there is a mapping
Sunction f from S to B such that the average Euclidean distance
between f(Vs) and Vg is less than v, where Vs and Vi are the
values of S and B.

DEFINITION 2. Let S be a predictor set of a given set of behaviors
B of a program G. In an execution of G, let B' represent the subset
of B whose values are exposed after the exposure of the values of
S. The earliness of S in that execution is defined as |B'| /| B|.

In these two terms, we express the definition of seminal behav-
iors as follows.

DEFINITION 3. For a given set of behaviors B of a program G,
a seminal behavior set, S, is a predictor set of B whose earliness,
averaged across all executions of G, is the highest among all the
predictor sets of B. Each member of S is called a seminal behavior.

The definition suggests two properties of a seminal behavior set.
First, it leads to accurate prediction of other behaviors. Second, it
enables the earliest (on average) prediction among all B’s behavior-
predictor sets. These two properties make a seminal behavior set
desirable for the uses in proactive and cross-input adaptive predic-
tion of program dynamic behaviors.

3.2 Identification of Seminal Behaviors

The concept of seminal behaviors suggests that whether a behavior
is a seminal behavior depends on B, the behaviors to be predicted.
In this work, we concentrate on those five types of behaviors (loop
trip-counts, calling frequencies, edge, node, data profiles) listed in
Section 2.2.1.

A brute-force way to identify seminal behavior sets is to enu-
merate every possible subset of the program’s behaviors, try all
kinds of mapping functions, and consider all executions of the pro-
gram. The high complexity suggests the need for heuristics and
approximations. We employ a heuristics-based framework as de-
scribed next.

Candidate Behaviors Rather than consider all kinds of behav-
iors, we select two types of behaviors as the candidates for seminal
behaviors. The first is program interface behaviors, which mainly
include the values directly obtained from program inputs. Specif-
ically, this type of behaviors include the values obtained directly
from command lines' and file operations. We ignore the content of
a file if the corresponding file operations are within a loop whose
trip-count is either large (greater than 10 in our experiments) or un-
known during compile time. Those data are likely to be a massive
data set for processing; their values may not influence the coarse-
grained behaviors much, but including them may significantly in-
flate the candidate behavior set and complicate the recognition of
seminal behaviors. Instead, we include the trip-counts of those sur-
rounding loops as they often reflect the size of the data set. We also
record the size of input files, obtained through file descriptors, as
another clue of the size of data. All these behaviors together form
a set called the interface behavior set.

The second type of behaviors we include are the trip-counts
of all the loops (beside those that are already counted as interface
behaviors) in the program. This inclusion is due to the importance
of loops and the correlations the previous section shows.

Computation of Predictive Capability From the definition of
seminal behaviors, we know that they must be able to lead to accu-
rate prediction of other behaviors. For a given set of behaviors B,
we define predictive capability of a set S as the number of behav-
iors in the set B — S that can be predicted from S with an accuracy
above a predefined threshold (80% in this study).

For the reduction of complexity, we take a simplification as
follows. We limit B to loop trip-counts during the examination of

n this work, we assume that the applications are C programs with inputs
coming from command lines. The analysis can be applicable to other pro-
grams with interactive features; details are out of the scope.

corr-coefs from loop to

loop call
ammp
art
crafty
equake
gap
gcc
gzip
h264ref
lbm
mcf
mesa
milc
parser
vpr

Bo-s Bl o-7

CICICICICICICICICICICICICIC

I@@@@@@@@@@@@@@

7-

data node edge

wIChvl 1 JCICIICivI JCIGIC
JICICICICICICICICICICICIIC

WECICICICICICICICICICICICICAC,

8-9 []9-1

Figure 2. Distribution of values of correlation coefficients.

the predictive capability of different candidate behavior sets. The
intuition is that because there are strong correlations between loops
and other types of behaviors, the sets selected in this way are likely
to show good predictive capability on other types of behaviors as
well. The results in Section 4 confirm this intuition.

The computation of predictive capabilities in our experiments
is based on the standard 10-fold cross-validation [10]. It works
iteratively. Suppose we did N profiling runs of a program, and
obtained NV instances of S and B. In each iteration, 9/10 of the NV
instances are used to construct predictive models from S to B, and
the other 1/10 are used to test the model for prediction accuracy.

Next, we describe the framework for seminal behavior identifi-
cation first, and then explain the construction of predictive models.

Identification Framework A brute-force way to identify seminal
behaviors is to compute the predictive capability and earliness of
every subset of candidate behaviors and choose the best one. To
circumvent the exponential complexity, we take an incremental
approach, which gradually builds a number of affinity lists. An
affinity list is a list consisting of two sets of behaviors, a header set
and a body set, such that the values of the behaviors in the header
can lead to accurate prediction of the values of those behaviors in
the body.

The construction of affinity lists proceeds as follows. It starts
with the set of interface behaviors, because of their earliness and
direct connections with program inputs. It ignores those interface
behaviors that have constant values across all training runs as they
are irrelevant to behavior variances among different runs. It then
uses the remaining interface behaviors as predictors, builds predic-
tive models from them to each loop trip-count. The loop trip-counts
that can be predicted accurately are put into the body of the first
affinity list. All the interface behaviors that appear in the predictive
models are put into the header of that affinity list. The first column
in Figure 3 illustrates the result of this step on a program mcf.

list O list 1 list 6
Interface: LoopID17 . mm
filesize LoopID19 _
flow_cost LoSiﬁlD43
new_arcs LooplD25
net.n_trips

net.iterations
i

LoopID1
LoopID13
LoopID23

Figure 3. The affinity lists of program mcf.

The construction process then selects, in an order shown next,
one of the remaining candidate behaviors as the header of the sec-
ond affinity list, computes the predictive capability of this header
on the remaining behaviors, and adds the predictable ones into the
body of the second affinity list. This process continues until no can-
didate behaviors are left. For the program mcf shown in Figure 3,
the process constructs 6 affinity lists; the last one has an empty
body. An affinity list with an empty body means no behaviors are
predictable from its header.

In our experiment, the order, in which loop behaviors are se-
lected, is the order of the time when the trip-counts of the loops get
exposed. (The average order is used when there are two or more
training runs.) This is to maximize the earliness of the resulting
seminal behavior set.

The union of the headers of the affinity lists forms a possible
seminal behavior set as all other candidate behaviors are predictable
from it. These header sets may be ranked in a descending order
of the sizes of their bodies. The exclusion of the low-rank header

sets may have little influence on the prediction of most behaviors.
Section 4 examines the trade-off of the size and the predictive
capability of those sets.

We note that the headers of the affinity lists essentially embody
a kind of characterization of program inputs: Each of the headers
reflects some aspects or attributes of the inputs; together they de-
termine most of the program’s behaviors.

Predictive Models In this part, we describe some details of the
construction of the predictive models used during the identification
process. We employ two standard regression techniques, namely
LMS linear regression and Regression Trees [10]. The former han-
dles linear relations among behaviors, the latter for non-linear re-
lations. The construction process applies Regression Trees only
if the linear regression results are not good enough (automati-
cally assessed through cross-validation). During the construction
of the first affinity list, the standard forward stepwise feature se-
lection [10] is used so that only important interface behaviors are
stored in the header.

Both LMS and Regression Trees models are efficient to build
and use. The resulting models are represented by only a small num-
ber of coefficients (for linear models) and questions (for Regression
Trees). (We limit the tree size to be no greater than 10.) A specially
appealing feature of Regression Trees is that it handles both numer-
ical and categorical values smoothly.

Discussions There are several points worth mentioning. First, as
we mentioned earlier, static analysis cannot capture many rela-
tions because of the complexities in the program, and difficulties
in pointers and aliases analysis. But its integration into our frame-
work may help reduce certain overhead by revealing some definite
connections.

Second, the accuracy threshold used in the construction of affin-
ity list determines the number of resulting affinity lists. The appro-
priate value depends on the ultimate use of the prediction. We take
80% as the threshold for our experimental exploration.

Finally, using multiple behaviors rather than a single behavior
as the header in each affinity list (besides the first list) may improve
the prediction accuracy. However, the large number of possible
combinations of behaviors would significantly increase the training
cost. Detailed explorations are out of the scope of this paper.

3.3 Uses for Behavior Prediction

Using seminal behaviors for behavior prediction is straightforward.
It just needs to build a predictive model mapping from the values
of the seminal behaviors to those of the target behaviors. We em-
ploy the same regression techniques as described in the previous
paragraph for the model construction. In a new execution, as soon
as the values of the seminal behaviors are exposed, the models will
be able to immediately predict the values of the target behaviors,
hence enabling proactive, cross-input adaptive prediction, opening
new opportunities for dynamic optimizations.

3.4 Uses in Program Optimizations

As shown in the previous sections, a small set of seminal behaviors
are enough to produce reasonably accurate prediction for various
types of behaviors, suggesting the potential of seminal behaviors
for input-specific program optimizations. This section discusses the
uses.

For programs running in a managed environment, such as Java
Virtual Machines (JVMs), the seminal behaviors-based prediction
may help the Just-In-Time (JIT) compilers make better decisions
on the timing and parameters in method optimizations. During an
offline profiling process, the seminal behaviors of an application
and the predictive models for certain kinds of program behaviors
can be determined using the approach described in Section 3.2.

After that, when a new run of the application launches on a new
input, the runtime system can use the predictive models to predict
how the application will behave in the rest of this run as soon
as the values of the seminal behaviors get exposed in the current
execution. The JIT compiler can then optimize the application in a
way that best suits the predicted behaviors. This process is similar
to many dynamic optimization systems (such as JVMs), except
that the knowledge of seminal behaviors makes the optimization
proactive to the major part of the execution. As showed by previous
studies [5, 14], proactive dynamic optimizations may outperform
traditional reactive schemes significantly.

For programs written in imperative languages, such as C, semi-
nal behaviors may boost the effectiveness of dynamic code version
selection for performance improvement. Dynamic code version se-
lection is a technique for enabling the adaptation of program opti-
mizations on input data sets [9]. The default scheme works in this
way. For each function, the compiler generates several versions us-
ing different optimization parameters. At run time, those versions
are used and timed in the first certain number of invocations of a
function; the version taking the shortest time to run is selected for
the rest of the execution. The reliance on runtime trials of differ-
ent versions makes the technique hard to apply to the functions that
have very few invocations in a run. (Such functions could contain
major loops and be important for the program execution.) If we can
build a mapping from the values of seminal behaviors to the suit-
able versions during training time, we can immediately predict the
best version to use for a real run as soon as the values of seminal
behaviors get exposed in that run. In this way, we do not need the
trials of the different versions in real runs, hence circumventing the
limitations the default scheme has.

4. Evaluation

This section first reports the identified seminal behaviors and their
effectiveness in predicting other behaviors, and then examines the
potential of the prediction for performance improvement through
profile-directed-feedback (PDF) compilation by the IBM XL com-
piler. (Section 2.2.1 has described the platforms and programs we
use.)

Seminal Behaviors and Prediction Accuracy Table 2 reports the
accuracy of seminal-behavior-based behavior prediction. The data
in the table are organized in four sections. The first (leftmost) sec-
tion corresponds to the case when only the interface behaviors are
taken as seminal behaviors, the second and third sections corre-
spond to the cases when the seminal behavior sets also include the
other affinity headers (all are loop trip-counts) whose earlinesses
are over 90% and 80%, respectively. The rightmost section corre-
sponds to the case when the headers of all affinity lists are included
in seminal behavior sets.

In each section, the column “num” lists the sizes of the seminal
behavior sets, and the other columns show the average accuracy
when we use the seminal behaviors to predict each of the five types
of behaviors. The standard 10-fold cross-validation [10] is used so
that each time the testing and training data have no overlap.

We first discuss the overall average. With just interface values,
the loop and data behaviors can be predicted with an over 92%
accuracy, while the accuracies on the other three types of behaviors
are from 69% to 82%. Because the values of all interface behaviors
get exposed in the first 1%-3% portion of every execution, this
case has very high earliness. When we sacrifice some earliness
to allow certain loop behaviors get exposed and used along with
the interface values for prediction (the 90% case), the accuracies
improve by about 3% for loop trip-counts and data profiles, 7% for
function invocations and node profiles, and 10% for edge profiles.
However, when more loops are used for prediction, the prediction

accuracies increase only a little. For some programs, the accuracies
even become worse. The diminishing benefits are due to the well-
known curse of dimensionality in statistical learning—too many
predictors cause overfitting to the models.

We now concentrate on the “earliness > 90%” section in Ta-
ble 2. All programs show high prediction accuracies on loop trip-
counts and data profiles. Several programs show modest accuracies
on the other three types of behaviors, mainly because of the large
numbers of conditional statements in those programs. An extreme
example is mesa. Its two largest files are get.c and eval.c. There are
5 switch-case statements with 1008 cases in get.c, and 231 cases
and 108 “if” statements in eval.c. So many branches make it hard
to predict the execution paths to a given node in control flow, which
explains the low prediction accuracy of its node profiles. It is con-
sistent with the low correlations between loops and node profiles
shown in Table 1.

Not all prediction accuracies are consistent with the correla-
tions in Table 1. For example, mcf has very low correlations be-
tween loops and node profiles, but shows 90% prediction accu-
racy for node profiles. This inconsistency is because as mentioned
earlier, correlation coefficients cannot capture non-linear relations,
whereas the prediction models can. On the other hand, even though
crafty shows high correlation coefficients between loops and node
profiles, the prediction accuracy of node profiles is only 45%. One
reason for the inconsistency is that some important loops are miss-
ing in the seminal behavior set because their trip-counts get ex-
posed late. When all headers of the affinity lists are used, the ac-
curacy boosts to 61%. Another reason for the modest accuracy is
the small number of inputs crafty has. More inputs and improved
seminal behavior identification can possibly improve the prediction
accuracy.

As one of the most complex benchmarks, the program gcc is
worth a detailed examination. This GNU general-purpose compiler
includes hundreds of command-line options, 130 files, 484,930
lines of code. Besides the complexity of its code, its inputs—
C programs—are also very difficult to characterize, as shown in
previous work [12].

In our work, the seminal behavior identification process marks
48 interface behaviors, from which, four are identified as seminal
behaviors because of their strong correlations with loop trip-counts.
Among the 7,615 loops of gcc, the process constructs 129 affinity
lists with one loop in each list header. The values of 50 out of
the 129 headers get exposed in the first 10% portion of each gcc
execution. After they are added into the seminal behavior set, the
prediction accuracy for almost all types of behaviors jumps to over
93% (except 86% for function invocations). Given the complexity
of gcc, these results offer an especially strong evidence of the
feasibility of seminal behaviors for proactive, cross-input adaptive
prediction of program behaviors.

As to the overhead, the main time is on the training process,
including the identification of seminal behaviors and the construc-
tion of predictive models. But since the training happens during
offline, the overhead is not critical. The prediction of a behavior
using the predictive models takes little time, as it only requires the
computation of a linear expression and possibly several conditional
checks (for Regression Trees). In our experiments, the prediction
of the 7,615 loops of gcc takes the longest time, but still finishes
within 11 milliseconds. The next section demonstrates the practical
usefulness of seminal behaviors in program optimizations.

Potential for Performance Improvement. We examine the poten-
tial of seminal behaviors for performance improvement through the
PDF (profile-directed-feedback) compilation offered by the IBM
XL C compiler.

The default PDF compilation works in two steps. For a given
application, the compiler first instruments it (through the option “-

qpdf1”’) and lets users run it on a training input. That run generates
a file, containing three sections that correspond to the node, edge,
and data profiles mentioned in Section 2.2.1. The compiler then
recompiles the application using the profiling results as feedback
(through the option “-qpdf2”).

To examine the usefulness of seminal behaviors, we let the XL
compiler do PDF compilation using those predicted profiles. We
compare the performance of the resulting code with that of the
static compilation (on the highest optimization level) and the PDF
compilation on real profiles. Figure 4 shows the results (average of
5 repetitions; negligible variances observed). Because the speedup
of a program varies across inputs, we show the range of speedup,
with the performance of static compilation as the baseline, on all
inputs in each bar.

It is worth mentioning that unlike the predicted profiles, the real
profiles are typically not usable by the compiler in production runs
as they are not available until the finish of the execution. So the
right bars in Figure 4 essentially show the speedup in the ideal case.
The occasional better performance from predicted profiles than that
from real profiles is due to the imperfect design of the compiler. It is
no surprise given the extreme complexity in compiler construction.

On average, the programs produced by predicted profiles achieve
6%—15% speedup, within 2% distance from the speedup real pro-
files can bring (the right bars). The up to 14% speedup of GCC
specially demonstrates the potential of seminal behaviors for input
characterization.

5. Discussions

Seminal-behavior-based prediction may occasionally exhibit low
accuracies. It would be desirable to prevent such predictions from
negative affecting program optimizations. One option is to check
the prediction accuracy by observing the behaviors exposed during
an execution and either correct or disable the predictions for other
behaviors accordingly. The other option is to adopt the discrimina-
tive scheme [14], which assesses the predictive capability of a sem-
inal behavior set through history runs and use the set for prediction
only if its assessment result passes some confidence threshold.

We note that proactive behavior prediction complements rather
than conflicts with reactive prediction and program phase detec-
tions. Program phases can be treated as a special kind of behaviors
to be modeled and predicted by the framework. A system with both
proactive and reactive schemes may predict large-scope behaviors
early, and meanwhile, adapt to program or environment changes
quickly.

6. Related Work

This work makes the following main contributions: the uncovering
of the strong correlations among the behaviors of different program
components and among different types of program behaviors, and
the introduction of seminal behaviors and the uses of them for
cross-input proactive prediction of large-scope program behaviors.
This section summarizes the previous studies related to each of
them.

Correlations between Program Components We are not aware of
any prior studies on systematically exploring and exploiting statisti-
cal correlations between the behaviors of different program compo-
nents. Previous explorations on the connections between program
components mainly concentrate on static analysis [1,2], including
data-flow analysis, symbolic analysis, and so on. The connections
revealed in those analyses typically have a limited scope, because
of the difficulties in pointer analysis and alias analysis.

Correlations between Different Types of Behaviors Previous
studies (e.g., [3, 15]) have observed strong correlations between

Table 2. Numbers of Seminal Behaviors and Prediction Accuracies

Prog interface values earliness > 90% earliness > 80% all headers
num accuracy num accuracy num accuracy num accuracy

loop| callledge[node|data loop| callledgenode|data loop| callledge[node|data loop| callledgenode|data
ammp 1(99.5196.7| 100{91.1(99.7| 1{99.596.7| 100[91.1{99.7| 1]99.5/96.7| 100{91.1|99.7| 1{99.5/96.7| 100|91.1{99.7
art 4191.0/96.8| 100(82.0(96.8| 4{91.1]96.8| 100{80.0{96.1| 4/89.7|93.4 100]80.1/96.2] 5(90.4/88.1| 100| 85.2(96.3
crafty 1/89.9|58.9/88.2[35.5(76.0] 2(91.163.0/90.8/44.5(79.3| 4/93.0|70.8(90.5|58.2|84.7| 6]93.6/72.6/89.7| 61.3]85.6
equake 1]98.0 100| 100{96.3199.3| 1]98.0| 100| 100{96.3|199.3| 1(98.0| 100| 100{96.3(99.3| 1]|98.0| 100| 100|96.3|99.3
gap 2(97.5/44.9/11.9/44.2(76.6] 7/99.5|78.7|56.3|69.7|88.5| 8|99.6(79.7/59.0| 71.6/89.2| 8[99.6|79.7|59.0] 71.6(89.2
gcc 4182.9|138.9/56.2| 61.0[78.5| 54({97.0[86.1]{93.6]95.4/95.6| 92(99.2(94.9/98.8| 100(99.1| 133]99.394.9/97.8| 100(99.4
gzip 3192.2(87.0[84.1{67.594.5| 6[91.6(87.6/83.5/69.0(94.5| 6]|91.6|87.6/83.5/69.0[94.5] 6]91.6/87.6|83.5|69.0(94.5
h264ref 3/99.8(99.898.7/98.8/99.8| 4[99.8(99.7|97.0/97.8(99.7| 4|99.8/99.7/97.0/97.8/99.7| 5]99.8/99.5/98.0| 97.9/99.7
Ibm 3/99.8(90.1| 100 100| 100{ 3]99.8(90.1| 100| 100|{ 100| 3]|99.8|90.1| 100| 100| 100| 3]99.8/90.1| 100| 100| 100
mcf 5(87.3(87.7| 100]92.2(97.8| 10[92.2|191.0| 100|89.5|97.5| 10(92.2|91.0] 100|89.5(97.5] 10]92.2|191.0| 100|89.5|97.5
mesa 1] 100] 100{99.5[12.2] 100] 1| 100| 100{99.5]12.2| 100] 1| 100| 100{99.5|12.2{ 100] 1] 100| 100{99.5| 12.2]| 100
milc 2(79.2|72.1137.1{27.4/93.9| 18]83.0(72.8| 100|52.0(99.7| 21|78.1|66.8| 100|52.1|99.7| 21|78.1|66.8| 100]52.1]99.7
parser 1(90.2|85.4{73.8{75.9(87.6] 2[91.8(88.0/79.2|78.0|90.8| 18|94.0/87.879.5/81.991.0] 23(93.4/86.1|79.3|79.5|88.9
vpr 3193.3[95.1{60.4{ 81.9/94.6] 9[95.2(95.5|64.0| 82.2(95.8| 9]|95.295.5/64.0| 82.2|95.8| 10[95.1|95.1|65.4| 82.2(95.7
Average|| 2.4(92.9|82.4/79.3/69.0(92.5| 8.7[95.0(89.0/90.3|75.5(95.5/13.0/95.0|89.6]90.8| 77.3/96.2(16.6(95.0(89.2|90.9| 77.7/96.1

Benchmarks

Figure 4. Speedups from profile-directed-feedback compilation using predicted profiles (left bars), and real profiles (right bars). The baseline
is the performance by IBM XL compiler with the highest optimization level.

program control flow signatures and hardware-level performance
(instructions per cycle, branch miss rates, cache misses, etc.). Our
work shows that strong correlations also exist between different
types of program-level behaviors. The correlations observed in
previous work are mainly used for performance prediction and
phase detection. The correlations revealed in this current work are
important for guiding program optimizations.

Seminal Behaviors for Cross-Input Adaptation Seminal behav-
ior is a new concept introduced in this work. It allows the proac-
tive prediction of a large scope of behaviors, while also supporting
cross-input adaptation.

Previous work in cross-input adaptation mainly falls into two
categories. The first category treats program inputs explicitly; those
studies manually specify a set of input features that are impor-
tant for the execution of the application, and then use search or
machine learning techniques to derive a model to help the execu-
tion of the application adapt to those features in an arbitrary in-
put. Examples include the parametric analysis for computation of-
floading [17], machine learning-based compilation [12], adaptive

sorting [13]. Because of the required manual efforts, those explo-
rations have been focused on some particular applications. A recent
work [14] proposes the use of specification languages for alleviat-
ing the efforts for general programs, but it still needs certain manual
specifications. Seminal behaviors offer a way to automatic cross-
input adaptation.

The second category of prior work includes the large body of
runtime adaptive optimizations (e.g., [4,7,8, 11,16, 18]). These
techniques deal with input-sensitive behaviors implicitly through
runtime sampling-based reactive behavior prediction. In contrast,
seminal behaviors offer proactive predictions. The comparison has
been discussed in Section 1.

7. Conclusion

In this paper, we have described a systematic exploration on the
correlations among program-level behaviors, and introduced the
concept of seminal behaviors for program behavior prediction. By
employing a set of statistical learning techniques, we empirically

demonstrate the existence of seminal behaviors for a variety of
benchmarks. We evaluate the effectiveness of seminal behaviors
in predicting a set of other kinds of program behaviors on both
code and data levels. The results suggest that seminal behaviors are
promising in automating input-based behavior prediction, offering
new opportunities for the advancement of dynamic program opti-
mizations.

Acknowledgments

We owe the anonymous reviewers our gratitude for their helpful
comments on the paper. This material is based upon work supported
by the National Science Foundation under Grant No. 0720499
and 0811791 and IBM CAS Fellowship. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation or IBM Corporation.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 2nd edition,
August 2006.

[2

—

R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers, 2001.

[3] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and
B. Davies. The fuzzy correlation between code and performance
predictability. In Proceedings of the 37th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 407-420,
2004.

M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney. Adaptive
optimization in the Jalapeno JVM. In Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages
and Applications, Minneapolis, MN, October 2000.

[4

=

[5

[t}

M. Arnold, A. Welc, and V.T. Rajan. Improving virtual machine
performance using a cross-run profile repository. In the Conference
on Object-Oriented Systems, Languages, and Applications, 2005.

[6] P. Berube and J. N. AmaraNI. Additional inputs for SPEC CPU2000.
http://www.cs.ualberta.ca/Eberube/compiler/fdo/inputs.shtml.

[71 W. Chen, S. Bhansali, T. M. Chilimbi, X. Gao, and W. Chuang.
Profile-guided proactive garbage collection for locality optimization.

In Proceedings of PLDI, 2006.

[8] B. Childers, J. Davidson, and M. L. Soffa. Continuous compilation:
A new approach to aggressive and adaptive code transformation. In
Proceedings of NSF Next Generation Software Workshop, 2003.

[9] P. Chuang, H. Chen, G. Hoflehner, D. Lavery, and W. Hsu. Dynamic
profile driven code version selection. In Proceedings of the
11th Annual Workshop on the Interaction between Compilers and
Computer Architecture, 2007.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning. Springer, 2001.

[11] J. Lau, M. Arnold, M. Hind, and B. Calder. Online performance
auditing: Using hot optimizations without getting burned. In
Proceedings of PLDI, 2006.

[12] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature generation
for machine learning based optimizing compilation. In Proceedings of
the International Symposium on Code Generation and Optimization
(CGO), 2009.

[13] X. Li, M. J. Garzaran, and D. Padua. A dynamically tuned sorting
library. In Proceedings of the International Symposium on Code
Generation and Optimization, 2004.

[14] F. Mao and X. Shen. Cross-input learning and discriminative

prediction in evolvable virtual machine. In Proceedings of the
International Symposium on Code Generation and Optimization

(CGO), 2009.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 45-57, 2002.

[16] M. Voss and R. Eigenmann. High-level adaptive program optimiza-
tion with ADAPT. In Proceedings of ACM Symposium on Principles
and Practice of Parallel Programming, pages 93—-102, Snowbird,
Utah, June 2001.

[17] C. Wang and Z. Li. Parametric analysis for adaptive computation
offloading. In Proceedings of ACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages 119—
130, 2004.

[18] R. W. Wisniewski, P. F. Sweeney, K. Sudeep, M. Hauswirth,
E. Duesterwald, C. Cascaval, and R. Azimi. Performance and
environment monitoring for whole-system characterization and
optimization. In PAC2 Conference on Power/Performance Interaction
with Architecture, Circuits, and Compilers, 2004.

