
SpecPMT: Speculative Logging for Resolving Crash Consistency
Overhead of Persistent Memory

Chencheng Ye
Huazhong University of Science and

Technology
Wuhan, Hubei, China
yecc@hust.edu.cn

Yuanchao Xu
North Carolina State University
Raleigh, North Carolina, USA

yxu47@ncsu.edu

Xipeng Shen
North Carolina State University
Raleigh, North Carolina, USA

xshen5@ncsu.edu

Yan Sha
Huazhong University of Science and

Technology
Wuhan, Hubei, China
soyan0408@gmail.com

Xiaofei Liao
Huazhong University of Science and

Technology
Wuhan, Hubei, China
xfliao@hust.edu.cn

Hai Jin
Huazhong University of Science and

Technology
Wuhan, Hubei, China
hjin@hust.edu.cn

Yan Solihin
University of Central Florida

Orlando, Florida, USA
Yan.Solihin@ucf.edu

ABSTRACT
Crash consistency overhead is a long-standing barrier to the adoption
of byte-addressable persistent memory in practice. Despite contin-
uous progress, persistent transactions for crash consistency still
incur a 5.6× slowdown, making persistent memory prohibitively
costly in practical settings. This paper introduces speculative log-
ging, a new method that forgoes most memory fences and reduces
data persistence overhead by logging data values early. This tech-
nique enables a novel persistent transaction model, speculatively
persistent memory transactions (SpecPMT). Our evaluation shows
that SpecPMT reduces the execution time overheads of persistent
transactions substantially to just 10%.

CCS CONCEPTS
• Software and its engineering→ Software reliability.

KEYWORDS
persistent memory, transaction, logging, microarchitecture

ACM Reference Format:
Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin,
and Yan Solihin. 2023. SpecPMT: Speculative Logging for Resolving Crash

∗ Chencheng Ye, Yan Sha, Xiaofei Liao, and Hai Jin are with National Engineering
Research Center for Big Data Technology and System, Services Computing Technology
and System Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575696

Consistency Overhead of Persistent Memory. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3575693.3575696

1 INTRODUCTION
Byte-addressable persistent memory (e.g., PCM [19]) features high
density, byte-addressability, and data persistency [70, 78], allow-
ing software to access durable data in main memory. Experiments
in cloud services [17, 18, 20, 40, 83] and high-performance com-
puting [9, 23, 68] have demonstrated the potential of persistent
memory in building crash-resilient software, improving software
performance, and increasing development efficiency.

Despite the promising potential, crash consistency overheads im-
pose a barrier to the widespread adoption of persistent memory.
Crash consistency is essential for a program to maintain a con-
sistent state of persistent data in memory across crashes. It is a
fundamental requirement for the recoverability and reusability of
persistent data and the resumption of execution. Programmers often
use persistent memory transactions to achieve crash consistency —
transactions provide simple yet powerful semantics of crash-atomic
updates, i.e., they ensure either all or no transactional updates on
persistent memory locations are observable after a crash.

Existing persistent memory transactions, however, incur large
overheads, because of the need to log data updates to provide trans-
actional semantics. For example, the most commonly used imple-
mentation, Intel PMDK, was reported to incur 6× slowdowns to
program executions [30, 71]. This crash consistency overhead must
be substantially lowered before persistent memory becomes attrac-
tive for wide adoption.

This important problem has been the focus of recent studies [5,
13, 14, 63, 69, 71, 76]. Some of the proposed solutions are specially
designed for a certain algorithm or a data structure [9, 52], and are

https://doi.org/10.1145/3575693.3575696
https://doi.org/10.1145/3575693.3575696
https://doi.org/10.1145/3575693.3575696

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

not applicable to general applications. More general solutions in-
clude pure software methods [14, 71] and hardware support [13, 63]
to mitigate the logging overhead. Although these studies have made
important contributions and reduced the logging overheads by as
much as 2.6× [25, 71], crash consistency overheads are still too
large for practical use. As shown in Figure 1, even after applying
state-of-the-art software (SPHT [14]) or hardware (EDE [63]) so-
lutions, the programs in STAMP [53] still suffer from an average
of 50–161% execution time overheads compared to versions with-
out persistent memory transactions. Crash consistency overheads
remain an unsolved problem that presents a barrier to practical
adoption.

23
2%

16
1%46

0%software
solutions

PMDK SPHT

ov
er
he
ad

10%
100%
1000%
10000%

gen
ome
intru

der

kme
ans

-low

kme
ans

-hig
h
laby

rinth ssc
a2

vac
atio

n-lo
w

vac
atio

n-h
igh yad

a

geo
mea

n

Kamino-Tx

EDE (<1KB/core) HOOP (273KB/core)

50
%

29
%

hardware solutions

ov
er

he
ad

0%

50%

100%

genome
intruder

kmeans-low

kmeans-high
labyrinth

ssca2

vacation-low

vacation-high
yada

geomean

Figure 1: After applying the state-of-the-art schemes, pro-
grams still suffer from significant slowdowns over versions
without persistent memory transactions. Software solutions
were evaluated for STAMP benchmark suite [53] on a real
machine (above) and on a simulated hardware (below). De-
tails of the experimental setup are in Section 7.

In this work, we present speculative logging, a novel approach
to reduce crash consistency overheads. The design was motivated
by the fact that the main sources of crash consistency overheads
in persistent transactions are the use of memory fences and the
persisting of data. The design builds upon the key insight that data
can be speculatively logged early, and doing so removes the sources
of performance overheads.

Figure 2 illustrates the basic idea of speculative logging. In a typ-
ical persistent transaction (Figure 2 left), a datum is (undo) logged
before being updated in the transaction. A flush and fence ensure
that the log write persists before the data write. In contrast, specu-
lative logging (Figure 2 right) moves up the logging to a point as
early as the last transaction where the datumwas updated. By doing
that, several benefits are achieved. First, the log write leverages
the commit of the first transaction to persist the log, forgoing the
need for memory fences for persisting the log. Second, it defers the
flush to the transaction commit, making the transaction execute
faster. Third, as the log persists the most recent value of the datum
once a transaction commits, the data write in the same transaction

transaction #1

a = 0

commit

…

transaction #2

a = 1

commit

log old a & flush log

log old a & flush log

timeline for undo logging

a fence after
each log

transaction #1

a = 0

commit’

…

transaction #2

a = 1

commit’

log new a

log new a

timeline for
speculative logging

logging in advance

a fence
on commit

commit():
!"find all updated persistent data
U = findUpdatedPersistData()
foreach e in U:
 clwb(e) !"flush cache line e
sfence

commit’():
!"find the address range of the
persistent log of this transaction
R = findPersistLogRange()
foreach e in R:
 clwb(e) !"flush cache line of e
sfence

Figure 2: Timeline for two consecutive persistent transac-
tions. The undo logging transaction (left) records the old
value of a datum, using multiple fences in a transaction.
Speculative logging transaction (right) records the new value
of the memory location without fences. It persists all log
records but data with only one fence each transaction before
the transaction commits.

becomes optional. If the data write fails to persist, the post-crash
recovery can rely on log records to rebuild the updated data. Thus,
the data write no longer requires a flush [54]. Because persisting
log records involve sequential writes, they have better spatial local-
ity and are faster than persisting data writes (which may be more
random [78]).

Turning this basic idea into a full solution is not trivial. Several
challenges arise for both efficiency and recoverability: How should
the log record be formatted and maintained to enable correct recov-
ery when a crash happens either inside or outside a transaction?
Because the speculative log records must outlive the transaction
commit, how long should the records be kept in the presence of
multiple transactions and repeated data updates? How can useless
log records be identified and reclaimed in a timely and non-blocking
manner?

This paper addresses these questions with two schemes. The first
solution is a software-only solution and is compatible with exist-
ing hardware. It uses novel speculative log management featuring
a compact log format and background memory reclamation, and
a crash recovery protocol based on the compact log format. The
proof-of-concept implementation of the solution achieves about
2.7× speedup over the state-of-the-art in-place solution Kamino-
Tx [51]. However, two key drawbacks remain: (1) memory space
overheads, which is 3× persistent memory space, and (2) the re-
liance on dedicated background memory reclamation threads.

To reduce memory space overheads while preserving perfor-
mance, we propose a second solution with a novel architecture
for a hybrid logging model. The model allows softwares to use

SpecPMT: Speculative Logging for Resolving Crash Consistency Overhead of Persistent Memory ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

speculative logging for hot (i.e., frequently updated) data and undo
logging for cold data. By controlling the threshold of data hotness,
the user can set an arbitrary bound on the size of the speculative log
area. The hybrid logging model also enables a software-hardware
co-designed log reclamation scheme. The log reclamation runs in the
foreground, and therefore does not require dedicated reclamation
threads. This allows softwares to reclaim speculative log records
with a few instructions without blocking other running threads.
Specifically, the speculative log records are sorted in chronological
order and divided into epochs. To track the epoch in which a log
record is created, a few status bits are added to private TLB entries.
By simply clearing the bits associated with a given epoch with new
instructions, the hardware can easily reclaim all the log records
created in the epoch.

Together, these solutions provide an alternative approach to the
current undo logging–based persistent transactions, namely spec-
ulatively persistent memory transactions (SpecPMT). Comparisons
with state-of-the-art in-place update methods (Kamino-Tx [51] and
EDE [63]) show that SpecPMT can reduce the execution time over-
heads of the prior methods from 232% and 50% to 10% and 7%,
respectively.

SpecPMT achieves all the desirable properties of a persistent
memory transaction while keeping transaction overheads low: (1) it
uses in-place data updates; (2) it eliminates fences between logging
and data updates; (3) it does not block transaction commit with
data persistence; (4) it supports a software-only or a lightweight
hardware implementation; and (5) it is data structure agnostic rather
than data structure specific.

To summarize, the contributions of this work are:

• We propose speculative logging for substantially reducing
crash consistency overheads of persistent transactions based
on the removal of fences.

• We propose a variant of SpecPMT for software-only specula-
tive logging, which uses a novel log organization, recovery
protocol, and log reclamation.

• We provide a mechanism for hardware-supported specu-
lative logging with SpecPMT, which uses a novel hybrid
logging scheme and an epoch-based log reclamation that
bound the memory space cost without background reclama-
tion threads.

• We empirically evaluate the effectiveness of SpecPMT.

2 BACKGROUND
This section covers the background on crash consistency of persis-
tent memory.

2.1 Persistent Memory
Non-volatile memory (NVM) or storage class memory represents
an array of new memories that provide byte-addressability, persis-
tency, random access, and DRAM-like access latencies. NVM can be
implemented by simply adding a battery to DRAM [44] or exploit-
ing new memory technologies such as PCM [19] or FeRAM [61].
Persistent memory [59] refers to the use of NVM for storing data
structures so that they can continue to be accessed beyond a process
lifetime, even across crashes or system boots.

Intel Optane DC persistent memory [59] is currently the most
widely available substrate for persistent memory. It is manufactured
as a dual in-line memory module (DIMM) and should be attached to
the memory bus of Intel x86 platforms.

Recently, researchers have made substantial progress in build-
ing new persistent memory devices [4], utilizing compute express
link (CXL) as an alternative point for attaching new memory-
semantic SSDs [43] or upcoming storage class memory devices.
Those devices are expected to interface with the programmers sim-
ilarly to how Intel Optane DC persistent memory is used in the
local node. Without loss of generality, in this paper, we assume the
Intel Optane DC persistent memory hardware model.

2.2 Memory Data Persistency
Modern processors rely on a volatile SRAM cache hierarchy to
accelerate data access. A store to a location may stay in a volatile
cache for a long time, only to be persisted on cache eviction. Thus,
managing persistency in software requires hardware support that
allows the software to specify when data should be persisted.

Since the Skylake architecture, Intel has provided a CLWB instruc-
tion to flush a dirty cache line into memory explicitly (in addition
to CLFLUSH and CLFLUSHOPT). Such an instruction is often followed
by SFENCE to complete a persist barrier (i.e., to prohibit younger
stores/flushes from persisting until all older ones have persisted). A
store/flush is considered persisted when it reaches the persistence
domain, which takes thousands of CPU cycles [67, 70, 78]. SpecPMT
elides such cost when it removes the SFENCE.

In systems that adhere to asynchronous DRAM refresh (ADR)
requirements, the persistence domain includes the main memory
and memory controller write pending queue (WPQ). With extended
asynchronous DRAM refresh (eADR), the persistence domain extends
to CPU caches, removing the need for cache line flushes. But eADR
has not received wide adoption as discussed in Section 5.3.

Another issue for memory data persistence is the need for a
system abstraction for persistent data. Because persistent data must
survive across system power cycles, applications must be able to
find the durable data created before the current power cycle. The
SNIA NVM programming model [59] organizes durable data as
persistent memory-mapped files and manages the files with a per-
sistent memory file system. To disable the application-transparent
DRAM page cache that buffers reads and writes to the files, a per-
sistent memory-aware file system can grant applications direct file
accesses, e.g., via direct file access (DAX) [2]. Alternatively, with
appropriate OS support, persistent data can be kept in a file-less
persistent memory object abstraction [27, 79].

2.3 Crash Consistency
An application may use persistent memory transactions [50, 57, 66]
to achieve crash consistency. A persistent memory transaction
guarantees that writes in the transaction are atomically (either
entirely or not at all) observable at recovery. Transactions use
logging mechanisms such as write-ahead logging [13, 42, 62] or
shadow memory [56] to realize such atomic durability. A write-
ahead logging mechanism creates and persists a log record before
the datum is persisted. The recovery uses the log to revoke the effect
of the datum update. To enforce the ordering between log record

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

and data persistence, programmers use a persist barrier (e.g., flush
the log record with CLWB followed by a memory fence instruction,
SFENCE).

Write-ahead logging schemes may rely on undo or redo logging.
With undo logging [42, 57, 62, 63], the transaction records the old
value of data before it is updated in place (i.e., at the location). If
the application crashes before the transaction commit, the recovery
restores data to the logged value. In contrast, with redo logging [35,
46, 51], the transaction buffers all write intents in log records. Any
accesses to those memory locations are redirected to the logged
records for the updated value before the transaction commits. At
commit, the transaction persists all the logged write intents, then
applies the write intents to the corresponding memory locations.
The recovery discards all log records if the application crashes
before all write intents reach the persistence domain. Otherwise,
the recovery reapplies the persisted write intents to the memory
locations.

A transaction may also provide concurrency control, which is
orthogonal to the crash consistency mechanism. For simplicity, this
paper focuses on SpecPMT durability control but briefly discusses
concurrency control in Section 4.3.

3 SPECULATIVE LOGGING
SpecPMT is an optimization on undo logging that improves its per-
formance through the amortization of persistent memory ordering
instructions.

Classical undo logging ensures correct recovery by ensuring that
for every location modified by a transaction: (1) a log entry exists
recording its old value, and (2) this log entry becomes persistent
before the location is modified. Following these steps means that if a
transaction is interrupted and power is lost, any locations modified
by the failed transaction can be rolled back to their original values.

Our observation is that while undo logging performs both these
steps during the transaction, they need not be, and for persistent
memory, there are performance advantages to migrating them ear-
lier.

First, we create the log entry far earlier than the modifying trans-
actions, e.g., before entering the transaction or in a prior transaction.
Second, it allows the software to discard a log record once the asso-
ciated datum reaches the persistent domain and rebuild the record
at any point before the datum gets updated again.

SpecPMT adopts a novel strategy based on the above obser-
vation by maintaining a speculative log record for every single
datum. SpecPMT preserves classical persistent memory transac-
tional APIs [59, 66] for compatibility, as shown in Figure 3, with
regular logging replaced by speculative logging (splog). The recov-
ery API is omitted from the example codelet as it is only needed
for post-crash recovery.

Inside a transaction, the programmer or the compiler inserts splog
after each durable data update to create a log record for the virtual
address of the datum and the new value of the datum. No cache
line flush or fence is needed at this point. Instead, the transaction
persists all log records by flushing them and using a single store
fence before commit.

A crash causes two kinds of data corruption: (1) data updated by
uncommitted transactions reaching persistent memory, and (2) data

tx_begin() !"tx #1
 a = 1
 splog(&a, 1)
 b = 2
 splog(&b, 2)
 #$%
tx_commit()

tx_begin()
annotate start of a transaction

splog(addr, value)
record value at address addr

tx_commit()
persists speculative log and commit

recover_from_splog()
post-crash recovery with splog

1
2
3
4
5
6
7
8

Figure 3: The SpecPMT API (left) and the example codelet
(right)

updated by committed transactions. SpecPMT handles both, where
its recovery revokes the first kind and handles the second kind by
discarding all log records generated by uncommitted transactions
and replaying all fresh log records. A log record is fresh if it records
the updated committed value of a memory location. Effectively,
the speculative logs function as redo log entries for completed
transactions and undo log entries for failed transactions.

3.1 Speculative Logging Example
During normal execution, transactions generate speculative log
records and update memory locations in persistent memory. Each
thread manages its own log without consulting with other threads.
A background log reclamation thread discovers and recycles log
records useless for recovery.

We illustrate speculative logging with a running example in
Figure 4, which shows two transactions that both update memory
locations a and b (The example applies to both software and hard-
ware SpecPMT proposed in this paper.). The persistent memory
state for data and logs are shown for different snapshots in time.
The snapshots begin when the first transaction has just committed.
Here both locations have been updated, and speculative log records
for a and b have been created. As the second transaction executes
(second snapshot with b=10), it creates log records for a and b, and
appends them in the log. Note that at this point, if a crash occurs,
the first transaction log records are sufficient to restore data to the
point before the second transaction by undoing any changes to a
and b in the second transaction. Hence, new data values and the
associated log records in the second transaction may remain in the
volatile memory. When the second transaction commits (third snap-
shot), the commit ensures the new speculative log records persist
along with the transaction commit metadata. Note that updates
on locations (e.g., a) do not need to persist (e.g., be flushed) at this
point, as second transaction log records are sufficient to replay the
non-persisted data updates if a crash occurs (the speculative log
entries function as a redo log for the just committed transaction).
Finally, when log reclamation is triggered (last snapshot), explicitly
or implicitly, the reclamator finds that log records from the first
transaction are stale and thus can be removed. The first transaction
metadata is also removed since no fresh log record remains.

The post-crash recovery is straightforward. Log records associ-
ated with an uncommitted transaction are discarded after checking
the transaction commit metadata. The remaining fresh log records
(from committed transactions) are then used to restore the values of

SpecPMT: Speculative Logging for Resolving Crash Consistency Overhead of Persistent Memory ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

tx_begin()
 a = 1
 b = 0
 …
tx_end()
"#$
tx_begin()
 a = 2
 b = 10
 "#$
tx_end()
reclaim_log()

Persistent
Memory

&b, 0

&a
&b

&a, 1

1
0

Log

Data
timeline

tx1
commit

tx2
start… b=10

tx2
commit

tx1 commit
&b, 0

&a
&b

&a, 1

1
0

Data
&a
&b

1
10

Data

tx2 commit

&a, 2

&b, 0
&a, 1

&a
&b

tx1 commit

1
10

Data

tx2 commit

&a, 2

reclaim_log()

&a, 2
&b,10

tx1 commit

&b, 10 &b, 10

addr

…

Log Log Log

tx1 commit
&b, 0
&a, 1

Figure 4: A codelet and the memory state snapshots with
timeline, illustrating the mechanism of speculative logging

logged memory locations, effectively undoing interrupted transac-
tions and redoing completed transactions. For example, after a crash
interrupts the second transaction (second snapshot with b=10), the
recovery discards the last two records, and replays the first two
records to restore the values of memory locations (i.e., a and b).

4 SOFTWARE SPECULATIVE LOGGING
Implementation of software speculative logging centers on a se-
quential log record organization and log reclamation. Figure 5 illus-
trates the implementation at a high level. During normal execution,
the transactions append log records to the log area and update the
durable and volatile memory data. The background log reclamator
uses a volatile record hash index to determine the log record fresh-
ness. The recovery routine uses log records to revoke uncommitted
updates and replay the most recently committed updates.

DRAMPM

log
reclamation

normal
execution

recovery routinepost-crash

hash
table

record indextransactionstransactionstransactionstransactions
per-thread
log area

recordrecordrecordrecord

logging
in-place update

reclaim &

compact

revoke & replay

updates

volatile
data area

durable
data
area

addr addr
&a 0x12
&b 0x0A
&c 0xAE

foreground

background

Figure 5: The building blocks of software SpecPMT

If a transaction updates a persistent memory location multiple
times, the transaction only needs to log the last update because all
other log records for the datum would be stale if created. Stale log
records are useless for both normal execution and recovery, causing
additional write traffic. Similar to existing undo and redo logging
schemes, the first or last update on a datum in a transaction can be
discovered via write-set indexing [24] or compiler assistance [6, 71].

Software SpecPMT organizes log records in a sequence with new
records always appended to the sequence tail. Such a design pro-
duces good spatial locality (which enables fast log record creation),
but wastes memory as multiple updates from multiple transactions

to the same datum may result in multiple log records appended to
the sequence. In such a case, the latest log record for the datum is
fresh, while others are stale. To reduce memory waste, software
SpecPMT needs a background log reclamation to remove and deal-
locate stale log records.

Amore memory-space efficient alternative would be to set a limit
of only one log record for each datum. To achieve that, a hash table
indexed by each datum’s address may be used to locate its most
recent log record. On each data update, the design replaces a now-
stale log record with a new one. Such a design conserves memory
space but sacrifices spatial locality. Considering that persistent
memory is much denser than DRAM but slower to write, especially
with a random write pattern, a sequential log record is likely the
better choice [78]. Our experiment confirms this, with the hash
table approach incurring 3.2× slowdown over the sequential log
design (methodology described in Section 7).

4.1 Log Organization
Because the log area contains both stale and fresh log records, its
organization should encourage fast freshness checking to assist log
reclamation.

Software SpecPMT organizes the per-thread log area logically
as a sequence of records where new records can only be appended;
hence it keeps a chronological order of records. On a crash recovery,
data updates can be replayed starting from the oldest log records
to the youngest. Some unreclaimed stale log records may still be
present and get reapplied, but this is fine because, eventually, the
stale updates will be replaced by fresh log records.

Because the log sequence grows with the durable data write set
size and decreases depending on the frequency of log reclamations,
it is difficult to retain the log records in a fix-sized log area. There-
fore, the software SpecPMT implements a dynamically extendable
log area, by allocating segments (called log blocks) of memory spaces
on-demand. As illustrated in Figure 6, each thread-private log area
contains multiple log blocks connected with block pointers. Each
log block contains log records that contain transaction commits, a
set of log entries, and a forward block pointer if it is the last log
record in the log block.

log block
addr, size

value … block
pointer

addr, size
value

addr, size
value

PM log block log block log block

older newer

log record log entry

log head

tx commit
metadata

Figure 6: Log area organization

The transaction metadata contains the size of the log record and
the checksum of the log record. If the software is multi-threaded,
the metadata also contains a timestamp of the transaction commit.
Each log entry includes the datum address, size, and value.

On transaction start, the software SpecPMT reserves memory
space for transactionmetadata. The transaction appends log records

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

to the log block during transaction execution. When a log block is
full, the SpecPMT allocates a new log block and chains it to the log
sequence with a block pointer.

On commit, the transaction sets the size of the log record and
calculates the checksum for the entire log record, including the
metadata, log entries, and block pointers. The checksum also serves
as the transaction’s commit status: the software considers the trans-
action as committed if the checksum matches the log record; the
checksum is flushed and fenced to ensure persistence on transac-
tion completion. Similar to a prior work [9], this design avoids a
dedicated flag and a fence recording the commit status [66]. For
multi-threaded software, the transaction sets the timestamp accord-
ing to the hardware timestamp counter through rdtscp instruction
on X86 processors (transactions are otherwise de-conflicted using
a programmer specified locking-scheme — see Section 4.3.). The
recovery uses the timestamp to determine the freshness of every
log entry created by concurrent threads.

On a system crash, the recovery finds the first log block through
a log head pointer. The pointer is located at a reserved memory
location, such as the head of a persistent memory object pool [59].
The recovery then iterates over log entries and applies them to
durable data. The recovery stops once a corrupted log record is
encountered because there should not be fresh records afterward.

4.2 Background Log Reclamation
Log reclamation occurs in the background on a dedicated thread.
Reclamation is triggered explicitly through an API or implicitly
when a transaction execution finds the memory space overhead
reaching a tunable threshold. Log reclamation reduces the memory
consumption of the log records according to the durable data write
set size of the software. Ideally, each updated durable datum is asso-
ciated with only one log record. Our hardware solution introduced
in Section 5 further allows the software to set arbitrary memory
consumption bound.

During a log reclamation cycle, the reclamator scans backward
starting from a log block, and traverses to the oldest log block along
the chain of log blocks. Although this is the most effective when
the scan begins with the youngest log block (i.e., at the tail), the
scan may instead start from an arbitrary log block with potentially
reduced effectiveness. Based on this observation, our log reclama-
tion begins with the youngest full log block that no working thread
is currently updating it, which eliminates the need for concurrency
control.

Performance and crash consistency are important aspects of log
reclamation. To maintain high performance, log reclamation uses a
hash table while scanning the log records to determine the freshness
of a given log record. Because the hash table maps addresses to
entries, any resulting collisions quickly reveal potentially stale log
records. The hash table itself does not require crash consistency,
as it can be rebuilt when affected by a crash, and log reclamation
can be repeated from the beginning if it is interrupted by a crash.
From this observation, we choose to allocate the hash table in the
volatile memory, which improves performance while allowing a
rebuild-on-crash policy.

Performance is also optimized when the reclamator performs
periodic compacting. For each time compacting cycle, the reclamator

allocates new log blocks and copies fresh log entries from old log
records into the new block, forming new compact log records in
which the timestamp is set to the newest log entry. Upon completion,
the reclamator inserts the new log blocks into the chain. The former
step (copying) can be repeated after a crash. Thus, only the latter
step (inserting the new log block) must be performed in a durable
atomic manner. To achieve this without relying on a transaction, we
first update the new log block’s forward and backward pointers. We
then update the predecessor log block’s forward pointer to point
to the new log block. Finally, we update the successor log block’s
backward pointer to point to the new log block. A crash during
this insertion operation is recovered by using forward pointers to
traverse the list and correct any backward pointers that did not
persist. As a result, each log reclamation cycle requires only two
fences — one to ensure the persistence of the new log block and
one for the new log head pointer.

4.3 Programming Model
4.3.1 Switching Crash Consistency Mechanism. Software compo-
nents may build upon other crash consistency mechanisms such
as undo (i.e., PMDK) or redo logging transactions, which allows
these mechanisms to coexist with speculative logging and increases
practicality and compatibility.

To achieve this, SpecPMT allows switching from speculative log-
ging to another crash consistency mechanism. Because SpecPMT
uses in-place updates, it only needs to flush dirty cache lines of
durable data at the transition point. Once completed, speculative
logs are no longer needed for crash recovery, and the newmodel can
be used from that point forward. The software should ensure that
there is no running SpecPMT at the transition point. The flushing
can be performed through entire-cache flushing, e.g., using instruc-
tions, such as wbnoinvd, or selective flushing through software
analysis of record indices and clwbs.

4.3.2 External Data. When software updates durable data gener-
ated by other software or by other executions of the same software,
there is likely no speculative log record associated with the data.
This causes a consistency concern for SpecPMT. To rectify this,
the software can update the external data in a crash-consistent
manner by creating a snapshot prior to data modification. This
is a common solution for checkpointing-based crash-consistent
systems [9, 28, 48, 52] or out-of-place update persistent memory
transactions [14, 46] that face similar issues when opening an ex-
isting persistent memory object pool [72–74, 79, 81]. Prior stud-
ies [9, 48, 52] have proposed an array of optimizations to alleviate
the overhead generated by creating snapshots. Recent research [52]
indicates that occasional checkpointing only adds 0.8%–10% exe-
cution overhead. SpecPMT only snapshots the data once, rather
than periodically. Furthermore, it is possible to begin processing the
external data with undo logging and checkpoints asynchronously.
Once checkpointing finishes, the software can switch to speculative
logging.

4.3.3 Concurrency Control. Like other persistent memory trans-
actions [13, 59, 62, 63, 76], SpecPMT provides atomic durability
and relies on the software to provide isolation in a multi-threaded
context. The software can combine SpecPMT with concurrency

SpecPMT: Speculative Logging for Resolving Crash Consistency Overhead of Persistent Memory ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

control mechanisms, including, but not limited to, optimistic con-
currency control [46, 65] and strict two-phase locking [24, 62]. The
speculative logging transactions must coincide with the outermost
critical sections [42, 58].

5 HARDWARE SUPPORT
While the software-only design for speculative logging enables
performant crash-atomicity, it suffers from multiple drawbacks: it
nearly triples the memory space overhead, and it requires a core
dedicated to running timely background log reclamation. The back-
ground log reclamation threads also require tuning the trigger level
for reclamation and increasing the memory bandwidth pressure. To
address these challenges, we propose hardware support for selective
logging, which we will refer to as hardware SpecPMT.

Hardware SpecPMT institutes architectural changes to support
primitives that (a) identify hot pages, (b) perform undo logging, and
(c) perform bulk copying. These primitives support two novel roles:
undo-speculative hybrid logging and epoch-based log reclamation.

5.1 Hybrid Logging
Hardware SpecPMT’s hybrid logging combines fast but memory-
consuming speculative logging for frequently updated (i.e., hot)
data — which constitutes only a small portion of the software mem-
ory footprint — with slow but memory-saving undo logging for
infrequently updated (i.e., cold) data.

Hardware SpecPMT relies on hardware support to distinguish
between hot and cold data at the granularity of pages, based on
the frequency of data updates on the page. A page may switch
between hot and cold inside a transaction. Figure 7 illustrates how
the logging switch is handled based on data hotness transition.

program timeline

tx #3:
 a = 3

tx #4:
 a = 4

②switch from undo to speculative logging
 undo log old a
 write a
 speculatively log page

③speculative logging
 write a
 speculative log new a on tx commit

④switch from speculative to undo logging
 undo log old a !"unneccessary
 write a

①undo logging
 undo log old a
 write a

tx #2:
 a = 2

tx #1:
 a = 1

operations on data updates

becomehot

remainhot

becomecold

remaincold

Figure 7: Illustration of logging switches based on changes
in data hotness.

The figure illustrates four consecutive transactions updating
the same data and alternating between cold and hot. The datum
is initially identified as cold in the first transaction; hence undo
logging is applied. In the second transaction, the datum becomes
hot due to additional data updates, and the page switches from
undo logging to speculative logging. In the third transaction, the
datum is speculatively logged (at cache line granularity) because

it remains hot. In the final transaction, the datum switches from
hot to cold, and because it was already speculatively logged in the
prior transaction, additional logging is not necessary. There must
be a prior speculative log record for the datum that can serve as an
undo log. However, for simplicity, hardware SpecPMT adopts the
same logging strategy for a cold page.

In order to distinguish between hot and cold pages, we can
associate metadata with the page table entry to record the hotness
of each page. However, that requires modifying the page table and
page fault handler parts of the OS. To avoid modifications to the
OS, we associate additional metadata with each translation look-
aside buffer (TLB) entry instead, as shown in Figure 8. This enables
tracking only pages that are covered by the TLB. If a TLB entry is
evicted or invalidated, we can no longer track the page, but such
a page is likely no longer hot. The primary benefit of tracking
hot pages through TLB entries is the lower and bounded memory
overheads, as the memory consumption due to speculative logging
depends on the number of pages it is applied to, and the TLB only
covers a fixed and small subset of pages, the memory overhead
from hybrid logging is much smaller and bounded.

CPU

L1/L2 TLB

L1 cache

L2/L3 cache

PM

epoch ID reg
①store a, 1

②should be SP or undo logged?

tx reg

③eviction ③persists on
L1 eviction

④persist
SP log
and data
on commit

SPLog records UndoLog recordsdata

page table

Figure 8: Overview of the hardware. Shaded components are
extended.

Under hybrid logging, the TLB is checked on a write to data.
On a TLB hit, the controller can determine whether the page is
considered hot or cold. On a TLB miss, the controller treats such
a page as cold. If the page is hot, it is speculatively logged, and a
write to data updates the L1 cache directly. Otherwise, the hardware
creates an undo log record for the cache line before updating it.

The details of the additional metadata for hotness tracking are
shown in Figure 9. Each TLB entry contains a one-bit EpochBit and
a three-bit saturating counter. If the EpochBit is set, indicating the
page has been speculatively logged, the "cnt/EID" records the epoch
ID for epoch-based log reclamation (to be discussed in Section 5.2). If
the EpochBit is clear (indicating the page is cold), the counter records
the number of transactional store operations on the page during the
page residency in the TLB. When the counter reaches a threshold
(for simplicity, the maximum value), the page is considered to have
become hot. Such a page will start to be logged speculatively (i.e., by
copying the entire page into the log). This transition is accomplished
using a hardware bulk copying engine [39] (currently supported
in ARMv9 [1]). During speculative logging, the hardware does not
block access to the page as it still creates undo log records for the
data before the store operation. After logging is completed, the

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

hardware sets EpochBit and sets the counter to the current epoch
ID according to the epoch ID register.

coherence protocol
addr dataLogBit
0x1000 0 2
0x2000 0 3

PBit
1
0

L1
cache

L1/L2 TLB
virtual addr physical addr EpochBit cnt/EID

0x30000 0x1000 1 2
0x40000 0x2000 0 2

store 0x30000, 1

Figure 9: TLB and cache entries of hardware SpecPMT.

As discussed earlier, if the hardware evicts a TLB entry, the
associated epoch ID and counter are discarded, and we treat the
page as cold. As each core maintains its local epoch ID and hotness
counter, hardware SpecPMT avoids costly synchronization [10]
among TLBs on different cores.

Besides modifications to the TLB, hardware SpecPMT extends
each L1 cache entry with two single-bit flags. The flags specify how
the cache controller acts on a transaction commit or cache line
eviction. PBit indicates whether the cache line needs persistence
on eviction inside or outside transactions. The controller sets the
bit when it updates the cache line of a hot page.

The cache controller sets LogBit after it undo logs the cache line
or when it needs to speculatively log the cache line on transaction
commit or cache eviction. For example, if both bits are set, the
hardware needs to persist and speculatively log the cache line on
transaction commit or eviction. If only LogBit is set, the cache line
is undo logged in the transaction. The hardware clears the LogBit
on transaction commit but reserves the PBit.

Invalidating speculatively logged cache lines on cache coher-
ence events remains the same, which is a compelling property as
modifying coherence protocol is error-prone and perhaps hurts
performance. Once speculatively logged, the invalidated cache line
requires no persistence. Consider MSI coherence, where a trans-
actional write 𝑤1 turns a cache line to M state and commits. A
subsequent transaction on another core updates the same data to
𝑤2. The hardware writes back the dirty cache line to the shared
cache, followed by transiting the state from M to I. In the trans-
actions, the hardware creates a speculative log record for𝑤1 and
𝑤2, respectively. If the transaction encasing𝑤2 commits before a
system crash, the recovery uses the newer log record to recover
the most recent value of the cache line, i.e.,𝑤2. If the crash inter-
rupts the transaction, the recovery uses the log record for 𝑤1 to
revoke the effect of𝑤2. In both cases, the system does not have to
persist the effect of 𝑤1. Each core maintains its own speculative
log records and records the timestamp for each transaction commit.
The recovery first uses the timestamp to find the most recently
committed speculative log record for a datum.

5.1.1 Correctness. Hybrid logging guarantees software recover-
ability as it ensures that each uncommitted transactional update is
associated with a log record, either undo or speculative. Consider a
cold page update in a crash-interrupted transaction. Whether the

page becomes hot in the transaction or not, the hardware undo-
logs the cache line before it performs the update. Regarding a hot
page update, there are two cases. If the page was hot before the
transaction started, there must be a speculative log record about the
updated data. Otherwise, if the page becomes hot in the transaction,
the hardware must speculatively log the page before setting the
page as hot. The page log record serves as an undo log record for
the subsequent updates in the transaction.

The protocol maintains two invariants: (1) all uncommitted undo
log records are fresh; (2) all uncommitted page log records serve as
undo logs for some data and speculative logs for other data, which
must be undo logged prior to the creation of the page log records in
the same transaction. Therefore, the recovery guarantees to revoke
any uncommitted transactional update and preserve any committed
update with three steps: (i) It applies the uncommitted speculative
page log records to the data; (ii) It applies the uncommitted undo
log records to the data; (iii) It applies committed speculative log
records in chronological order.

5.1.2 Performance Guarantee. Although the hardware performs
speculative logging at cache line granularity on hot pages, it per-
forms speculative logging at a page-level granularity when the
page switches from cold to hot. Hence, there is some possibility
that speculative logging may increase the latency of execution as
well as write traffic to persistent memory if there are only a few
updates on the page. Several aspects may reduce this possibility.
First, hardware SpecPMT logs only hot pages, which tend to be
written many times in a period. Second, speculative logging de-
fers flushing to transaction commit, allowing write coalescing of
logs within a transaction. It also defers data persistency to cache
line eviction, allowing write coalescing of data across transactions.
Section 7 quantifies the effect of hardware SpecPMT on write traf-
fic and memory consumption. Third, the hardware may provide
an API to enable/disable speculative logging, which sets/resets a
control status register bit. This allows the programmer or user to
disable speculative logging (and rely solely on undo logging) if it
produces an adverse performance impact. Finally, it is possible for
hardware SpecPMT to sample the performance of undo logging
and speculative logging for a frequently executed transaction to
compare and choose the logging scheme that performs better than
the other.

5.2 Epoch-Based Log Reclamation
Another advantage of hardware SpecPMT over a software-only so-
lution is that its method of performing reclamation is epoch-based,
fast, in the foreground, and thread-local. Thread-local reclama-
tion has been a long-time goal for redo logging optimization [13–
15, 25, 26, 46]. The transaction execution model must apply the
freshest redo log record to the data, often requiring synchroniza-
tion or substantial hardware modifications. Unlike redo logging,
speculative logging finds stale log records locally without the need
for thread synchronization.

Hardware SpecPMT epoch-based log reclamation is a software-
hardware co-design that provides two key benefits: (a) it allows the
software to set arbitrary memory consumption limits by reclaiming
hybrid log records by epochs, and (b) it allows each thread to reclaim

SpecPMT: Speculative Logging for Resolving Crash Consistency Overhead of Persistent Memory ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

its thread-local speculative log records without consulting other
threads.

Log reclamation in hardware SpecPMT is achieved by dividing a
thread execution into epochs. Each private TLB entry is augmented
with an epoch ID to record the epoch in which the page was specu-
latively logged. In a log reclamation cycle, the software reclaims
all speculative log records created inside an epoch by clearing the
epoch ID in TLB. The core idea of epoch-based log reclamation is
to switch a set of hot pages with the same epoch ID into cold pages
with only one instruction. The hardware clears the epoch bit and
the EID field of each TLB entry to set the page as cold. Two new
instructions are added, clearepoch EID and startepoch EID, to end
and start an epoch with a given epoch ID, respectively. As long
as the software always clears the oldest epoch, it reclaims the log
records at the beginning of the log area because the log records are
chained in chronological order.

When a transaction commits, the hardware scans the L1 cache
to find dirty cache lines updated by the transaction. It creates and
persists log records for the speculatively logged pages and cache
lines. It skips the persistence of those updated cache lines. It persists
the undo logged cache lines.

Hardware SpecPMT allows an L1 cache line updated in the trans-
action to overflow to the L2 cache as long as the hardware specula-
tively logs the cache line prior to the eviction. This allows a large
transaction to succeed.

The reclamation incorporates a set of data structures and hard-
ware components shown in Figure 10, including the log records,
eight epoch pointers in DRAM, the hardware maintaining the point-
ers and registers, and two new instructions starting and reclaiming
an epoch. The log records are logically grouped by epochs but phys-
ically stored in log blocks. The epoch pointers refer to the head of
the log record of each epoch log record group.

epoch pointers

epoch log #0

0 1

epoch log #1

three log blocks (physical view)

volatile

durable

tx reg
startepoch 1

CPU
write

Figure 10: The core components of the epoch-based log recla-
mation

5.2.1 Log Reclamation for Sequential Software. During normal ex-
ecution, hardware SpecPMT software checks whether or not to
reclaim log records after each transaction commit. The checks can
be optional and adaptive because log reclamation is only needed
occasionally. The software is responsible for determining which
epoch to reclaim. This work adopts a straightforward strategy that
always reclaims the oldest epoch.

The software performs log reclamation in three steps. Similar to
handling a transaction mode switch (Section 4.3), it first persists
all speculatively logged data in the current epoch. This can be
achieved through scanning the log record and selectively flushing
data addresses indicated in the log records via clwb, or writing back
the entire L1 cache through instructions such as wbnoinvd.

After the first step is completed, in the second step, the software
invokes a new unprivileged instruction, clearepoch EID, to switch
some pages from hot to cold by clearing the EpochBit and the cn-
t/EID field for pages that match the EID. Those pages were initially
speculatively logged in an epoch numbered as EID. In the third
step, the software reclaims the memory space occupied by the log
records of the epoch. The software performs the second and third
steps without ordering constraints.

It is possible to merge the first and the second step by extending
clearepoch with the L1 cache scanning and data persistence seman-
tic. This design also enables optimization to avoid excessive data
persistence if a page was logged in an old epoch, but some of its
cache lines are also logged in new epochs. The hardware can skip
persisting those cache lines when it reclaims the old epoch. The
optimization incurs three extra bits for each L1 cache line.

The software starts a new epoch with a new unprivileged in-
struction, startepoch EID, where EID refers to the ID of the new
epoch. The instruction assigns the epoch ID register to EID. Epoch
ID 0 is reserved for cold pages.

Epoch size selection involves a trade-off. Small epochs cause
excessive log reclamation, and TLB and cache flushes, while large
epochs consume more memory space. In current implementation,
we start a new epoch when the epoch contains over 2MB of records
or 200 speculatively logged pages. The first threshold bounds mem-
ory consumption, while the second threshold distributes specula-
tively logged pages into different epochs to improve performance.

5.2.2 Log Reclamation for Multi-threaded Software. Multi-threaded
software introduces challenges in correctness and scalability. Fig-
ure 11 illustrates an example involving two threads performing
writes to the same data, with transactions shown in black boxes.
The figure shows that reclaiming an epoch of thread can cause data
corruption in a crash. Specifically, when the second thread reclaims
its epoch, it removes the speculative log record for𝑤2. Later, when
another thread updates the data (𝑤3) but suffers from a system
crash before the transaction commits. In this case, the recovery
cannot revoke the update as the data cannot be recovered to the
state after𝑤2.

thread 1

thread 2

w1 w3

w2 reclaim
epoch

system
crashepoch

timeline of thread executions

tx

Figure 11: Illustrating how log reclamation may prevent
crash recovery from revoking 𝑤3. The three writes update
the same memory location, and solid black boxes represent
transactions.

To address this, we propose a simple non-blocking reclamation
protocol. We let an epoch be inactive if its epoch ID has been
reassigned to a younger epoch of the same thread. Formally, the
software can safely reclaim all log records in an epoch 𝑒 if: (1) 𝑒 is
an inactive epoch; (2) all active epochs must start after the end of 𝑒 ,
including the epochs belonging to other threads.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

The protocol preserves recoverability. Consider a speculatively
logged datum 𝑎 inside an epoch 𝑒 . Because 𝑒 is inactive, before the
software reassigns the epoch ID to a younger epoch, the software
must clear the EpochBit for all speculatively logged pages in 𝑒 ,
including the page containing 𝑎. If the software updates 𝑎 in a
closed active epoch, which means the epoch has been ended, but its
epoch ID has not been reassigned, then the log record for 𝑎 created
in 𝑒 is stale and safe for reclamation. If the software updates 𝑎 in
an opening epoch because the software has recycled every epoch
starting before the end of 𝑒 , then the software must consider the
page of 𝑎 as a cold page. Then the software must undo-log 𝑎 before
updating it.

Hardware SpecPMT realizes the protocol by letting each thread
maintain a timestamp of when the earliest unreclaimed epoch starts.
On reclaiming an epoch, the software checks the timestamps and
the activeness of the associated epochs of all threads. If active
epochs overlap with the epoch to reclaim, the software defers the
check and log reclamation to further transaction starts or commits.

The recovery of hardware SpecPMT is the same as software
SpecPMT. It scans every thread’s log records and replays them
according to the timestamp.

5.3 Other Issues
5.3.1 Persistent Caches. Some processors may provide persistent
or battery-backed cache hierarchy such as eADR [59]. The proces-
sors may run transactions without logging any data if it retains the
entire write set of the transaction in the cache and provides a mech-
anism to identify and discard uncommitted data update retained in
the cache. However, the adoption of eADR may be limited [59] due
to costly hardware and maintenance [8]. The costs further increase
with larger caches and larger systems (e.g., NUMA).

5.3.2 Transaction Abort. A persistent memory transaction may
abort on an application or system exceptions, such as running out of
memory space. Whereas the software can always revoke the effect
of the interrupted transaction via the slow crash-recovery routine,
it can exploit the transaction abort mechanism of transactional
memory [55, 82] to enable fast abort during normal execution, such
as preserving the write set in a private cache and discarding all
uncommitted updates on abort.

5.4 Hardware Cost
Hardware SpecPMT incurs 0.91KB on-chip storage. It adds two
bits to each L1- and L2-TLB entry; and two bits to each L1 data
cache entry. For Skylake micro-architecture, the L1 data cache, L1-,
and L2-TLB contain 512, 64, and 1,536 entries, respectively. The
hardware also devotes two registers to retain the transaction state
and current epoch ID. Together, hardware SpecPMT incurs less
than 0.04% on-chip storage for a Skylake core.

6 DISCUSSION
Alternative Uses. Speculative loggingmay augment durablewrite-

ahead logging transactions despite the storage they use, such as SSD
or remote memory. Unlike typical implementations of write-ahead
logging that underpins database systems [64], file systems [38, 85],
and distributed storage systems [7, 86], speculative logging does
not require a software cache (such as buffer pools managed by a

database) to retain data changes but still allows the log records and
data changes generated by a transaction to reach persistent domain
in any order. Therefore, speculative logging can potentially reduce
transaction commit latency, improve throughput, and reduce write
traffic for systems where write-ahead logging plays a key role in
consistency, crash recovery, and performance.

Alternative Designs. Speculative logging transactions are not
bound to specific implementations such as the design proposed in
this paper. For example, a design may offload the hotness check-
ing to software. The software may use a performance monitoring
unit [84] or manipulate page table entries [21, 77, 80] to sample or
count the accesses to pages without modifying the hardware. The
hardware performs only epoch controlling.

Compiler Optimization. SpecPMT may use a compiler to reduce
memory consumption in maintaining the log records. Given that a
compiler can sometimes infer what data a transaction will update
and when they are updated, the software can discard log records
and then rebuild them at an appropriate point. For example, the
software can skip log record creation in the first speculative logging
transaction shown in Figure 2 and create a log record for the data
before the second transaction starts.

7 EVALUATION
This section evaluates the performance of the proposed solutions.
It provides root cause analysis of the performance gain, including
a reduction in write traffic and the number of fences.

7.1 Methodology
7.1.1 Benchmarks. We evaluate the software and hardware specu-
lative logging with all transactional applications from STAMP [53]
except for bayes due to its unstable performance [14, 16, 25]. STAMP
has been used for many persistent memory transaction studies [14,
25, 41, 71]. We port the transactional applications to persistent
memory with libvmmalloc [3, 81], which overrides dynamic mem-
ory allocation to persistent memory allocation. We evaluate the
software solution with non-simulator input of STAMP and the hard-
ware solution with simulator workload. The kmeans and vacation
applications have two kinds of workload: low and high contention.
We use both. Other applications have only one workload.

7.1.2 Software Platform. We evaluate the software solution on an
Intel Gold 6230 machine equipped with 1TB@2,666MT/s (eight
DIMMs) first-generation1 Intel Optane persistent memory and
128GB@2,666MT/s DDR4 memory. We mount persistent memory
with a DAX-enabled file system.

We compare the software solution, software SpecPMT (Spec-
SPMT), with PMDK and two recent in-place update persistent mem-
ory transactions, plus a sub-optimal implementation of software
SpecPMT:

• PMDK [59]: Intel’s industry-standard persistent memory
programming transaction mixing undo and redo logging.
We use it as the baseline.

1The second-generation Optane persistent memory DIMM runs at largely the same
speed at lower power budget [11].

SpecPMT: Speculative Logging for Resolving Crash Consistency Overhead of Persistent Memory ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

• Kamino-Tx [51]: a state-of-the-art in-place data update trans-
action. Our implementation omits the data copying from the
main copy to the backup copy. Therefore, our experiments
correspond to Kamino-Tx’s upper bound in performance.
The implementation logs every write intent’s address.

• SPHT [14]: a state-of-the-art redo logging transaction that
works on a volatile data snapshot and replays the log to the
persistent data with background threads. We use its forward
linking version and a background log replayer thread.

• SpecSPMT-DP: sub-optimal software SpecPMTwith enforced
data persistence on transaction commit. We use it to measure
the gain from removing the fences and the data persistence.

7.1.3 Hardware Simulation. We built the simulator on an x86 core
model for convenience, but the design is not bound to a specific
instruction set architecture. Our simulator is built on top of the
system-level Gem5 simulator [12]. We evaluate the modified cache
with the Gem5 integrated memory subsystem simulator, Ruby. Ta-
ble 1 lists the parameters of the simulated hardware.

Table 1: System configuration

Component Parameter

CPU out-of-order X86 core@4GHz, MESI cache coher-
ence protocol

L1 TLB Private per core, 64 entries, 8-way
L2 TLB Private per core, 1536 entries, 12-way

Data Cache Private per core, 32KB, 8-way, 2 cycles
L2 Cache Shared 2MB, 12-way, 20 cycles

DRAM DDR4 2400Mhz, tRCD/tCL/tRP/-
tRAS/tWR=14/14/14/32/15ns

PM 512 bytes write pending queue, 10ns; 150ns read
latency; 500ns write latency

We compare hardware SpecPMT (SpecHPMT) with two persis-
tent memory transactions and two sub-optimal designs.

• EDE [63]: a state-of-the-art in-place update transaction. It
eliminates fences between logging and data update opera-
tions. We coalesce the log records as much as possible. We
use it as the baseline.

• HOOP [13]: a state-of-the-art out-of-place update transac-
tion. It removes fences and enables asynchronous data per-
sistence. It requires 273KB of dedicated on-chip storage per
core and an additional core to run background garbage col-
lection (GC). We ignore the latency on address redirection to
model performance optimistically. We optimize the GC by
coalescing log records before applying them to the data. The
GC reclaims 128KB log records at each GC cycle to avoid
excessive contention on the 16KB on-chip eviction buffer.

• SpecHPMT-DP: hardware SpecPMT with data persistence
on transaction commit. This is a suboptimal variant; we use
it to measure the gain from removing data persistence.

• no-log: Transactions without logging. It persists data on
transaction commit. Its performance is ideal for in-place
update persistent memory transactions. It does not provide
crash consistency.

7.2 Software Solution Evaluation
SpecSPMT-DP and SpecSPMT consistently outperform PMDK and
Kamino-Tx, as shown in Figure 12. On average, SpecSPMT-DP
achieves 3× and 1.78× speedups over PMDK and Kamino-Tx, re-
spectively. SpecSPMT improves the performance by removing data
persistence. It achieves 5.1× and 3.02× speedup over PMDK and
Kamino-Tx, respectively.

SPHT SpecSPMT-DP SpecSPMT

2.7 2.8
1.1

6

2.1
3

5.1

10
.7

10
.3

49
.7

15
.4

Sp
ee

du
p
ov

er
PM

D
K

0X

5X

10X

gen
ome

intru
der

kme
ans

-low

kme
ans

-hig
h
laby

rinth ssc
a2

vac
atio

n-lo
w

vac
atio

n-h
igh yad

a

geo
mea

n

Kamino-Tx

Figure 12: Speedup over PMDK. Evaluated on a real machine

SpecSPMT-DP considerably outperforms Kamino-Tx when an
application updates a large amount of data because SpecSPMT-DP
removes all fences after each update. For example, SpecSPMT-DP
is at least 1.5× faster than Kamino-Tx on the five applications with
the largest number of transactional updates, as shown in Table 2.
We classify the five applications as write-intensive applications.
Among the remaining four applications, which we classify as write-
moderate applications, SpecSPMT-DP is less than 1.4× faster than
Kamino-Tx.

Table 2: Size and number of transactions

Application Avg. size (B) Num of tx Num of updates
genome 7.2 2,489,218 7,230,727
intruder 20.5 23,428,126 106,976,163

kmeans-low 101 9,874,166 266,600,674
kmeans-high 101 4,106,954 110,887,006

labyrinth 1420 1,026 184,190
ssca2 16 22,362,279 89,449,114

vacation-low 44.2 4,194,304 31,582,272
vacation-high 67.8 4,194,304 43,950,938

yada 175.6 2,415,298 57,844,629

SPHT [14] offloads the data persistence to a background replayer
thread. On the critical path of transaction commit, it persists only
redo log records. By removing the fences on logging operations,
SPHT outperforms Kamino-Tx with a similar speedup to SpecSPMT-
DP.

As SpecSPMT gains from removing mandatory data persistence,
it considerably outperforms SpecSPMT-DP by up to 9.9× on the
write-intensive applications. However, on the write-moderate ap-
plications, SpecSPMT is only up to 5% faster than SpecSPMT-DP. It
gains noticeably higher speedup among the write-intensive applica-
tions with large transaction sizes. Specifically, on the two versions
of kmeans and yada, of which the average transaction size is larger
than 20 bytes, SpecSPMT achieves 9.9×, 5.4×, and 1.6× speedup.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

The other two write-intensive applications, intruder and ssca2, have
average small transactions with four bytes write-set. SpecSPMT
brings about a 10% speedup by removing the data persistence.

7.3 Hardware Solution Evaluation
SpecHPMT outperforms the baseline EDE by 1.41× on average, as
shown in Figure 13. SpecHPMT achieves substantial speedup on
write-intensive applications like the software solution, except for
kmeans-low. This application devotes much time to computation
between consecutive transactions, leaving the hardware enough
time to drain the write pending queue before the next transac-
tion starts. The kmeans-high has less computation and therefore
observes higher speedup as durable data update is the bottleneck.

1.
52 1.
8

1.
13

1.
78

1.
42

1.
39

1.
41

HOOP SpecHPMT-DP SpecHPMT no-log

Sp
ee
du
p
ov
er
ED
E

0X

1X

2X

gen
ome
intru

der

kme
ans
-low

kme
ans
-hig
h
laby
rinthssc

a2

vac
atio
n-lo
w

vac
atio
n-h
igh yad

a

geo
mea

n

Figure 13: Speedup over EDE. Evaluated with simulator hard-
ware

On average, HOOP is 1.19× faster than EDE as it moves the
data persistence off the critical path of transaction commit. It also
reduces memory traffic by 18.9% times by coalescing the log records
from multiple transactions.

While HOOP reduces the critical path latency, its occasional
garbage collection exhausts the write buffers on the memory con-
troller, causing intensive write contention with application working
threads. SpecHPMT avoids such contention by allowing specula-
tively logged data to stay in the cache or naturally overflow to
persistent memory on cache eviction. Therefore, it outperforms
HOOP by 1.21× on average, even despite the fact that HOOP re-
quires an additional core and more than 200× the on-chip storage.

SpecHPMT is only 0.09× behind the ideal case (i.e., 1.5× speedup
vs. 1.41× with SpecHPMT), no-log. On labyrinth and yada, SpecH-
PMT even outperforms no-log as it replaces distributed persistent
memory writes with sequential log writes, which is faster on per-
sistent memory [11].

Eliminating the ordering between log and update operations
brings about marginal speedup as the SpecHPMT-DP performs
nearly the same as EDE. They cause largely the same amount of
write traffic on both data and log persistence, as shown in Figure 14.
The only difference is that EDE maintains the ordering between
the log and data update operations, while SpecHPMT-DP does not.
However, the out-of-order core hides the overhead of ordering.

SpecHPMT delivers the second-lowest write traffic among all the
designs. EDE and SpecHPMT-DP incur the most write traffic among
all designs. Whereas HOOP also persists log and data, unlike EDE
and SpecHPMT-DP, which coalesce data persistence by individual
transactions, HOOP coalesces data persistence across transactions.
If multiple transactions log the same datum multiple times, the
GC coalesces the log records and applies only the latest record to

HOOP SpecHPMT-DP SpecHPMT no-log

M
em

or
y
tra

ffi
c
re
du

ct
io
n

ov
er

ED
E

0%

20%

40%

60%

gen
ome
intru

der

kme
ans

-low

kme
ans

-hig
h

laby
rinthssc

a2

vac
atio

n-lo
w

vac
atio

n-h
igh yad

a

geo
mea

n

Figure 14: Reduction of write traffic. Higher is better.

the data. Consequently, HOOP achieves the write traffic as low as
SpecHPMT on half of the applications. Furthermore, HOOP creates
a log record for each data update and cache miss in a transaction.
Therefore, it produces excessive logs on the applications (ssca2,
vacation, yada) with large memory footprints twice the average
of remaining applications. Comparatively, SpecHPMT creates log
records only for data updates.

7.3.1 Memory Consumption. SpecHPMT gains higher speedup if
the software devotes more memory space to the log area, which im-
plies that the hardware speculatively logs more data. Unlike HOOP,
the size of the on-chip mapping table bounds the log size; the log
area of SpecHPMT can grow unboundedly. We varied the epoch
size to analyze the sensitivity to memory consumption. Figure 15
shows the average speedup and write traffic reduction on the av-
erage memory consumption. When the benchmarks tolerate 15%
and 20% additional memory consumption, they achieve 1.36× and
1.4× speedups, respectively. Even when the memory consumption
is small (2.6%), the speedup is still substantial (1.12×).

SpecHPMT

Av
er
ag
e
sp
ee
du
p

ov
er
ED

E

1.0X

1.2X

1.4X

Average memory consumption
over EDE

0% 20%
SpecHPMT

Av
er
ag
e
w
rit
e
tra
ffi
c

re
du
ct
io
n
ov
er
ED

E

0%

20%

40%

Average memory consumption
over EDE

0% 20%

Figure 15: Average speedup and write traffic reduction vari-
ous on average memory space increments

Small epochs hurt performance as the software logs a page and
reclaims the log record before updating any data on the page. vaca-
tion observes 26% to 8% performance degradation when the memory
consumption varies from 2.6% to 14.6%. Section 5.1 describes an
optimization that reverts the system to undo logging to avoid such
unnecessary performance loss.

8 RELATEDWORK
A number of studies attempted to reduce the overhead of persistent
transactions, as summarized in Table 3. We classify them into three
groups as follows.

Asynchronous Data Persistence. A class of techniques hide the
latency of data persistence by writing back durable data after trans-
action commit. Among them, Kamino-Tx and its variant [32, 51]
are perhaps the most relevant to this work. They do in-place data

SpecPMT: Speculative Logging for Resolving Crash Consistency Overhead of Persistent Memory ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 3: Summary of related work

system platform ordering logging and data update persistence domain data persistence data access applicability
EDE[63] hardware non-fence ordering unmodified synchronous direct general
ATOM[42],Proteus[62] hardware non-fence ordering modified synchronous direct general
TSOPER[22],ASAP[5, 76] hardware non-fence ordering modified asynchronous direct general
HOOP[13],ReDu [37] hardware eliminated unmodified asynchronous indirect general
PMDK [59] software fence unmodified synchronous direct general
Kamino-Tx[51] software fence unmodified asynchronous direct general
Lsnvmm[31] software eliminated unmodified eliminated indirect general
Pronto[52] software eliminated unmodified eliminated direct data structure
SpecPMT (this work) both eliminated unmodified eliminated direct general

updates while keeping asynchronous data persistence. To achieve
that, they maintain a backup copy of the data and a background
thread asynchronously applies the updates from the main copy to
the backup. On a crash, Kamino-Tx recovers the corrupted data from
the backup copy. To identify which data are corrupted, Kamino-Tx
records the addresses of all transactionally-updated data. Unlike
SpecPMT, Kamino-Tx does not avoid the fences for ensuring address
persistence before a main-copy data update.

Redo logging [13, 37, 46, 66] transaction techniques realize asyn-
chronous data persistence via out-of-place data updates. They use
background threads to apply the log to the data without blocking
the transaction commit. They require additional address transla-
tion for every memory access, which causes additional memory
accesses and concurrency control issues. Recent research explores
hardware acceleration [13] for address translation, however it re-
quires a large on-chip buffer to retain logged data (256KB per core).
SpecPMT avoids address translation as it relies on in-place updates,
and hence only requires 1KB on-chip storage per core, two orders
of magnitude less than HOOP [13].

The dominant logging and recovery approach for disk-based
database management systems, ARIES [54], achieves asynchronous
data persistence and in-place data accesses by combining undo
and redo logging. A prior work [57] enables undo+redo logging for
persistent memory systems. Still, an undo+redo logging recordmust
reach the persistent domain before the associated write intent. Thus,
it incurs more persistent memory write traffic than speculative
logging because it records both the old and new values of a memory
location.

Recent efforts [5, 22, 76] exploit buffered persistence to enable
both asynchronous data persistence and direct memory access.
Those transactions assume that software can tolerate the loss of
committed transactions on a crash.

Eliminating Data Persistence. LSNVMM [31]’s log-structured de-
sign retains every data update with a log record and appends it
to a log area. The solution incurs considerable overheads on ad-
dress translation as it redirects every data access to the most recent
corresponding log with a tree. HOOP [13] outperforms it by 28%.

Pronto [52] exploits semantic logging that periodically check-
points a data structure and records the operations on the data struc-
ture. It recovers a crash-corrupted data structure by re-executing
the operations from a checkpoint. Other re-execution transactions
exploit idempotence [33, 47, 71]. They are applicable for general pro-
grams but need to log all data necessary for re-execution, including
volatile data and related registers.

Transactions With Reduced Fences. Early studies to reduce the
use of fences [29, 42, 62] introduced additional components in the
persistent domain. Recent works started eliminating the fence with
no-fence ordering among instructions. Themis [60] implements
immediate persistency. It enforced persist ordering between non-
temporal and normal stores as it assumes the transaction persists
log with non-temporal stores vs. data with normal stores. Pmem-
spec [36] speculatively sends all persistent memory writes to a
memory controller and the cache hierarchy. It causes a stale read
problem, in which pmem-spec considers a virtual power failure and
invokes a costly crash recovery. A recent work [63] allows arbi-
trary instruction persistence ordering by tracking the programmer-
annotated instruction dependency in a modified write queue. All
the solutions need to maintain ordering between logging and data
updates, while SpecPMT does not.

Another branch of work [14, 25, 69] improves the concurrency
of persistent memory transactions without paying attention to per-
formance issues caused by fences and data persistence. Although
speculative logging encourages concurrency by design, concur-
rency control is beyond the scope of this paper.

Log Reclamation. Log reclamation is a common issue for redo log-
ging and multi-version concurrency control transactions [45, 56].
SSP [56] maintains a second physical page for each atomically
updated virtual page. It consolidates the two pages when the associ-
ated page table entry overflows from TLB. Excite-VM [45] realizes
snapshot isolation through an in-memory software cache for up-
dated pages. Hardware SpecPMT requires neither a snapshot nor a
software cache. Other hardware accelerations for general garbage
collection [34, 49, 75] address the complexities of general applica-
tions, such as concurrency control or crash recoverability. SpecPMT
removes all the mentioned complexities with log sequence design.

9 CONCLUSION
In this paper, we presented speculative logging, a new logging ap-
proach which removes most in-transaction fences and data persis-
tence, enforces immediate persistence, and performs direct memory
loads and in-place data updates. We discussed a software-only and
a hardware-supported design for speculative logging. The former
achieves a low 10% execution time overhead, compared to a state-
of-the-art solution of 232%. The latter keeps the performance of the
software-only solution while bounding its memory consumption.
Compared to the state-of-the-art undo and redo logging, it low-
ers execution time overheads by 86% and 76%, respectively, while
requiring a modest 0.91KB on-chip storage overhead.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

ACKNOWLEDGEMENT
We thank anonymous ASPLOS shepherd, reviewers, and Alex Freij
for their constructive feedback. This work is supported by the Na-
tional Key Research and Development Program of China under
grant No.2022YFB4500303, the National Natural Science Founda-
tion of China under grant No.62202184 and No.61825202, and the
National Science Foundation (NSF) under Grants CNS-2107068,
1900724, and 2106629. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF.

REFERENCES
[1] 2021. ARMv9 CPY Instructions. https://developer.arm.com/documentation/

ddi0602/2021-12/Base-Instructions/CPYP--CPYM--CPYE--Memory-Copy-.
[2] 2022. Direct File Access. https://www.kernel.org/doc/Documentation/

filesystems/dax.txt.
[3] 2022. Intel libvmmalloc. https://pmem.io/vmem/libvmmalloc/.
[4] 2022. Persistent Memory – A New Hope. https://www.sigarch.org/persistent-

memory-a-new-hope/.
[5] Ahmed Abulila, Izzat El Hajj, Myoungsoo Jung, and Nam Sung Kim. 2022.

ASAP: Architecture Support for Asynchronous Persistence. In Proceedings of
the ACM/IEEE 49th Annual International Symposium on Computer Architecture.
306–319.

[6] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin
Saha, and Tatiana Shpeisman. 2006. Compiler and runtime support for efficient
software transactional memory. ACM SIGPLAN Notices 41, 6 (2006), 26–37.

[7] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R. Ganger,
and George Amvrosiadis. 2019. File systems unfit as distributed storage back-
ends: lessons from 10 years of Ceph evolution. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. 353–369.

[8] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and
Yan Solihin. 2021. Bbb: Simplifying persistent programming using battery-backed
buffers. In Proceedings of the IEEE International Symposium on High-Performance
Computer Architecture. 111–124.

[9] Mohammad Alshboul, James Tuck, and Yan Solihin. 2018. Lazy persistency:
A high-performing and write-efficient software persistency technique. In Pro-
ceedings of the ACM/IEEE 45th Annual International Symposium on Computer
Architecture. 439–451.

[10] Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking. In Proceedings of the USENIX Annual Technical Conference. 27–39.

[11] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. PerMA-bench: bench-
marking persistent memory access. Proceedings of the VLDB Endowment 15, 11
(2022), 2463–2476.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1–7.

[13] Miao Cai, Chance C. Coats, and Jian Huang. 2020. Hoop: efficient hardware-
assisted out-of-place update for non-volatile memory. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture. 584–
596.

[14] Daniel Castro, Alexandro Baldassin, João Barreto, and Paolo Romano. 2021. SPHT:
Scalable Persistent Hardware Transactions. In Proceedings of the 19th USENIX
Conference on File and Storage Technologies. 155–169.

[15] Daniel Castro, Paolo Romano, and João Barreto. 2019. Hardware transactional
memory meets memory persistency. J. Parallel and Distrib. Comput. 130 (2019),
63–79.

[16] Daniel Castro, Paolo Romano, and João Barreto. 2019. Hardware transactional
memory meets memory persistency. J. Parallel and Distrib. Comput. 130 (2019),
63–79.

[17] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang Chen,
Wenyuan Dai, Bingsheng He, Weng-Fai Wong, Guoan Wu, Yuping Zhao, and
Andy Rudoff. 2021. Optimizing in-memory database engine for AI-powered
on-line decision augmentation using persistent memory. Proceedings of the VLDB
Endowment 14, 5 (2021), 799–812.

[18] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Jiwu Shu. 2021. Scalable PersistentMemory File Systemwith
Kernel-Userspace Collaboration. In Proceedings of the 19th USENIX Conference on
File and Storage Technologies. 81–95.

[19] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through byte-addressable,

persistent memory. In Proceedings of the ACM SIGOPS 22nd Symposium on Oper-
ating Systems Principles. 133–146.

[20] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing persistent memory bandwidth utilization for OLAP workloads. In
Proceedings of the International Conference on Management of Data. 339–351.

[21] Zhuohui Duan, Haikun Liu, Xiaofei Liao, Hai Jin, Wenbin Jiang, and Yu Zhang.
2019. HiNUMA: NUMA-aware data placement and migration in hybrid memory
systems. In Proceedings of the IEEE 37th International Conference on Computer
Design. 367–375.

[22] Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, and Stefanos Kaxiras.
2021. TSOPER: Efficient coherence-based strict persistency. In Proceedings of
the IEEE International Symposium on High-Performance Computer Architecture.
125–138.

[23] Hussein Elnawawy, Mohammad Alshboul, James Tuck, and Yan Solihin. 2017.
Efficient checkpointing of loop-based codes for non-volatile main memory. In
Proceedings of the 26th International Conference on Parallel Architectures and
Compilation Techniques. 318–329.

[24] Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic performance
tuning of word-based software transactional memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
237–246.

[25] Kaan Genç, Michael D. Bond, and Guoqing Harry Xu. 2020. Crafty: Efficient,
HTM-compatible persistent transactions. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 59–74.

[26] Ellis Giles, Kshitij Doshi, and Peter Varman. 2017. Continuous checkpointing of
HTM transactions in NVM. ACM SIGPLAN Notices 52, 9 (2017), 70–81.

[27] Derrick Greenspan, Naveed Ul Mustafa, Zoran Kolega, Mark Heinrich, and Yan
Solihin. 2022. Improving the Security and Programmability of Persistent Memory
Objects. In Proceedings of the IEEE International Symposium on Secure and Private
Execution Environment Design. 157–168.

[28] Jorge Guerra, Leonardo Marmol, Daniel Campello, Carlos Crespo, Raju Ran-
gaswami, and Jinpeng Wei. 2012. Software persistent memory. In Proceedings of
the USENIX Annual Technical Conference. 319–331.

[29] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. 2019. Distributed logless
atomic durability with persistent memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 466–478.

[30] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally
ordered durable data structures for persistent memory. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 775–788.

[31] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda.
2017. Log-Structured Non-Volatile Main Memory. In Proceedings of the USENIX
Annual Technical Conference. 703–717.

[32] Kaixin Huang, Sumin Li, Linpeng Huang, Kian-Lee Tan, and Hong Mei. 2020.
Lewat: a lightweight, efficient, and wear-aware transactional persistent memory
system. IEEE Transactions on Parallel and Distributed Systems 32, 3 (2020), 649–
664.

[33] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems. 427–442.

[34] Jaeyoung Jang, Jun Heo, Yejin Lee, Jaeyeon Won, Seonghak Kim, Sung Jun Jung,
Hakbeom Jang, Tae Jun Ham, and Jae W. Lee. 2019. Charon: Specialized near-
memory processing architecture for clearing dead objects in memory. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
726–739.

[35] Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded hardware transactional memory for a hybrid
DRAM/NVM memory system. In Proceedings of the 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 525–538.

[36] Jungi Jeong and Changhee Jung. 2021. Pmem-spec: Persistent memory specula-
tion. In Proceedings of the Twenty-Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems.

[37] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng. 2018.
Efficient hardware-assisted logging with asynchronous and direct-update for
persistent memory. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture. 520–532.

[38] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. 2013.
I/O Stack Optimization for Smartphones. In Proceedings of the USENIX Annual
Technical Conference. 309–320.

[39] Xiaowei Jiang, Yan Solihin, Li Zhao, and Ravishankar Iyer. 2009. Architecture
support for improving bulk memory copying and initialization performance.
In Proceedings of the 18th International Conference on Parallel Architectures and
Compilation Techniques. 169–180.

[40] Hai Jin, Shuo Wei, Yan Sha, Chencheng Ye, Haikun Liu, and Xiaofei Liao. 2022.
PMLiteDB: Streamlining Access Paths for High-Performance Persistent Memory
Document Database Systems. IEEE Trans. Comput. (2022).

https://developer.arm.com/documentation/ddi0602/2021-12/Base-Instructions/CPYP--CPYM--CPYE--Memory-Copy-
https://developer.arm.com/documentation/ddi0602/2021-12/Base-Instructions/CPYP--CPYM--CPYE--Memory-Copy-
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://pmem.io/vmem/libvmmalloc/
https://www.sigarch.org/persistent-memory-a-new-hope/
https://www.sigarch.org/persistent-memory-a-new-hope/

SpecPMT: Speculative Logging for Resolving Crash Consistency Overhead of Persistent Memory ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[41] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient
persist barriers for multicores. In Proceedings of the 48th International Symposium
on Microarchitecture. 660–671.

[42] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic durability in non-volatile memory through hardware logging. In Pro-
ceedings of the IEEE International Symposium on High-Performance Computer
Architecture. 361–372.

[43] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets compute
express link for memory expansion (CXL-SSD). In Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems. 45–51.

[44] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and Greg Ganger.
2017. Viyojit: Decoupling battery andDRAM capacities for battery-backedDRAM.
ACM SIGARCH Computer Architecture News 45, 2 (2017), 613–626.

[45] Heiner Litz, Benjamin Braun, and David Cheriton. 2016. EXCITE-VM: Extending
the virtual memory system to support snapshot isolation transactions. In Pro-
ceedings of the International Conference on Parallel Architectures and Compilation.
401–412.

[46] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable Transactions with De-
coupling for Persistent Memory. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems. 329–343.

[47] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh, and
Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for nonvolatile
memory. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture. 258–270.

[48] Youyou Lu, Jiwu Shu, and Long Sun. 2016. Blurred persistence: Efficient transac-
tions in persistent memory. ACM Transactions on Storage 12, 1 (2016), 1–29.

[49] Martin Maas, Krste Asanović, and John Kubiatowicz. 2018. A hardware accelera-
tor for tracing garbage collection. In Proceedings of the ACM/IEEE 45th Annual
International Symposium on Computer Architecture. 138–151.

[50] Virendra Marathe, Achin Mishra, Amee Trivedi, Yihe Huang, Faisal Zaghloul,
Sanidhya Kashyap, Margo Seltzer, Tim Harris, Steve Byan, Bill Bridge, and Dave
Dice. 2018. Persistent memory transactions. arXiv preprint arXiv:1804.00701
(2018).

[51] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. 2017. Atomic in-place
updates for non-volatile main memories with kamino-tx. In Proceedings of the
Twelfth European Conference on Computer Systems. 499–512.

[52] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto:
Easy and fast persistence for volatile data structures. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems. 789–806.

[53] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008.
STAMP: Stanford transactional applications for multi-processing. In Proceedings
of the IEEE International Symposium on Workload Characterization. 35–46.

[54] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. 1992. ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM Trans-
actions on Database Systems 17, 1 (1992), 94–162.

[55] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. 2006. LogTM: Log-based transactional memory. In Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture. 254–265.

[56] Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman, and Ethan L. Miller.
2019. SSP: Eliminating redundant writes in failure-atomic NVRAMs via shadow
sub-paging. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 836–848.

[57] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. 2018. Steal but no
force: Efficient hardware undo+ redo logging for persistent memory systems. In
Proceedings of the IEEE International Symposium on High-Performance Computer
Architecture. 336–349.

[58] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory persis-
tency. In Proceedings of the ACM/IEEE 41st International Symposium on Computer
Architecture. 265–276.

[59] Steve Scargall. 2020. Programming persistent memory: A comprehensive guide for
developers. Springer Nature.

[60] Sara Mahdizadeh Shahri, Seyed Armin Vakil Ghahani, and Aasheesh Kolli. 2020.
(almost) Fence-less persist ordering. In Proceedings of the 53rd Annual IEEE/ACM
International Symposium on Microarchitecture. 539–554.

[61] Ali Sheikholeslami and P. Glenn Gulak. 2000. A survey of circuit innovations in
ferroelectric random-access memories. Proc. IEEE 88, 5 (2000), 667–689.

[62] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.
Proteus: A flexible and fast software supported hardware logging approach for
nvm. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. 178–190.

[63] Thomas Shull, Ilias Vougioukas, Nikos Nikoleris, Wendy Elsasser, and Josep Tor-
rellas. 2021. Execution Dependence Extension (EDE): ISA Support for Eliminating
Fences. In Proceedings of the ACM/IEEE 48th Annual International Symposium on

Computer Architecture. 456–469.
[64] Abraham Silberschatz, Henry F. Korth, and Shashank Sudarshan. 2002. Database

system concepts (seventh edition). Vol. 7. McGraw-Hill New York. 928–929 pages.
[65] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy transactions in multicore in-memory databases. In Proceedings of
the 24th ACM Symposium on Operating Systems Principles. 18–32.

[66] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems. 91–
104.

[67] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and modeling non-volatile memory systems.
In Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture. 496–508.

[68] Michèle Weiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier Iffrig,
Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jackson, and Mark
Parsons. 2019. An early evaluation of Intel’s optane DC persistent memory
module and its impact on high-performance scientific applications. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–19.

[69] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. 2021. ArchTM: Architecture-Aware,
High Performance Transaction for Persistent Memory. In Proceedings of the 19th
USENIX Conference on File and Storage Technologies. 141–153.

[70] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.
Characterizing the performance of Intel optane persistent memory: a close look
at its on-DIMM buffering. In Proceedings of the Seventeenth European Conference
on Computer Systems. 488–505.

[71] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM: log less,
re-execute more. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 346–
359.

[72] Yuanchao Xu, Yan Solihin, and Xipeng Shen. 2020. Merr: Improving security of
persistent memory objects via efficient memory exposure reduction and random-
ization. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 987–1000.

[73] Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin. 2022. Temporal
Exposure Reduction Protection for Persistent Memory. In Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture. 908–924.

[74] Yuanchao Xu, Chencheng Ye, Yan Solihin, and Xipeng Shen. 2020. Hardware-
based domain virtualization for intra-process isolation of persistent memory
objects. In Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture. 680–692.

[75] Yuanchao Xu, Chencheng Ye, Yan Solihin, and Xipeng Shen. 2022. FFCCD: fence-
free crash-consistent concurrent defragmentation for persistent memory. In
Proceedings of the 49th Annual International Symposium on Computer Architecture.
274–288.

[76] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael Swift. 2022. ASAP: A
Speculative Approach to Persistence. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture. 892–907.

[77] Dang Yang, Haikun Liu, Hai Jin, and Yu Zhang. 2021. HMvisor: Dynamic hybrid
memory management for virtual machines. Science China Information Sciences
64, 9 (2021), 1–16.

[78] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies.
169–182.

[79] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Hai Jin, Xiaofei Liao, and Yan Solihin.
2022. Preserving Addressability Upon GC-Triggered Data Movements on Non-
Volatile Memory. ACM Transactions on Architecture and Code Optimization 19, 2
(2022), 1–26.

[80] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Xiaofei Liao, Hai Jin, and Yan Soli-
hin. 2021. Hardware-based address-centric acceleration of key-value store. In
Proceedings of the IEEE International Symposium on High-Performance Computer
Architecture. 736–748.

[81] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Xiaofei Liao, Hai Jin, and Yan Solihin.
2021. Supporting legacy libraries on non-volatile memory: a user-transparent
approach. In Proceedings of the ACM/IEEE 48th Annual International Symposium
on Computer Architecture. 443–455.

[82] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D.
Hill, Michael M. Swift, and David A. Wood. 2007. LogTM-SE: Decoupling hard-
ware transactional memory from caches. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture. 261–272.

[83] Wen Zhang, Scott Shenker, and Irene Zhang. 2020. Persistent State Machines for
Recoverable In-memory Storage Systems with NVRam. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation. 1029–1046.

[84] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th ACM
European Conference on Computer Systems. 89–102.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha, Xiaofei Liao, Hai Jin, and Yan Solihin

[85] Zhan Zhang, Jianhui Yue, Xiaofei Liao, and Hai Jin. 2021. Efficient Hardware
Redo Logging for Secure Persistent Memory. In Proceedings of the IEEE 23rd Int
Conf on High Performance Computing & Communications; 7th Int Conf on Data
Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in
Sensor, Cloud & Big Data Systems & Application. 41–48.

[86] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave

Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav. 2021.
Foundationdb: A distributed unbundled transactional key value store. In Proceed-
ings of the International Conference on Management of Data. 2653–2666.

Received 2022-07-07; accepted 2022-09-22

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 Memory Data Persistency
	2.3 Crash Consistency

	3 Speculative Logging
	3.1 Speculative Logging Example

	4 Software Speculative Logging
	4.1 Log Organization
	4.2 Background Log Reclamation
	4.3 Programming Model

	5 Hardware Support
	5.1 Hybrid Logging
	5.2 Epoch-Based Log Reclamation
	5.3 Other Issues
	5.4 Hardware Cost

	6 Discussion
	7 Evaluation
	7.1 Methodology
	7.2 Software Solution Evaluation
	7.3 Hardware Solution Evaluation

	8 Related Work
	9 Conclusion
	References

