
Space-Efficient TREC for Enabling Deep Learning on
Microcontrollers

Jiesong Liu
Renmin University of China

Beijing, China
liujiesong@ruc.edu.cn

Feng Zhang
Renmin University of China

Beijing, China
fengzhang@ruc.edu.cn

Jiawei Guan
Renmin University of China

Beijing, China
guanjw@ruc.edu.cn

Hsin-Hsuan Sung
North Carolina State University
Raleigh, North Carolina, USA

hsung2@ncsu.edu

Xiaoguang Guo
Renmin University of China

Beijing, China
xiaoguangguo@ruc.edu.cn

Xiaoyong Du
Renmin University of China

Beijing, China
duyong@ruc.edu.cn

Xipeng Shen
North Carolina State University
Raleigh, North Carolina, USA

xshen5@ncsu.edu

ABSTRACT
Deploying deep neural networks (DNNs) for a resource-constrained
environment and achieving satisfactory performance is challeng-
ing. It is especially so on microcontrollers for their stringent space
and computing power. This paper focuses on new ways to make
TREC, an optimization recently proposed to enable computation
reuse in DNNs, space and time efficient on Microcontrollers. The
solution maximizes the performance benefits while keeping the
DNN accuracy stable. Experiments show that the solution elimi-
nates over 96% computations in DNNs and makes them fit well into
microcontrollers, producing 3.4-5× speedups with only marginal
accuracy loss.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Software and its engineering→ Compilers.

KEYWORDS
real-time machine learning, compiler optimization

ACM Reference Format:
Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo,
Xiaoyong Du, and Xipeng Shen. 2023. Space-Efficient TREC for Enabling
Deep Learning on Microcontrollers. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3582016.3582062

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582062

1 INTRODUCTION
Deep neural networks (DNNs) are in high demand from servers
to the edges and now to microcontroller-based devices. Microcon-
trollers dominate the computing engine market for small, low-cost
or energy-efficient devices [6, 17, 30, 33]. Microcontrollers exist ev-
erywhere, from household appliances [42], to cars [47], consumer
electronics [52], wearables [51] and so on. It is estimated that 250
billion microcontrollers are already in use [50]. Microcontrollers are
very resource-constrained. For example, STM32 F469I contains only
324KB SRAM and 2048KB flash on-chip memory [7]. As a result,
they have been widely regarded viable only for simple applications
(e.g., keyword spotting [37, 65]), rather than complex DNN models.

But the demands for DNNs on microcontrollers [3, 13, 17, 30]
keep growing, for three reasons. First, making DNNs runnable on
microcontrollers can expand the range of AI-powered applications
on more devices. Second, executing large DNNs locally on micro-
controllers is essential for reducing energy consumption while
increasing performance efficiency [7]. By eliminating the need for
streaming from edge to the cloud [25], application latency can also
be reduced and avoiding network congestion issues [24]. Finally,
such designs eliminate many privacy concerns, as all user data is
processed locally [26].

Apply on
microcontrollers devices DeploymentAnomaly detection

Dataset

DNNs

Train on
powerful servers

Figure 1: Use case of anomaly detection.

We show a use case of anomaly detection in Figure 1, which
applies microcontrollers on a servo motor to retrieve vibration
data [53]. With the help of microcontrollers, anomalies can be

https://doi.org/10.1145/3582016.3582062
https://doi.org/10.1145/3582016.3582062
https://doi.org/10.1145/3582016.3582062

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

detected and reported in real time. In this particular case, the de-
tection accuracy of 0.67 and a latency of over 1 second [12] are
improved to 0.82 and 317ms when DNNs are moved from cloud to
the device end [38]. In the same vein, many other tasks can ben-
efit from on-device AI, ranging from exoskeletons [23], to voice
activation [27, 59], object detection [4, 5, 49], and so forth.

There are some prior efforts trying to enable DNNs on micro-
controllers, by creating light-weight neural networks [31, 60] and
other designs [10, 14, 46]. However, the available DNNs that can be
executed on microcontrollers are still very limited, and those that
can run are often subject to long latency [36, 58].

Challenges to efficient DNN on microcontrollers lie in how to
mitigate the tensions between performance and limited resources,
shown in three aspects: (i) how to minimize the long execution time
of DNN inferences under limited computing resources; (ii) how to
host complicated DNNs in the limited memory including its inputs,
outputs, weights, activation maps, and intermediate results; (iii)
how to establish an optimal setting for minimizing the accuracy
loss when optimizing the DNNs.

In this work, we propose a new approach, space-efficient TREC,
to substantially improve the state of the art of DNNs on microcon-
trollers. TREC stands for transient redundancy elimination-based
convolution. Its key idea is to identify similar elements in the input
data of a convolution layer and avoid repeating similar compu-
tations on the fly. TREC makes the reuse mechanism a trainable
component of a DNN. Because input data changes across inferences,
the redundancy that TREC exploits is transient, hence the name.

The theoretical foundation TREC has been presented in a recent
work [16], while this paper provides a deep examination of the
challenges in making TREC effective for space-constraint devices,
and details the optimizations that enable TREC to run efficiently on
Microcontrollers. Specifically, we have made progress in three ways.
First, as the new operator introduces additional space overhead, for
space efficiency, we design a kernel reuse technique to reduce the
space for storing parameters in the newly-built network. Second,
we embed a two-step stack for storing clustering ID in TREC and
use a reversed index to help locate the entries in the stack. Third,
with the systematic design for the new network, we manage to
integrate our techniques into back-propagation and keep marginal
accuracy loss compared to the original TREC.

We evaluate our solution by applying it to three popular DNN
networks, namely CifarNet [28], ZfNet [62], and SqueezeNet [21],
on two microcontroller models. Our experiments show that, by
implementing our solution on microcontrollers, we are able to
avoid over 96% computations on convolution layers, and achieve
an average of 3.4-5× reduction in the overall network latency with
no or marginal accuracy loss.

Several previous studies have exploited similarities in inputs for
DNNs. They either rely on special hardware [45] or use random
hashing vectors that cause unstable inference accuracy [39]. None
of them target microcontrollers or deal with the stringent space
limitation. To our best knowledge, the solution from this work is
the first that welds similarity-based computation reuse into DNN
in a space-efficient manner for microcontrollers.

The main contributions of our work are as follows:

• We reveal the challenges of incorporating TREC for reducing
computations in DNNs running on microcontrollers.

• We introduce a set of optimizations to mitigate the space
overhead incurred by TREC.

• We empirically evaluate the effectiveness of the new solution
on two models of microcontrollers, confirming the substan-
tial benefits of the new solution in enabling efficient DNNs
on microcontrollers.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the deployment of neural networks
on microcontrollers, the work related with input reuse and work
related with model compression.

Microcontrollers.Microcontroller (MCU) is an energy-efficient
processor that is ubiquitous in our lives. We show an example
of MCU architecture and its memory hierarchy (STM32F469I in
our case) in Figure 2. Figure 2 (a) shows that the Cortex-M4 core
architecture consists of a 32-bit processor (CM4) and a small number
of critical peripherals. The CM4 core is a Harvard-architecture,
which means that it utilizes distinct interfaces to fetch instructions
(Inst) and data (Data). This helps ensure that the CPU does not run
out of memory, as it enables simultaneous access to the data and
instruction memories. The special feature that distinguishes Cortex
M4 from CM3 [9] is that CM4 includes, for the processor, single-
instruction multiple-data (SIMD) extensions that are effective in
achieving faster arithmetic computing performance in the CPU
context. From the CM4’s perspective, everything appears to be
a memory.And the CM4 Core will only distinguish instruction
fetches and data access. According to distinctive sections ofmemory,
CM4 communicates with outer hardware through different memory
buses (i.e., ICode, DCode, and System).

Figure 2 (b) shows its on-chip memory hierarchy consisting
of very limited memory space. We can see that microcontrollers
are typically comprised of a central processing unit (CPU), cached
memory for frequently accessed data, static random-access memory
(SRAM), and an on-chip flash memory for storage.

CM4 Core

Inst Data

NVIC
SysTick

Bu
s

M
at

rix

Cortex-M4

Interrupts

ICode
DCode
System

On-Chip

Cortex-M
Cache (4KB)

SRAM
(324 KB)

eFlash
(2 MB)

Cloud

(a) Architecture of Cortex-M4. (b) Memory Hierachy for MCUs.

Figure 2: An illustration of the architecture and memory
hierarchy for microcontrollers.

Microcontrollers are especially energy efficient with low-power
(0.166W for F469I board) and cost effective (around $10) compared
to common processors like CPU and GPU [63]. Given this, micro-
controllers provide very limited computing resources and a limited
volume of storage (around 1 𝑐𝑚3) that developers need to take care

Space-Efficient TREC for Enabling Deep Learning on Microcontrollers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

of. In addition to physical microcontrollers, cloud functions, which
can be seen as virtual resource-constrained devices in the cloud or
the edge, are also widely used for cost-efficient computation and
data processing tasks [19]. Optimizations that improve the space
efficiency on microcontrollers may apply to cloud-function-based
applications.

Work on input reuse. Several studies have explored similar-
ities in inputs for DNN accelerations. Deep reuse [39, 55, 56, 64]
is a pure software approach. It inspired this current work. Deep
reuse deals with convolution as a General Matrix Multiplication
(GEMM) in the form illustrated on the right side of Figure 3. After
transformation, each row in 𝑋 is a neuron vector. Deep reuse finds
and clusters similar neuron vectors as a group. It thus avoids re-
peating similar computations by reusing the computation results of
the cluster centroid as the results of the rest of the neuron vectors
in the same group. The work uses some random locality-sensitive
hashing vectors for the online clustering. It does not consider space
efficiency; it actually increases the space usage substantially due to
the extra space needed to store hashing vectors and cluster indices.
The use of random hashing vectors also cause large fluctuations in
the inference accuracy (detailed in Section 7). There also exist some
data-effcienct-based works [54] that judiciously select a subset of
train data (i.e. coreset) for training, which can much improve the
efficiency while performing on par with the full train data. Some
other studies [45] have designed special hardware to exploit input
reuse.

Input a b c d
e f g h
i j k l

Kernel
w x
y z

Output
aw + bx+
ey + fz

bw + cx+
fy + gz

cw + dx+
gy + hz

ew + fx+
iy + jz

fw + gx+
jy + kz

gw + hx+
ky + lz

X

a b

c d

e f

g h
i

f

f
f

e

g
g

b c g

j
j

h k l
k

Kernel

w
x
y

z

Figure 3: An illustration of convolution in deep reuse.

Relations with model compression approaches. Many stud-
ies on DNN compression [18] have exploited the redundancy among
DNN parameters, which is orthogonal to input-level reuse. Exam-
ples include quantization [61], squeezing filter size [11], conduct-
ing feature compression to activation map [48], adding a down-
sampling [44], converting large models to light-weight counter-
parts through knowledge distillation [20], and applying adaptive
LSH framework to reduce the size of model updates like Mon-
goose [8]. These techniques can significantly reduce the model size
(i.e., weights and biases), the amount of computations, and data
required to stream from edge to the cloud. For resource-stringent
microcontrollers, input reuse and model compression have to be ap-
plied at the same time as shown later (TREC design in Sections 4&5
and model compression in Section 6) in this paper.

Locality Sensitive Hashing (LSH) LSH is an online clustering
method used in multiple solutions (including TREC) for enabling
computation reuse in DNN optimizations. As shown in Equation 1,

for a parameter vector v, the input vector x is transformed into 1
or 0 follow the hash function ℎv:

ℎv (x) =
{1, 𝑖 𝑓 v · x > 0
0, 𝑖 𝑓 v · x ≤ 0

(1)

If 𝐻 hash functions are used, for a given input vector, LSH maps it
to a 𝐻 -bit vector. Nearby input vectors often produce the same bit
vector after hashing, and the number of hash functions, 𝐻 , adjusts
clustering roughness.

Each neuron vector then can be labeled an ID number according
to the corresponding 𝐻 -bit vector. And neuron vectors with the
same ID can form a cluster and reuse the computing results from
the centroid vector in place of the individual results for each vector.

3 OVERVIEW
Running large DNN inference on microcontrollers is especially
challenging because of the strict resource constraints both in terms
of computing capabilities and memory footprint. Removing compu-
tation redundancy and achieving space efficiency is thus essential
for enabling efficient DNN deployment on microcontrollers.

Redundancy in DNNs can be categorized, based on where the
redundancy originates, into lasting redundancy and transient redun-
dancy. Lasting redundancy originates from the model parameters.
As parameters are unchanged when applying inference, this kind
of redundancy can be eliminated by methods such as pruning and
quantization. Transient redundancy, however, exists in the form of
similar tiles inside an input data or activation map [16].

There are many techniques that can be adopted for the elimi-
nation of lasting redundancy when running neural networks. For
example, CMSIS-NN [33] applies quantization to the kernel weights
and consequently avoids floating point computations for DNN net-
works, thus improving inference performance. However, ways of
reducing transient redundancy on microcontrollers remain insuffi-
ciently explored.

To address this issue, we devise a principled way to efficiently
detect and remove transient redundancy for DNNs on microcon-
trollers. It is based on Transient Redundancy Elimination-based
Convolution (TREC), an idea of integrating reuse into a DNN as
new kinds of DNN operators. This architecture has multiple bene-
fits. First, by eliminating transient redundancy, TREC minimizes
the computation volume, thus bringing the maximum computation-
elimination benefits and improving the performance of the entire
network. Second, TREC is compatible with both training and in-
ference tasks, allowing for a simple plug-and-play replacement of
convolutional layers in standard convolutional neural networks
(CNNs) for training and inferencing. This approach guarantees
highly robust model accuracy. Third, applying TREC in the model
is orthogonal to methods targeting removal of lasting redundancy,
which can bring further benefits when combined together. Section 4
gives more details of the TREC architecture.

Adding the new operators into the DNN inference stage reduces
the amount of required computations significantly, but also intro-
duces space overhead. To achieve space efficiency, we introduce
two-step stack substitution for the DNN network to minimize the
space occupancy for the clustering containers. Furthermore, for
extreme cases where efficient space usage is of paramount impor-
tance (e.g., microcontrollers), we propose the kernel reuse technique

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

to further remove the overhead while still eliminating the transient
redundancy when performing DNN inference. Figure 4 outlines the
overall process of space-efficient TREC. We next explain it in more
details.

Lasting Redundancy Elimination

Channel Pruning Quantization Layer Folding

��

Hash

TREC Architecture W

����

Kernel Reuse Two-Step Stack

TREC Space Optimization

Figure 4: Overview of space-efficient TREC.

4 TREC ARCHITECTURE
To help understand the description on Space Efficient TREC, we
first give a review of the basic architecture of TREC [16], its training
and properties.

The main aim of TREC is grouping similar neuron vectors into
clusters and then redirecting clustering results back to the DNN.
To achieve this objective, it fuses the detection and avoidance of
transient redundancy into DNN, making them part of its inherent
architecture[16].

As illustrated in Figure 5, the original GEMM convolution is
y = x ·W. The TREC operator can be decomposed into four steps.
First, the input matrix x passes through a clustering component.
At a high level, TREC uses Locality-Sensitive Hashing (LSH) to
do the clustering. In this example, x ∈ R4×4 is first sliced into
two 4 × 2 sub-matrices, each of which has its own hash functions.
And the 4 row vectors in each sub-matrix are grouped into two
clusters. In the second step, for each x, x ·W is performed using
the representative neuron vectors, allowing the matrix size for
computing to be significantly reduced. In the third step, for each
sub-matrix, vectors in the same cluster use the computation results
from the corresponding centroid neuron vector to recover the full-
sized output matrix. Finally, the final result is obtained by adding
the results computed separately for each sub-matrix.

The main computation savings come from the clustering com-
ponent. This is because in GEMM-based convolution, we should
compute four results for each neuron vector. By using TREC, we use
the result of the centroid computation in place of the per-row results
for each of the row vector. Therefore, the number of vector-matrix
computation reduces from four to two.

Benefits and the key conditions. By grouping neuron vectors
into clusters, the size of the input matrix is significantly reduced,
allowing for low computational complexity for the subsequent
matrix multiplication. Consider that an input matrix 𝑋 for GEMM
(after im2col) is of 𝑁 × 𝐾 dimension and a weight matrix𝑊 is

=

y

sum to get
final output

Recover from
cluster results

+

y(1)

y(2)

𝑥11

✕

x W

𝑥21
𝑥31
𝑥41

𝑥12
𝑥22
𝑥32
𝑥42

LSH-based
clustering

x
Hash

xc(1)
𝑥%%&

𝑥'%&

xc(2)
𝑥%'&

𝑥''&

✕ =

✕ =

xc(1)
𝑥%%&

𝑥'%&

xc(2)
𝑥%'&

𝑥''&

𝑦%%&

𝑦'%&

𝑦%'&

𝑦''&

𝑦%%&

𝑦%%&

𝑦%%&

𝑦'%&

𝑦%'&

𝑦''&

𝑦''&

𝑦''&

Figure 5: An illustration of TREC.

𝐾 ×𝑀 size. The clustering step can be abstracted as applying a hash
function matrix 𝐻𝑎𝑠ℎ to 𝑋 . Let 𝐾 ×𝐻 be the dimension of the hash
matrix. We can assume that the neuron vectors can be grouped into
𝑁𝑐 clusters. For each input image or activation map, the benefits
for removing the transient redundancy can thus be measured by a
redundancy radio, i.e., 𝑟𝑡 = 1 − 𝑁𝑐

𝑁
as the reduction of input size. 𝑁

is the total number of neuron vectors, and the number of centroid
vectors is equal to the number of clusters, namely 𝑁𝑐 . The number
of required computations is thus reduced to 𝑁𝑐 . We can conclude
that 𝑟𝑡 indicates the fraction of 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 within input
images or activation maps.

Using this measure, the total Floating-point Operations (Ops)
for a conventional GEMM-based convolution is 𝑁 · 𝐾 · 𝑀 , while
the Ops for TREC will be

(
𝐻
𝑀

+ 1 − 𝑟𝑡
)
· 𝑁 ·𝐾 ·𝑀 , since TREC also

involves a𝐻𝑎𝑠ℎ matrix multiplication. Therefore, in order for TREC
to expedite DNN inference (i.e.,

(
𝐻
𝑀

+ 1 − 𝑟𝑡
)
·𝑁 ·𝐾 ·𝑀 < 𝑁 ·𝐾 ·𝑀),

the following key condition must hold: 𝐻
𝑀

< 𝑟𝑡 . As shown in the
experiments, the average transient redundancy elimination benefits
𝑟𝑡 exceeds 96%.

Comparison with deep reuse. Prior studies like deep reuse have
treated transient redundancy in an ad-hoc manner. Deep reuse takes
place as extra operations outside DNN, using LSH with random
hashing vectors for online data clustering. Such ad-hoc treatment
causes severe uncertainty about the impact of the clustering errors
on the DNN performance. Experimental results show that deep
reuse causes significant (e.g., 5%) fluctuations on DNN accuracy.

TREC overcomes the limitations of deep reuse. The newly in-
troduced DNN operator TREC incorporates transient redundancy
detection and avoidance directly into DNN’s inner architecture,
while deep reuse functions outside the DNN. As a result, TREC
achieves a consistent inference performance and accuracy.

Training TREC So far we have discussed how TREC can benefit
from reusing the centroid results. We have also shown how TREC
performs efficient convolutions in the following stages: 1) cluster-
ing: grouping similar neuron vectors through hash functions, 2)

Space-Efficient TREC for Enabling Deep Learning on Microcontrollers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

computing and reusing results from centroid vectors in each cluster
in place of the results of each vector in the cluster, and 3) recover-
ing back to final results. Now, we explain how to jointly learn the
hash functions and kernel weight parameters, 𝐻𝑎𝑠ℎ and𝑊 . Direct
learning of TREC leads to problems: 1) discrete mapping problem,
where we need to map values to 0 or 1 according to their signs, and
2) combinatorial optimization problem, where we have to compute
the centroids for each cluster. To get around this, we reformulate
the clustering stage.

We propose the following workflow for clustering in Figure 6 to
make back-propagation work with the clustering in TREC. First,
to solve the discrete mapping problem, after the input matrix x is
multiplied by the Hash matrix, the projected matrix is subjected to
an element-wise sigmoid functioning as a binary classifier. In line
with the proposed design, each neuron vector is thus transformed
into a 𝐻 -bit vector. In the next step, the bit vector is converted
into a cluster ID, akin to converting a numerical value from its
binary representation to the decimal counterpart. We then apply
the mapper matrix to the ID vector and, after applying a Gaussian
function, we obtain a bitmap of the neuron vector where each
column indicates whether this vector belongs to a corresponding
cluster. This bitmap helps to transform the computation of centroids
from a combinatorial problem to a matrix multiplication.

After obtaining centroids, we can multiply the centroids with
the weights𝑊 and perform the rest of the computation step of
TREC as in Figure 4.

X

Hash

sigmoid Bin2dec

0 0 1
1 0 1
0 0 1
0 1 1

1
5
1
3

mapper Gaussian

00 00 00 01
00 01 00 00
00 00 00 01
00 00 01 00� � =

1
1 + ⅇ−� � � = ⅇ− �−1 2

2�2
� 23⋯2 1 −1

22

21

20

LSH-based clustering

Figure 6: Training design for the clustering component in
TREC.

Properties of TREC TREC has several appealing properties.
• Accuracy. Reusing results from the centroid vector for the
vectors in the whole cluster is driven by the similarities
among the vectors in the cluster. The learning process in
TREC helps minimize the approximation errors. If we train
the neural network with random LSH vectors, i.e., without
learning the Hash matrix in the back propagation, accuracy
could drop sharply. The learned Hash matrix in TREC makes
a big difference in improving the accuracy of the network, as
our experiments in Section 7 will show. The lesson is that the
Hashmatrix is learned and updated in a way that it resonates
with the clustering process. In a sense, it chooses the optimal
LSH vectors that are able to detect the similarities between
vectors, and it helps group the similar vectors into the same
cluster.

• Robustness. Traditional GEMM-based CNNs are robust in
that they possess stability for small input perturbation. In or-
der to assess the robustness of a neural network, we apply the
Lipschitz constant 𝐿 to analyze TREC. 𝐿 gives the relations
between the input perturbation 𝜖 and the output variations 𝛿 ,

namely 𝛿 ≤ 𝐿𝜖 . The Lipschitz constant for TREC is rigorously
proved to be bounded by the GEMM-based Convolution,
namely, 𝐿 (𝑇𝑅𝐸𝐶) ≤ 𝐿 (𝐶𝑜𝑛𝑣). Therefore, when the input
image suffers from small perturbation, according to the prop-
erties of Lipschitz continuous of TREC, the output variation,
denoted as 𝛿𝑇𝑅𝐸𝐶 , is bounded by the 𝐿∞-norm of the weight
matrix𝑊 , i.e., 𝛿𝑇𝑅𝐸𝐶 ≤ 𝐿 (𝑇𝑅𝐸𝐶) 𝜖 ≤ 𝐿 (𝐶𝑜𝑛𝑣) 𝜖 ≤ ∥𝑊 ∥∞𝜖 .
This shows that TREC is robust to input perturbation.

• Convergence. TREC-equipped DNNs converge under rea-
sonable assumptions: (a) The objective function 𝐹 (𝑊,𝐻), in
which𝑊 and 𝐻 correspond to the weight matrix and Hash
matrix, is continuously differentiable, and (b) 𝐹 (𝑊,𝐻)’s par-
tial derivatives ∇𝐹 are Lipschitz continuous where their first
and second moments meet certain limits. Given the above
assumptions, we are able to obtain the fact that the expected
change in 𝐹 between two iterations are bounded. Therefore,
for stochastic gradient descent optimization strategy, the
partial derivatives of the objective function 𝐹 converge to
zero after many iterations. This is true to both fixed and
diminishing stepsizes and thus proves that we have found
the locally optimal solution [16].

• Compatible with Sparse Matrices TREC is applicable in
the presence of sparse weights matrix or sparse input matrix,
making it possible to be used together with other DNN opti-
mizations (e.g., pruning). We provide details in Appendix A.

5 ACHIEVING SPACE EFFICIENCY
This section provides the techniques we propose that make TREC
space-efficient, and explain how to make TREC-based DNN efficient
on Microcontrollers.

5.1 Space Pressure For DNNs on
Microcontrollers

In this section, we analyze the space pressure for DNNs on micro-
controllers. Unlike desktop systems, microcontrollers have a rather
flat memory system, as they are equipped with on-chip main mem-
ory only. To fit large DNNs into such a memory system, given the
small size of microcontroller devices, we carefully analyze the space
usage for the original network and the additional space required
for TREC.

Figure 7 provides a typical memory breakdown for neural net-
works on the STM32F746ZG SRAM. The runtime overhead for the
mbed-os is fairly small, requiring just 25 KB on SRAM. Loading
buffers are needed for image input and are allocated. As CifarNet
is equipped with only 2 convolutional layers, the full weights and
biases are stored and buffered on the persistent buffers, where point-
ers to the intermediate buffers are also stored. Activation maps are
also allocated on SRAM as well.

Additional space for TREC. Adding the TREC operator to
the DNN can minimize the required computations for the whole
network, allowing for efficient inference performance. However,
it brings additional space overhead. Specifically, an extra Hash
matrix and containers for holding cluster information are needed.
Since there are at most 2𝐻 different clusters, the additional space
overhead for clustering computing is𝑂 (𝐿×2𝐻), space required to be
allocated on the free section in Figure 7. Consider TREC operators

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

Free(24KB)

Mbed-os(25KB)

library(2KB)

Persistent
buffer
73KB

load buffer 6KB

Intermediate
buffer
194KB

ModelConfigurations

Figure 7: Breakdown of SRAM memory for an original DNN
without TREC on STM32F746ZG.

in 𝑁 layers, the total space overhead for the Hash matrix, however,
is Σ𝑁

𝑛=1𝐶𝑖−1 × 𝑘
2
𝑖
×𝐻 , where 𝑘𝑖 and 𝐶𝑖 denotes the kernel size and

the channel size of layer i, respectively.
Empirical analysis for space overhead. Space resource is

very limited on microcontrollers. Specifically, SRAM is important
as primary storage because direct computations are performed on
it. Flash memory stores read-only data and uses SRAM to load data
when doing computation. However, applying TREC can bring ad-
ditional burden to SRAM spaces. Table 1 shows the SRAM size of
four typical STM32 microcontrollers and the space ratio of TREC
overheads to these boards. The corresponding 𝐿 and 𝐻 configura-
tions for determining the TREC space overhead are displayed in
Table 4 in Section 7.3. For each DNN network, Hash denotes the
additional space required for the LSH matrix, while Cluster relates
to the indexing and storing vectors for each cluster. For example,
TREC requires an additional 16KB to conduct clustering operations
and 41KB for hash tables for SqueezeNet.

Table 1: Space overheads introduced by TREC for the three
networks and their ratio to the SRAM of four boards.

Network CifarNet ZfNet SqueezeNet

Hash Cluster Hash Cluster Hash Cluster

Space overhead 20 KB 40 KB 56 KB
Breakdown 60.6% 39.4% 65.8% 34.2% 91.1% 8.9%

Sp
ac
e
ra
tio F205 (64KB) 31.3% 62.5% 87.5%

F303 (80KB) 25.0% 50.0% 70.0%
F446 (128KB) 15.6% 31.3% 43.8%
F746 (320KB) 6.3% 12.5% 17.5%

Space limitations. Original networks have large model sizes
and need lasting redundancy elimination to fit in the microcon-
troller board. For example, the sizes of ZfNet and SqueezeNet are
5MB, which are reduced to below MB after pruning. TREC affects
the footprint of the pruned model. In fact, Table 1 shows that TREC
space overheads are substantial compared to the total SRAM capac-
ities on microcontrollers. Therefore, the space overhead introduced
by TREC is non-negligible and hinders running DNN applications
on microcontrollers, considering facets such as larger batch sizes.

5.2 TREC Space Optimization
Although only trivial KB-level space occupancy overhead is in-
troduced, which is negligible in the context of cloud computing,
this capacity requirement poses challenges in the materialization

of TREC on microcontrollers. Achieving space-efficient TREC is
hence crucial.

Conventional optimization. Conventional implementations
for space savings include DNN channel pruning, quantization, and
layer folding. For these techniques, the goal is to prune model pa-
rameters and reduce the required static space for storing the model
structure and parameters. Therefore, these offline pruning methods
rely on delicate detection and examination of unnecessary parame-
ters in the network, aiming at removing lasting redundancy (i.e.,
redundancy existing in DNN parameters). These techniques are
discussed as implementation details in Section 6.1. Another cate-
gory of potential space savings lies in reducing the online dynamic
execution space occupancy of TREC, namely space savings for the
clustering component. Emphases are placed on the Hash matrix
and the choice of data structure facilitating storing and indexing
vectors.

TREC optimizations. In the following, we propose two tech-
niques for achieving space-efficient TREC. The first idea is to
implement hashing in a space efficient way by re-using parts of a
matrix that is already part of the DNN computation as the collec-
tion of vectors required to implement clustering. Vectors making
up this matrix thus serve “double duty” as hashing vectors and
matrix elements. The technique avoids huge memory overheads
and achieves high speedups on real DNN computations.

For the second design, we embed a two-step stack for storing
clustering ID in TREC and use a reversed index to help locate the
entries in the stack. We will go through these two techniques in
further depth.

5.3 Kernel Reuse
As discussed in Section 5.1, vanilla TREC increases the space usage
due to extra space needed to store hashing vectors. We hereby
propose kernel reuse as a technique to address the space issues for
the Hash matrix on micrcocontrollers. The idea is to implement
hashing by reusing parts of the weight matrix as the collection of
vectors required to conduct clustering.

A closer look at the weight matrix. For a GEMM convolution,
each filter slides through the input matrix as illustrated in Figure 8.
There are six filters in total, and each filter is composed of one 3×3
kernel. We focus on the weight matrix𝑊 after im2col, where each
filter is expanded to a column vector. Since there are six filters and
nine elements in each filter, the weight matrix has a 9×6 size. Now,
we consider the clustering step. Suppose we set 𝐻 = 3, namely, the
hashing comprises of three vectors for clustering. Immediately, we
find it possible to take advantage of the first three columns of the
weight matrix𝑊 and reuse them as the Hash matrix for clustering
the rows of the X matrix. Specifically, an output matrix 𝑌𝑛×𝑐 is
obtained after𝑋𝑛×𝑚 multiplies𝑊𝑚×𝑐 , thus the partial results from
the first three columns, namely 𝑌𝑛×3, serve double duty as matrix
outputs and hashing outputs. This method avoids huge memory
overheads and achieves time savings.

Detailed design.A detailed workflow of the proposed technique
is illustrated in Figure 9. First, we reuse parts of the weight matrix as
Hashmatrix. Next, we multiply𝑋 withHash and obtain a projection
matrix. Based on this result, we project each row vector to a cluster.
Specifically, for each row, i.e., a neuron vector x, we apply ℎv𝑖 (x)

Space-Efficient TREC for Enabling Deep Learning on Microcontrollers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

✕x1 x2

✕ Ww1

Input Filters

Reused as vectors for
implementing clustering

GEMM-based convolution

X

Figure 8: A closer look at the weight matrix.

for all v𝑖 , 0 ≤ 𝑖 < 𝐻 . In the end, the cluster ID of a neuron vector
is encoded as a 𝐻 bit integer 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 (x) = (ℎv0 , ℎv1 , ...ℎv𝐻−1).
Vectors with the same cluster ID are grouped in the same cluster.
Third, we compute a centroid vector for each cluster and compile
them into a centroid matrix. Finally, wemultiply the centroid matrix
with the weight matrix𝑊 and obtain the result for each cluster.

X =

Projection
matrix

L

Cluster ID

4 -7 6

1 0 1
> 0 ? 1 : 0

X =

Centroid matrix
Result matrix

Hash

X

Clustering

Centroid Computation

Figure 9: Illustration of kernel reuse.

Solving the dilemma for kernel reuse training. Training
TREC with kernel reuse is one key challenge. Kernel reuse seeks
ways to embed LSH vectors in the weight matrix. However, TREC
requires separately updating Hash and the weight matrix𝑊 in each
training iteration, which leads to inherent discrepancies between
Hash and𝑊 . To get around this, we embed the LSH vectors in the
weight matrix by binding Hash to the columns in𝑊 and sharing
the gradients in each iteration. As illustrated in Figure 10, in the
back propagation, instead of updating LSH vectors and the weight
matrix independently, the gradients for Hash are copied directly
from the gradients of the corresponding positions in the weight
matrix. The Hash matrix is thus embedded in the weight matrix
after each iteration.

Yc

Forward
Backward

Y
Recovery

x

WHash

Clustering

Copy gradient

XC

Figure 10: Illustration of kernel reuse training.

Maintaining properties of TREC. Another factor to note for
building kernel reuse based TREC is to understand the impact of
kernel reuse on the correctness, robustness, and convergentability
of TREC.

Correctness. As stated above, kernel reuse introduces errors in
clustering because gradients are directly copied from those of the
weight matrix. This error is then passed on to the next forward
propagation and got corrected in the back propagation. In this way,
TREC is still able to exploit the similarities among the vectors in
the cluster. Through training, kernel reuse minimizes errors while
saving space.

Robustness and Convergence. Kernel reuse does not change the
Lipschitz constant for TREC, and thus it keeps the robustness of
TREC [16]. The convergence of kernel reuse can be proved following
the same steps as those of TREC by viewing the objective function
𝐹 as a function of𝑊 , namely, 𝐹 (𝑊).

Space savings. Kernel Reuse removes the space overhead from
Hash matrix and greatly saves space. This space saving does not
sacrifice the expressive functionality of LSH to cluster vectors. This
is because LSH vectors are kept to be mutually independent even
by reusing parts of the weight matrix. Since filters are trained
independently in the weight matrix, columns of the weight matrix
are mutually independent. This guarantees that LSH vectors are
independent from each other.

5.4 Two-Step Stack Substitution
General design. Another part of space overhead of TREC comes
from the data structures for indexing vector entries. The space
constraints on microcontrollers require efficiently storing and ac-
cessing neuron vectors in different clusters while minimizing the
space occupancy. Therefore, with the help of a reversed ID table
and a stack, a representative vector is stored in each cluster.

Detailed design. Suppose now we have each vector’s 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ID.
The goal is to do clustering by grouping the vectors with the same
ID together and finally get a centroid matrix containing the centroid
vector for each cluster. However, storing vectors into groups accord-
ing to cluster IDs and computing the centroids for each cluster is
not space efficient. This is because pre-allocating fixed-size arrays
for each cluster poses too much burden on the memory. To make it
more space efficient, we form the centroid matrix in a streamlined
way.

At any time, the space overhead is only a representative centroid
vector for each cluster. These centroid vectors are stored in a stack
with an index table for entry access. After finishing processing,
these centroid vectors form a centroid matrix, and we can multiply
it with the weight matrix. We then use the result of the centroid
computation in place of the per-vector results for each vector in
the cluster. A workflow sample is shown in Figure 11.

Each neuron vector is projected to a cluster ID 𝐼𝑑 . When it is the
first vector with cluster ID = 𝐼𝑑 , we add this vector in the buffer stack
and store a pointer to it in the reverse ID table. In fact, the 𝑥-entry
in the reverse ID table stores the pointers, if existed, to the buffer
stack for the cluster with 𝐼𝑑 = 𝑥 . When another vector v𝑛𝑒𝑤 with
the same cluster 𝐼𝑑 arrives, we can directly find the representative
centroid vector v𝑜𝑙𝑑 in the stack and add the weight of this vector

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

to it. Formally, if 𝑐𝑜𝑢𝑛𝑡𝑥 denotes the number of vectors in cluster 𝑥 ,
we have

v𝑛𝑒𝑤 =
v𝑜𝑙𝑑 × 𝑐𝑜𝑢𝑛𝑡𝑥
𝑐𝑜𝑢𝑛𝑡𝑥 + 1

, 𝑐𝑜𝑢𝑛𝑡𝑥 = 𝑐𝑜𝑢𝑛𝑡𝑥 + 1 (2)

There are at most 2𝐻 (𝐼𝑑 ranges from 0 to 2𝐻 − 1) clusters, thus
at most 2𝐻 representative vectors in the stack. Finally, the centroid
vectors form a centroid matrix.

Cluster ID

Two Step Stack

72

72

48

X

Reverse
ID table

72

48

1

2

Buffer
stack

72
48 Centroid

matrix

Figure 11: Stack for the representative vectors.

For each representative vector, we multiply it with the weight
matrix to obtain a result vector, so that the vectors in the same
cluster can reuse the result to speedup the computation. Note that
the representative vectors stored in the stack actually form a ma-
trix. Therefore, we only have to multiply the centroid matrix by
the weight matrix, and the result vectors can be retrieved as the
corresponding row in the result matrix.

6 IMPLEMENTATION
We discuss the general workflow of our deployment and other
implementation details in this section.

6.1 Lasting Redundancy Elimination
To load a large DNN model onto Microcontrollers, the first steps
are to eliminate lasting redundancy through offline methods so as
to reduce the size of the model. These include an effective pruning
to reduce the number of parameters in a model when performing
inference (detailed in Section 6.1), quantization of transforming
32-bit floating point data into 8-bit integer (detailed in Section 6.1),
and the use of batch norm layer folding into the convolution layer
that proves efficiency and effectiveness (detailed in Section 6.1).

Parameterizedmodel Pruning. The first and foremost method
of reducing the size of a network is model pruning. An effective
pruning method should first reduce the number of parameters in
the network significantly and, at the same time, easy to maintain
the architecture structure of the model.

Unstructured pruning.We apply PyTorch pruning [43] first and
find huge potentials in reducing the size of the model. Specifically,
this default pruning method masks partial elements of weight ma-
trices thus converting these dense matrices into sparse matrices, so
the network is transformed into a sparse network accordingly. That
is to say, the entries with small values in the weight matrix will be
set to zero. However, the sparse tensor operations are currently not
supported for PyTorch. Therefore, we cannot see the acceleration
effect this sparse network can achieve. Fortunately, we do benefit
from such analysis; as an exploratory experiment, over 90% of the

entries in a weight matrix can be masked without harming the
accuracy of the whole network. This result shows huge potentials
in reducing parameters, particularly the weight matrices, of the
network.

Structured pruning. In this work, we identified torch-pruning
as the pruning method. Torch-pruning is a widely used pruning
method [2] and is special in that, instead of trying to mask certain
entries in a weight matrix, it removes the whole channels from
neural network for acceleration.

Network quantization. Floating point weights and activations
are used to train neural networks. Previous research [32] has shown
that fixed-point weights are enough for executing neural networks
with minimum accuracy loss. This reduces weights from 32 bit to 8
bit, thus reducing the model size, and is good for microcontroller
devices deployment. Furthermore, fixed-point integer operations
in common microcontrollers are substantially faster than non-fixed
point operation. This makes another justification for executing
quantized models on microcontrollers.

Method. Assuming a fixed-point format and scaling by twos, the
represented value is 𝐴 × 2𝑛 , where 𝐴 denotes the integer value and
𝑛 is the radix point’s location. Due to the power-of-two scaling,
the scaling factors for the data (e.g., outputs or bias) are stored
in the network as parameters. Because CM Core CPU can lack a
floating-point unit (FPU), we utilize this fixed-point format rather
than TensorFlows’s method for 8-bit quantization.

Batch norm layer folding.When we apply quantization, prob-
lems arise for 𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚 layer, since the original floating point
means that ` and standard deviation 𝜎 are required. To solve this
problem, we fold batch norm into the convolution when performing
inference for the batch norm layers in DNNs.

In batch norm folding, we replace the convolution followed by
a batch normalization with just one convolution with different
weights. This would remove the precision loss if we quantize `
and 𝜎 from 32 bit floating point to 8 bit integer. Furthermore, it
reduces the number of operations to be performed at inference time,
thereby speeding up the entire network.

Specifically, the convolution operator followed by a batch nor-
malization can be expressed, for an input x, as:

z =𝑊 ∗ x + b

𝑦𝑖 = 𝛾 · 𝑧𝑖 − `√
𝜎2 + 𝜖

+ 𝛽 (3)

When we rearrange the value of𝑊 and b such that:

𝑊folded = 𝛾 · 𝑊
√
𝜎2 + 𝜖

𝑏folded = 𝛾 · 𝑏 − `
√
𝜎2 + 𝜖

+ 𝛽
(4)

We manage to remove the whole batch norm layer and obtain
the same result with only one convolution.

6.2 Meeting Accuracy Requirements
The input matrix𝑋 is divided into three smaller matrices and partial
results are computed as y(1) , y(2) , and y(3) . For the normal full
neuron vector granularity in microcontrollers, y(i) is truncated and

Space-Efficient TREC for Enabling Deep Learning on Microcontrollers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

stored in an 8 bit integer. With smaller granularity, all y(i) should
be kept in 32-bit containers when the result y = y(1) + y(2) + y(3)

is added up with all these partial results. After that, y gets scaled
and truncated.

6.3 Implementing TREC
TREC design is at the core of our work in enabling efficient DNNs
on microcontrollers. We need to pay special attention on the de-
ployment of TREC, hardware architecture of the microcontrollers,
and how the constraint space limits affect these above. We next
explain each of these aspects.

The recover step in TREC. After computing the clustering
results (i.e., partial results for each cluster), the final step is to
recover the result matrix from the partial results we just obtained.
As shown in Figure 12, the details are described as follows. We
iterate each neuron vector and obtain their 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 . Using this
cluster 𝐼𝑑 , we can find the position of the representative vector of
this cluster in the stack, thus obtaining the corresponding partial
result vector. We retrieve this partial result vector and fill it in the
result matrix. After going through all of the neuron vector, we
finally manage to reconstruct the result matrix.

clusterID_mat

H x W:
1024

72

72

imOut_n

#kernels:
32

H x W:
1024

iterate

ReverseID

72

48

1

2

#kernels:
32

tempRes_mat
18

547

18

547

4898 98

Figure 12: Recovery from the partial results.

Use of SIMD kernels. The 32-bit RISC processing cores in the
CM (Cortex-M) series of processors have been energy-efficiency op-
timized. They are part of the ARM Cortex-M architecture and used
for applications on microcontrollers [49]. In our work, we enable
massive DNNs on CM-based platforms that have SIMD instructions,
especially 16-bit Multiply-and-Accumulate (MAC) instructions (e.g.
SMLAD). These are very helpful for running DNN.

In the Cortex-M processor, each word, namely 32 bit, can store
four integers. Since we use the 16-bit MAC operators, we have
to transform the quantized 8-bit data into 16-bit ones. These four
8-bit integer have to be first extended to 16-bit data type, and then
reordered to abide with their original order stored in one word.

The most significant operator in the entire network is matrix
multiplication. In particular, we have matrix multiplications when
performing projection and obtaining partial results in reuse com-
putation. Therefore, we pay special attention on optimizing the
performance of matrix multiplication.

As depicted in Figure 13, the matrix multiplication kernel is
accomplished with an emphasis on a 2x2 unit each time. This al-
lows data reuse while also reducing the overall amount of load
instructions. The MAC instruction __SMLAD is used to execute the
computation. The accumulation is carried out using a 32-bit data
type, and both operands are of the 16-bit data type. A bias value is
assigned for each accumulator as the initial value.

* =
A11

A22A21 A23

A12 A13

A24

A14 B11

B12

B13

B14

B21

B22

B23

B24

pB1

pA2

pA1

pB216-bit

16-bit

Sum11

Sum21

Sum12

Sum22

Sum11 = Sum12 = Bias1
Sum21 = Sum22 = Bias2

For i from 0 to columns/ 2
read two 16-bit value to from pA1, pA2,

pB1, pB2 to A1, A2, B1, B2, respectively
using __SIMD32()

Sum11 = __SIMLAD(A1, B1, Sum11)
Sum12 = __SIMLAD(A1, B2, Sum12)
Sum21 = __SIMLAD(A2, B1, Sum21)
Sum22 = __SIMLAD(A2, B2, Sum22)

Figure 13: The demonstration of the inner loop of matrix
multiplication. Each time two columns and two rows are
taken into consideration.

Compared to the original matrix multiplication kernel provided
by Cortex-M library, this solution exhibits two major advantages.
First, the original kernel requires matrix transpose to conduct mul-
tiplication, which does great harm to space locality. Second, the use
of SIMD kernels brings about more efficient computations. Experi-
ments show that our solution achieves good results. For instance,
for projection in reuse time, we have 1.67× speedup compared to
the original matrix multiplication of the Cortex-M library.

Other hardware characterization. We next describe other
hardware characterizations of microcontrollers.

Methodology for placing weights and intermediate activations. For
microcontrollers runningDNNs, SRAM is used to allocate activation
buffers, while Flash memory is used to allocate model weights and
biases, as well as the network definition. Alternatively, weights
can be stored in SRAM. However, we find that storing weights in
Flash only results in a slight increase in end-to-end latency, roughly
1%. This can bring huge benefits because storing weights in Flash
saves the limited space usage for activations, which can be placed
in SRAM. Storing intermediate activations in Flash, on the other
hand, renders a major drop-off in performance (over 20% increase
in latency for a layer to store activation maps on the Flash in the
current CifarNet setting through an explorative experiment). This
is because of the need for block writes, rather than byte writes in
Flash. Specifically, convolution layers write the output data to the
Flash memory where the next layer reads and processes data. For
efficient processing, studies are needed on modifications of kernel
implementations, design, and testing of performance models.

Model latency. We next examine the hardware performance of the
reuse-centered NN layers. Lai et al. [34] pointed out that, for typical
NN layers, latency and energy consumption increases linearly in
accord with the operation counts. This model, called latency/en-
ergy model, shows that the measured latency can be a function of
the number of operations required. In contrast, the reuse-centered
layers are able to reduce the total number of operations, thus de-
creasing the latency of the model.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

7 EVALUATION
7.1 Experimental Setup
Methodology. To demonstrate the efficacy of TREC in enabling
large DNN inference on microcontrollers, we first apply our ap-
proach to the entire DNN and measure end-to-end inference per-
formance. Second, we apply TREC and measure the single-layer
acceleration and accuracy for individual layers (specifically the
densely-computed layers like convolutional layers). Third, we focus
on the space savings of our method. Specifically, how much space is
saved from the original DNNmodels with offlinemethods including
pruning, quantization, and layer folding. Since we have shown the
TREC space overhead for the three networks in Table 1, we examine
the amount of space savings from the two ideas, i.e., kernel reuse
and two-step stack. Fourth, we analyze the performance impact of
the number of layers when applying kernel reuse. Fifth, we explore
TREC performance on sparse inputs. For all the measurements, the
SRAM and Flash occupancy is determined using the Mbed compiler
(Mbed OS) and the microcontroller latency is measured using the
Mbed Timer API.

Platform. DNN inference is performed on the STM32F469I and
STM32F746ZG microcontroller featuring SIMD extensions. The
STM32F469I platform comes with 324KB SRAM and 2048KB Flash
asmemory storagewhile the STM32F746ZG board has 320KB SRAM
and 1024KB Flash. We also deploy CMSIS-NN kernels for optimized
performance on the Cortex-M4 and Cortex-M7 CPU equipped on
the STM32 board [33]. In addition, DNN training is performed on a
server equipped by a 20-core 3.60GHz Intel Core i7-12700K CPU
with 128GB RAM and an NVIDIA GeForce RTX A6000 GPU with
48 GB memory. We use PyTorch 1.10.1 (open-source software with
a BSD license) as our frame for training.

Workloads. We evaluate our approach with the most popu-
lar compact DNNs that fit microcontrollers, namely CifarNet [1],
ZfNet [62], and SqueezeNet, with and without complex bypass [22].
In all cases, we use the public dataset CIFAR-10 [29] for training
and evaluation. All networks are optimized by SGD. The learning
rate starts from 0.001 and decreases by 0.1 at 15- epochs intervals.
The batch size, weight decay, and momentum are set to 256, 0.9, and
10−4, respectively, and the maximum number of training iterations
is set to 100.

7.2 Performance
we compare performance of TREC-equipped DNNs to conventional
Convolutional DNNs, deep reuse featured DNNs, and LCNNs. Note
that after channel pruning, the baseline accuracy of ZfNet is slightly
lower than its standard accuracy of 83%, but the model size is 7.6% of
the original model, which can well meet the memory constraint of
the microcontrollers. Read-only data can be placed in flash memory
for microcontroller storage to hold the entire network.

The conventional convolution implementation is from the CMSIS-
NN library [33] that achieves the state-of-the-art performance for
convolutional neural networks on edge devices. For the datasets,
inputs are first converted from floating point representation to
8-bit integers. This implementation is also from the CMSIS-NN
library. We compare TREC with LCNN. LCNN stores only a dic-
tionary (which can be regarded as a subset of weight vectors) for
reconstructing weights so as to save space and computations. This

strategy is actually complementary to TREC. In particular, when we
perform convolution in LCNN, the input tensor undergoes a matrix
multiplicationwith dictionary vectors, where our LSH approach can
fit in and speed up this matrix multiplication. Through experiments,
as shown in Table 2, we find that LCNN experiences slowdown for
CifarNet. This is because LCNN requires multiple memory accesses
to the dictionary for reconstructing the original weight matrix,
which are not suitable for microcontroller applications.

Table 2: Comparison of CMSIS-NN Convolution, LCNN,
LCNN with TREC, and TREC for the CifarNet.

Conv1 (ms) Conv2 (ms) Conv1 + Conv2 (ms)

CMSIS Convolution 96.64 57.4 154.69
LCNN 103.51 59.1 162.69
LCNN + TREC 93 49.46 143.18
TREC 53.4 37.76 91.35

For comparison, we also include the results from deep reuse,
as this state-of-the-art method avoids transient redundancy in
DNNs. Given the inherent randomness of deep reuse, we present
its results in 150-run intervals. Note that deep reuse requires stor-
ing LSH vectors and index structures on microcontroller memory,
which exceeds the memory capacity (denoted as “—” in Table 3 for
SqueezeNet and SqueezeNet (Bypass)). For TREC-equipped DNNs,
all the space-saving techniques are applied to the model. In Table 3,
we have the following findings. First, compared to the conventional
convolution (by CMSIS-NN library), TREC achieves 3.61× speedup
on average. The same amount of speedups are observed on both
microcontrollers, with STM32F746ZG’s total end-to-end inference
time half of that measured on STM32F469NI. The reason is that
Cortex-M7 has a higher clock rate and can issue data loading and
ALU instructions at the same time.

Second, TREC experiences only around 0.7% accuracy loss. Deep
reuse [40] is subject to its inherent randomness, with accuracy loss
reaching up to 7.6%. TREC is hence better in terms of stability
and accuracy. Since both TREC and deep reuse exploit transient
redundancy elimination, they have comparable inference time. The
optimizations in TREC make it however more space efficient. It
enables large DNNs (i.e., vanilla SqueezeNet and SqueezeNet with
bypass) to run on microcontrollers, while deep reuse does not.

Third, when looking into the effects TREC bring to different
networks, we find the most speedups in SqueezeNet. This is be-
cause there are more computation-intensive convolution layers in
SqueezeNet. The more kernel channels are in a convolution layer,
the more redundant computations can be detected and eliminated.
We have a more detailed analysis in the following section.

7.3 Single Layer Speedup
We run experiments on each single convolutional layer with a dif-
ferent range of clustering configuration and collect the redundancy
ratio. For the purpose of study, we find the configurations that can
reduce the maximum amount of computations without threatening
inference accuracy. Latencies are collected from the STM32F469NI
board.

Space-Efficient TREC for Enabling Deep Learning on Microcontrollers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 3: End-to-end performance and accuracy comparison.

Target(s) Convolution Methods CifarNet ZfNet SqueezeNet SqueezeNet (Bypass)

STM32F469NI

Latency (ms)-CMSIS Conv 217.32 3557.32 1639.51 1998.86
Latency (ms)-Deep reuse 154.44 814.03 — —
Latency (ms)-TREC 153.92 814.01 327.9 543.71
Speedup-TREC vs. CMSIS Conv. 1.412× 4.37× 4.98× 3.68×

STM32F746ZG

Latency (ms)-CMSIS Conv 120.62 1758.73 894.16 1152.46
Latency (ms)-Deep reuse 98.44 525.03 — —
Latency (ms)-TREC 97.79 524.3 181.49 274.2
Speedup-TREC vs. CMSIS Conv. 1.23× 3.35× 4.93× 4.20×

Both
Accuracy (%)-CMSIS Conv. 78.2 80.1 83.5 85.6
Accuracy (%)-Deep reuse 73.2 ∼ 76.1 72.5 ∼ 76.6 79.8 ∼ 81.9 80.5 ∼ 83.1
Accuracy (%)-TREC 76.5 78.9 83 85.3

We list in Table 4 the single-layer speedups and accuracy losses
attained by substituting TREC for the traditional convolution. The
following observations have been made. First, TREC finds and
removes approximately 96.22% of the transient redundancy indicated
by 𝑟𝑡 . This is where the speedup comes from.

Second, with an average speedup of 4.28×, TREC significantly
improves the performance of each convolution layer. Specifically,
TREC speeds up SqueezeNet expand layers by up to 18.66×, showing
that computation-intensive layers can particularly benefit from
TREC. However, due to the additional cost from clustering, the
speedup is smaller than what is suggested by the ratio of transient
redundancy that TREC reduces.

Third, there is a limited and mixed impact of TREC on accu-
racy. It may result in a 0.8% accuracy decrease when applied to
certain layers, but it may also result in a modest accuracy improve-
ment when applied to some other layers. Overall, TREC keeps the
accuracy much better than deep reuse does (around 3%-7% drop).
The single-layer results show that TREC can operate at maximum
efficiency, achieving notable speedups with the least amount of
accuracy loss.

7.4 Space Saving Analysis
There are static space and dynamic space required for storing mod-
els. Specifically, static space refers to the space for weights and
biases (from the original model). Dynamic space contains TREC
space, namely, Hash matrix and index structures. The baseline size
for original static and dynamic space occupancy is detailed in Ta-
ble 5.

For static space, we apply existing techniques to remove lasting
redundancy. For dynamic space, we use kernel reuse and two-step
stack to eliminate transient redundancy. Table 5 summarizes how
much space is saved for the original model size and TREC size,
respectively. For static space, since there is no Batch norm layer
in CifarNet Overall, the original model size witnesses an average
of over 90% reduction as a result of these lasting redundancy elim-
ination based methods. For dynamic space, we report the space
reduction for kernel reuse with configurations where there is virtu-
ally no accuracy loss (< 0.1%), and provide a detailed analysis in
Section 7.5. The dynamic space reduction exceeds 70% when we
combine kernel reuse and two-step stack.

7.5 Detailed Analysis
Kernel reuse for reaching accuracy stability. Kernel reuse em-
beds the Hash matrix in the weight matrix𝑊 . Figure 14 shows how
kernel reuse influences SqueezeNet in terms of both accuracy and
space occupancy on the STM32F7 board. The 𝑥 axis denotes the
number of layers we apply kernel reuse for SqueezeNet. We first
look at the accuracy. For comparison, we also include the accuracy
of deep reuse at 150 runs. Deep reuse has random LSH vectors, and
its accuracy varies between 80% ∼ 83%. Accordingly, the two green
lines show the accuracy range that deep reuse produces. In contrast,
kernel reuse produces stable accuracy results up to 85.6%. Although
there is accuracy loss as 𝑥 increases, the network accuracy drops
slowly and remains high (> 84%) for 𝑥 < 16.

Second, kernel reuse brings huge space benefits. For example,
when kernel reuse is in five layers, namely, 𝑥 = 5, the space overhead
is cut by over 50% with accuracy loss 𝛿 < 0.5%. That is to say, for
large DNNs, applying kernel reuse to a small number of layers
can dramatically reduce the total space overhead with marginal
accuracy loss.

8 17 26
0.80

0.82

0.84

0.86

0

10

20

30

40

50

Number of layers

A
cc

u
ra

cy

S
p

a
ce

O
verh

ead
(K

B
)

Kernel Reuse
Deep Reuse

Kernel Reuse

Figure 14: Influence of accuracy and space overhead from
the number of layers applying kernel reuse.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

Table 4: Single-layer performance benefits (TREC latency
in ms). 𝐶𝑜𝑛𝑓 . means configuration, 𝐿 is the width of sub-
matrices, 𝐻 is the number of hash functions. 𝐾 is the kernel
size and 𝑀 is the number of kernel channels. 𝑟𝑡 represents
the redundancy ratio, and ΔAcc is the accuracy difference
between TREC and standard convolution.

(a) Single-layer performance for CifarNet.

ConvLayer K M Conf. Latency 𝑟𝑡 Speedup ΔAcc
L H

Conv1 75 64 15 5 53.4 0.943 1.81× -0.0132
Conv2 1600 64 10 10 37.76 0.795 1.52× -0.0077

Avg. 0.869 1.66× -0.0105

(b) Single-layer performance for ZfNet.

ConvLayer K M Conf. Latency 𝑟𝑡 Speedup ΔAcc
L H

Conv1 147 96 147 5 0.75 0.999 1.22× -0.0011
Conv2 2400 256 300 5 45.63 0.997 4.69× -0.0037
Conv3 2304 384 384 5 61.80 0.988 4.72× -0.0076
Conv4 3456 384 432 5 69.97 0.998 6.23× -0.0105
Conv5 3456 256 288 5 52.33 0.984 5.58× -0.0068

Avg. 0.994 4.49× -0.0059

(c) Single-layer performance for SqueezeNet.

ConvLayer K M Conf. Latency 𝑟𝑡 Speedup ΔAcc
L H

Conv1 27 96 9 5 6.89 0.997 1.27× 0.0122
Fire2.squeeze.conv 96 16 96 4 19.74 0.993 1.07× 0.0144

Fire2.expand_1x1.conv 16 64 8 5 25.12 0.991 1.41× 0.0023
Fire2.expand_3x3.conv 144 64 48 5 48.79 0.990 5.90× 0.0002

Bypass1 96 128 32 5 28.58 0.994 2.45× 0.0071
Fire3.squeeze.conv 128 16 64 5 8.77 0.988 1.07× -0.0051

Fire3.expand_1x1.conv 16 64 8 5 15.41 0.992 2.30× -0.0033
Fire3.expand_3x3.conv 144 64 24 5 50.33 0.988 5.85× -0.0013
Fire4.squeeze.conv 128 32 64 5 8.71 0.990 1.00× -0.004

Fire4.expand_1x1.conv 128 128 4 8 12.07 0.988 1.45× -0.0037
Fire4.expand_3x3.conv 32 128 16 5 22.98 0.988 6.36× 0.0012

Bypass2 288 256 48 5 26.47 0.993 2.53× -0.0012
Fire5.squeeze.conv 256 32 64 4 2.46 0.982 1.84× -0.0036

Fire5.expand_1x1.conv 32 128 16 5 3.89 0.953 4.51× 0.0016
Fire5.expand_3x3.conv 288 128 48 5 12.35 0.954 11.83× 0.0001
Fire6.squeeze.conv 256 48 128 5 6.62 0.972 1.01× -0.0018

Fire6.expand_1x1.conv 256 192 32 5 5.97 0.963 4.40× -0.0071
Fire6.expand_3x3.conv 48 192 32 5 17.48 0.953 12.50× 0.0002

Bypass3 432 384 72 5 9.88 0.977 5.29× 0.0021
Fire7.squeeze.conv 384 48 48 5 4.26 0.965 1.71× 0.0003

Fire7.expand_1x1.conv 48 192 24 5 6.57 0.957 4.00× -0.0046
Fire7.expand_3x3.conv 432 192 48 5 23.35 0.953 9.36× -0.0025
Fire8.squeeze.conv 192 64 64 4 19.01 0.969 1.03× -0.0003

Fire8.expand_1x1.conv 384 256 128 5 16.25 0.965 2.15× 0.0012
Fire8.expand_3x3.conv 64 256 16 5 38.47 0.955 7.57× -0.0022

Bypass4 576 512 64 5 62.08 0.961 1.12× -0.0045
Fire9.squeeze.conv 512 64 128 4 2.19 0.894 1.01× -0.0078

Fire9.expand_1x1.conv 64 256 16 5 5.7 0.839 1.53× -0.0019
Fire9.expand_3x3.conv 576 256 96 5 6.25 0.841 11.64× -0.0022

Conv10 512 10 4 5 2.1 0.944 1.29× 0.0057

Avg. (w/ bypass) 0.963 3.88× 0.0003
Avg. (w/o bypass) 0.963 4.89× -0.0006

Table 5: Space savings by different techniques.

Technique CifarNet ZfNet SqueezeNet

Static Space

Baseline Size 420 KB 4 MB 5 MB
Channel Pruning 45.1% 92.4% 90.8%

CP + Q 86.8% 97.9% 97.4%
CP + Q + LF 86.8% 98.9% 98.2%

Dynamic Space
Baseline Size 20 KB 40KB 56 KB
Kernel Reuse 41.2% 68 .2% 71.9%
KR + TSS 60.2% 73.4% 77.3%

CP: Channel Pruning, Q: Quantization, LF: Layer Foldings,
KR: Kernel Reuse, TSS: Two-Step Stack

8 CONCLUSION
In this work, we demonstrate that large DNNs can be deployed
on resource-constrained microcontrollers and executed efficiently
by the introduction of space-efficient TREC. It takes advantages of
both computation reduction and space savings that make the best
ability of the resource utilization of microcontrollers. As a result,
the approach maximizes the performance benefits and obtain stable
accuracy results. In the evaluation, our solution achieves 3.5×-5×
speedups with virtually no accuracy loss.

ACKNOWLEDGMENTS
This material is supported by the National Natural Science Founda-
tion of China (No. 62172419, 62072458, and 61732014) and Beijing
Nova Program. Jiesong Liu, Feng Zhang, Jiawei Guan, Xiaoguang
Guo, Xiaoyong Du are with the Key Laboratory of Data Engineer-
ing and Knowledge Engineering (MOE), and School of Information,
Renmin University of China. Feng Zhang is the corresponding
author of this paper.

DATA AVAILABILITY STATEMENT
The source code of Space Efficient TREC is archived and avail-
able [29].

A APPENDIX FOR SPARSE INPUT MATRICES:
CONVERTING SPARSE CONVOLUTION TO
DENSE CONVOLUTION

TREC is compatible with sparse input matrices through sparse con-
volution. Although this property is not directly used in this work,
it could be an important property to exploit when a user would
like to combine TREC with DNN sparse pruning or other optimiza-
tions. We explain this property in this part to offer a complete
understanding of TREC.

One typical case where sparse matrix shows up is when weight
pruning is used. We will draw on PatDNN [41] as our example.
PatDNN prunes a DNN kernel via patterns. The left graph in
Figure 15 shows a 4-element pattern left after a 3x3 kernel is
pruned. In PatDNN, the sparse weight matrix is encoded in a Filter-
Kernel-Weight (FKW) format [41].When a convolution kernel slides
through an image or activation map, only the pixels within the pat-
tern’s frame contribute to the output. In the example in Figure 15,
only four elements in the input are used in the dot-product with

Space-Efficient TREC for Enabling Deep Learning on Microcontrollers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

the kernel in each step. TREC can be applied by regarding the four
elements used in each step as a vector for clustering. If two of such
vectors are similar and fall into the same cluster, TREC avoids the
repeated dot-product calculations.

Pruned weight

Pattern pruning
remaining weights

Input matrix

Figure 15: Illustration of a sparse pattern kernel.

We next look at how TREC can be applied if the input matrix
is sparse. We discuss it in two scenarios. In the first scenario, the
original algorithm simply treats the sparse input in the same way
as it treats a dense input. Clearly, TREC can be applied as we have
already described, and because there are many zero vectors, TREC
would cluster them together and give significant speedups. In the
second scenario, the original algorithm already tries to do calcula-
tions only on the non-zero parts of the input. Sparse convolution
reorganization is one way to do that [15, 35, 57]. It groups non-zero
elements together to form a dense matrix. This matrix is then mul-
tiplied with reorganized kernel matrices. In this way, it avoids the
inefficiency of frequent irregular accesses. TREC can be applied to
the matrix after the reorganization.

As Figure 16 illustrates, we have a 5×5 image with three channels.
All the pixels are (0,0,0) except three points 𝑃1, 𝑃2, and 𝑃3. The
convolution kernel of sparse convolution is the same as traditional
convolution. Each kernel size is 3×3. We can distinguish three
filters according to the light and dark colors. In this example, we
use convolution with the stride of one and padding of zero. There
are three filters. Accordingly, the convolution will produce three
3×3 output activation maps (which are not displayed in the figures).

0
1
2
3
4

0 1 2 3 4
P1=(0.1, 0.1, 0.1)
P2=(0.2, 0.2, 0.2)
P3=(0.3, 0.3, 0.3)

Input channel Kernel 1 Kernel 2 Kernel 3
Filter 1

Filter 2

Filter 3

P2
P1

P3

Figure 16: Illustration of input model and kernels.

We label the nine kernels as 𝑘𝑒𝑟𝑛𝑒𝑙 [𝑘]𝑖, 𝑗 , 1 ≤ 𝑘 ≤ 9. Consider-
ing the specific convolution, for each of the 3×3 kernel position
(𝑖, 𝑗), 0 ≤ 𝑖, 𝑗 < 3, we collect all the atomic operations for 𝑃1, 𝑃2,
and 𝑃3 with respect to 𝑘𝑒𝑟𝑛𝑒𝑙 [𝑘]𝑖, 𝑗 , 1 ≤ 𝑘 ≤ 9. For the kernel po-
sition (1, 1), namely, 𝐹4, we collect 𝑃1, 𝑃2, and 𝑃3 as a reorganized
matrix and compute them with 𝐹4 together, as shown in Figure 17.
For the kernel position 𝐹0, the only generated operations are with
𝑃1. Likewise, for the kernel position 𝐹4, the generated operations
are with 𝑃1, 𝑃2, and 𝑃3.

Since there are three channels and three filters, we have a total
of nine kernels. Therefore, for each of the kernel position (𝑖, 𝑗), 0 ≤

Direct Convolution

Kernel 1

Kernel 2

Kernel 3

Filter 1 Filter 2 Filter 3 Input Sparse Tensor

X
0.1 0.1 0.1

F0 F0 F0
F0 F0
F0 F0 F0

F0

F8 F8
F8
F8 F8

F8
F8
F8
F8

0.1 0.1 0.1
X

F0 F1 F2 F0
F3 F4 F5
F6 F7 F8

F0
F4

F0
F4

F4

F0
F4

F4

F4

F4

F4
F0

F0

F0

F0

F3

F3
F6 F7 F8

F5
F2F1

F3
F6 F7 F8

F5
F2F1

F3
F6 F7 F8

F5
F2F1

F3
F6 F7 F8

F5
F2F1

F6 F7 F8
F5
F2F1

F3
F6 F7 F8

F5
F2F1

F3
F6 F7 F8

F5
F2F1

F3
F6 F7 F8

F5
F2F1

0.3 0.3 0.3
0.2 0.2 0.2 X

F4 F4
F4
F4 F4

F4
F4
F4
F4

0.2 0.2 0.2
0.3 0.3 0.3

Figure 17: Direct convolution through dense matrix multi-
plication.

𝑖, 𝑗 < 3, the elements corresponding to (𝑖, 𝑗) can form a 3×3 ma-
trix. Accordingly, the direct convolution is constructed as a matrix
multiplication. To this end, we can convert sparse convolution into
a dense matrix multiplication through computing reorganization.
This matrix multiplication can be accelerated by incorporating
LSH-based clustering.

We provide some experimental results on Cifarnet. Table 6 shows
the performance for SparseConv and TREC. Input sparsity is set to
0.1 and batch size is 10. The speedup are 3.38× and 4.83× for the
two convolution layers, respectively.

Table 6: Performance for sparse input matrix.

ConvLayer Output Channels Latency (ms) SpeedupSparseConv TREC

Conv1 32 21.98 6.51 3.38x
Conv2 64 42.96 8.89 4.83x

B ARTIFACT APPENDIX
B.1 Abstract
Space efficient TREC is a new form of convolution optimized for mi-
crocontrollers. It makes trainsient redundancy detection and avoid-
ance an inherent part of the DNN architecture, and the determina-
tion of the best configurations for redundancy elimination part of
DNN backward propagation.

TREC is currently implemented as a new lightweight high-level
API of Pytorch for defining, training and evaluating complexmodels.
This directory contains code for training and evaluating several
compact Convolutional Neural Networks (CNNs) using TREC.

It contains scripts that will allow you to trainmodels from scratch
and evaluate models on both server and Microcontrollers.

B.2 Artifact Check-List (Meta-Information)
• Program: Arm Mbed CLI 1.10.5
• Compilation: Python 3.6, GNU Arm Embedded Toolchain 10.3
• Data set: Cifar-10
• Run-time environment: Ubuntu 20.04

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

• Hardware: An NVIDIA GeForce RTX A6000 GPU server with 20-
core 3.60GHz Intel Core i7-12700K processor, 128GB of RAM, and
48GB of GPU memory.
An STM32F469NI MCU with 324KB SRAM and 2MB Flash.

• Experiments: Benchmark: CMSIS-NN, Deep Reuse for CNNs on
Microcontrollers

• How much disk space required (approximately)?: Less than
400MB.

• How much time is needed to prepare workflow (approxi-
mately)?: Around 30 minutes.

• How much time is needed to complete experiments (approxi-
mately)?: About five hours to train a model from scratch, and about
five minutes for model inference only.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License.
• Workflow framework used?: No, but scripts are provided for

automate training. Detailed workflow is in readme.md in the zipped
file.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7702231

B.3 Description
B.3.1 How To Access. The artifact, which is zipped into one file, is
available on Zenodo: https://doi.org/10.5281/zenodo.7702231. Source
code, scripts, and instructions are zipped into TREC.zip.

B.3.2 Hardware Dependencies. For the training machine, we have
An NVIDIA GeForce RTX A6000 GPU server with 20-core 3.60GHz
Intel Core i7-12700K processor, 128GB of RAM, and 48GB of GPU
memory. We use Pytorch-1.10.1 (open-source software with a BSD
license).

For the deployment machine, users can use an STM32F469NI
Microcontroller with 324KB SRAM and 2MB Flash.

B.3.3 Software Dependencies. For the embedded deep learning
library, we adapted from CMSIS-NN kernel optimized for Arm
Cortex-M devices. A more detailed instruction is included in the
readme.md.

B.4 Installation
To use TREC on the server end, installing PyTorch is a prerequisite
(available at the official website). TREC requires Python version
3.6 or later, and recommends PyTorch version torch==1.10.1+cu111.
Then, users can install the TREC package by simply running:

python setup.py install

After a few minutes, TREC will exist in the user environment as a
PyTorch extension package named trec. Now users can use TREC
by importing both torch and trec packages in Python.

On the Microcontrollers end, users need to get the CMSIS-NN
library and install mbed-cli. Specifically, first, clone the CMSIS-5
library, which consists of the optimized neural network kernels for
Cortex-M. This can be done by running the following:

cd MCU_eval

git clone https :// github.com/\

ARM -software/CMSIS_5.git

To install mbed-cli(available at this link) and its python depen-
dencies, use:

pip install mbed -cli

B.5 Experiment Workflow
Training a model from scratch.

We provide an easy way to train a model from scratch using
Cifar-10 dataset. The following example demonstrates how to train
SqueezeNet using the default parameters.

TRAIN_DIR =/tmp/TREC/examples/EXP

DATASET_DIR =/tmp/TREC/data

python train_model.py \

--checkpoint_path=${TRAIN_DIR} \

--dataset_path=${DATASET_DIR} \

--model_name=SqueezeNet

For simplicity, several scripts for training are put in the exam-
ples/scrips/ directory. Users can start training by simply executing:

cd examples/scrips/

bash train_squeeze_on_cifar10_template.sh

Pre-trained models of CifarNet and SqueezeNet (with and with-
out bypass) under directory examples/pre_trained_models/.
Evaluating on Microcontrollers.

The first step in deploying the trained models on microcon-
trollers is quantization, which is described here https://github.com/
ARM-software/ML-KWS-for-MCU/blob/master/Deployment/Quant_
guide.md. This directory consists of example codes and steps for
running a quantized DNN model on any Cortex-M board using
mbed-cli and CMSIS-NN library. It also consists of an example of
integration of the TREC model onto a Cortex-M development board
to demonstrate real time inference on live streaming data.

We have our image data loaded to the ‘camera_with_nn.cpp’
file in this example, so inference is run on this input data. First,
create a new project and install any python dependencies prompted
when the project is created for the first time after the installation
of mbed-cli.

mbed new trec --mbedlib

Then, fetch the required mbed libraries for compilation:

cd trec

mbed deploy

Now, users can have MCU board (in our case, it’s DISCO_F469NI)
connected to their computer. Then, compile and run the code for
the mbed board. The inference time will show up on the screen of
the MCU board.

mbed compile -t GCC_ARM -m DISCO_F469NI

--source .\

--source ../ squeeze_complex_bypass

--source ../\

CMSIS_5/CMSIS/NN/Include --source ../\

CMSIS_5/CMSIS/NN/Source --source ../ CMSIS_5 /\

CMSIS/Core/Include --source ../ CMSIS_5 /\

CMSIS/DSP/Include --source ../ CMSIS_5 /\

CMSIS/DSP/Source --source ../\

CMSIS_5/CMSIS/DSP/PrivateInclude -j8\

--flash --sterm

https://doi.org/10.5281/zenodo.7702231
https://pytorch.org/get-started/locally/
https://github.com/ARMmbed/mbed-cli
https://github.com/ARM-software/ML-KWS-for-MCU/blob/master/Deployment/Quant_guide.md
https://github.com/ARM-software/ML-KWS-for-MCU/blob/master/Deployment/Quant_guide.md
https://github.com/ARM-software/ML-KWS-for-MCU/blob/master/Deployment/Quant_guide.md

Space-Efficient TREC for Enabling Deep Learning on Microcontrollers ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

B.6 Evaluation and Expected Results

Targets CifarNet SqueezeNet SqueezeNet (Bypass)

STM32F469NI 153.92 ms 327.9 ms 543.71 ms
STM32F746ZG 97.79 ms 181.49 ms 274.2 ms

Accuracy 76.5% 83% 85.3%

REFERENCES
[1] 2020. CifarNet. http://places.csail.mit.edu/deepscene/small-projects/TRN-

pytorch-pose/model_zoo/models/slim/nets/cifarnet.py.
[2] Peter Bajcsy and Michael Majurski. 2021. Baseline Pruning-Based Approach to

Trojan Detection in Neural Networks. arXiv preprint arXiv:2101.12016 (2021).
[3] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker,

Dibakar Gope, Vijay Janapa Reddi, MatthewMattina, and Paul Whatmough. 2021.
Micronets: Neural network architectures for deploying tinyml applications on
commodity microcontrollers. Proceedings of Machine Learning and Systems 3
(2021), 517–532.

[4] Jesús Benito-Picazo, Enrique Domínguez, Esteban J Palomo, Ezequiel López-
Rubio, and Juan Miguel Ortiz-de Lazcano-Lobato. 2018. Deep learning-based
anomalous object detection system powered by microcontroller for PTZ cameras.
In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–7.

[5] Neel Bhave, Aniket Dhagavkar, Kalpesh Dhande, Monis Bana, and Jyoti Joshi.
2019. Smart Signal–Adaptive Traffic Signal Control using Reinforcement Learning
and Object Detection. In 2019 Third International conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud)(I-SMAC). IEEE, 624–628.

[6] Dimosthenis E Bolanakis. 2019. A survey of research in microcontroller education.
IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 14, 2 (2019), 50–57.

[7] Gianmarco Cerutti, Renzo Andri, Lukas Cavigelli, Elisabetta Farella, Michele
Magno, and Luca Benini. 2020. Sound event detection with binary neural net-
works on tightly power-constrained IoT devices. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design. 19–24.

[8] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri
Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re. 2021. {MON-
GOOSE}: A Learnable {LSH} Framework for Efficient Neural Network Training.
In International Conference on Learning Representations. https://openreview.net/
forum?id=wWK7yXkULyh

[9] Arm Company. 2010. Cortex®-M4 Technical Reference Manual. https://users.
ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM4_TRM_r0p1.pdf

[10] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, TiezhenWang, et al. 2021. TensorFlow
litemicro: Embeddedmachine learning for tinyml systems. Proceedings ofMachine
Learning and Systems 3 (2021), 800–811.

[11] Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. 2019. Bot-
tlenet: A deep learning architecture for intelligent mobile cloud computing ser-
vices. In 2019 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 1–6.

[12] Derek Farren, Thai Pham, and Marco Alban-Hidalgo. 2016. Low latency anomaly
detection and Bayesian network prediction of anomaly likelihood. arXiv preprint
arXiv:1611.03898 (2016).

[13] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul Whatmough. 2019.
Sparse: Sparse architecture search for cnns on resource-constrained microcon-
trollers. Advances in Neural Information Processing Systems 32 (2019).

[14] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul Whatmough. 2019.
Sparse: Sparse architecture search for cnns on resource-constrained microcon-
trollers. Advances in Neural Information Processing Systems 32 (2019).

[15] Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 2018. 3d
semantic segmentation with submanifold sparse convolutional networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
9224–9232.

[16] Jiawei Guan, Feng Zhang, Jiesong Liu, Hsin-Hsuan Sung, Ruofan Wu, Xiaoyong
Du, and Xipeng Shen. 2022. TREC: Transient Redundancy Elimination-based
Convolution. In Neural Information Processing Systems 35 (Neurips 2022).

[17] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhar-
gavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik
Varma, and Prateek Jain. 2017. Protonn: Compressed and accurate knn for
resource-scarce devices. In International Conference on Machine Learning. PMLR,
1331–1340.

[18] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[19] Bian Haoqiong, Sha Tiannan, and Anastasia Ailamaki. 2023. Using Cloud Func-
tions as Accelerator for Elastic Data Analytics. In SIGMOD.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network (2015). arXiv preprint arXiv:1503.02531 2 (2015).

[21] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[22] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[23] Sunil Jacob, Varun G Menon, Fadi Al-Turjman, PG Vinoj, and Leonardo Mostarda.
2019. Artificial muscle intelligence system with deep learning for post-stroke
assistance and rehabilitation. Ieee Access 7 (2019), 133463–133473.

[24] Jari Kaivo-oja. 2012. Weak signals analysis, knowledge management theory and
systemic socio-cultural transitions. Futures 44, 3 (2012), 206–217.

[25] Kuljeet Kaur, Sahil Garg, Gagangeet Singh Aujla, Neeraj Kumar, Joel JPC Ro-
drigues, and Mohsen Guizani. 2018. Edge computing in the industrial internet
of things environment: Software-defined-networks-based edge-cloud interplay.
IEEE communications magazine 56, 2 (2018), 44–51.

[26] Dongyeon Kim, Kyuhong Park, Yongjin Park, and Jae-Hyeon Ahn. 2019. Will-
ingness to provide personal information: Perspective of privacy calculus in IoT
services. Computers in Human Behavior 92 (2019), 273–281.

[27] Aliaksei Kolesau and Dmitrij Šešok. 2020. Voice activation systems for embedded
devices: Systematic literature review. Informatica 31, 1 (2020), 65–88.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[29] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[30] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient ma-
chine learning in 2 KB RAM for the internet of things. In International Conference
on Machine Learning. PMLR, 1935–1944.

[31] Liangzhen Lai and Naveen Suda. 2018. Enabling deep learning at the LoT Edge.
In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 1–6.

[32] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2017. Deep convolutional
neural network inference with floating-point weights and fixed-point activations.
arXiv preprint arXiv:1703.03073 (2017).

[33] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Cmsis-nn: Efficient neural
network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601 (2018).

[34] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Not all ops are created
equal! arXiv preprint arXiv:1801.04326 (2018).

[35] Xuesong Li, Jose Guivant, Ngaiming Kwok, Yongzhi Xu, Ruowei Li, and Hongkun
Wu. 2019. Three-dimensional backbone network for 3d object detection in traffic
scenes. arXiv preprint arXiv:1901.08373 (2019).

[36] AndreaMassa, DavideMarcantonio, Xudong Chen,Maokun Li, andMarco Salucci.
2019. DNNs as applied to electromagnetics, antennas, and propagation—A review.
IEEE Antennas and Wireless Propagation Letters 18, 11 (2019), 2225–2229.

[37] Simon Mittermaier, Ludwig Kürzinger, Bernd Waschneck, and Gerhard Rigoll.
2020. Small-footprint keyword spotting on raw audio data with sinc-convolutions.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 7454–7458.

[38] Mao V Ngo, Hakima Chaouchi, Tie Luo, and Tony QS Quek. 2020. Adaptive
anomaly detection for IoT data in hierarchical edge computing. arXiv preprint
arXiv:2001.03314 (2020).

[39] Lin Ning and Xipeng Shen. 2019. Deep reuse: streamline CNN inference on the
fly via coarse-grained computation reuse. In Proceedings of the ACM International
Conference on Supercomputing. 438–448.

[40] Lin Ning and Xipeng Shen. 2019. Deep Reuse: streamline CNN inference on the
fly via coarse-grained computation reuse. In Proceedings of the ACM International
Conference on Supercomputing. 438–448.

[41] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. 2020. PatDNN: Achieving Real-Time DNN Execution on
Mobile Devices with Pattern-Based Weight Pruning. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 907–922. https://doi.org/10.1145/
3373376.3378534

[42] Nefy Puteri Novani, Mohammad Hafiz Hersyah, and Ryon Hamdanu. 2020. Elec-
trical Household Appliances Control using Voice Command Based on Microcon-
troller. In 2020 International Conference on Information Technology Systems and
Innovation (ICITSI). IEEE, 288–293.

[43] Michela Paganini and Jessica Forde. 2020. Streamlining tensor and network
pruning in pytorch. arXiv preprint arXiv:2004.13770 (2020).

[44] Zheng Qin, Zhaoning Zhang, Xiaotao Chen, Changjian Wang, and Yuxing Peng.
2018. Fd-mobilenet: Improved mobilenet with a fast downsampling strategy. In
2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 1363–
1367.

http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py
http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py
https://openreview.net/forum?id=wWK7yXkULyh
https://openreview.net/forum?id=wWK7yXkULyh
https://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM4_TRM_r0p1.pdf
https://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM4_TRM_r0p1.pdf
https://doi.org/10.1145/3373376.3378534
https://doi.org/10.1145/3373376.3378534

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang Guo, Xiaoyong Du, Xipeng Shen

[45] Marc Riera, Jose-Maria Arnau, and Antonio Gonzalez. 2018. Computation
Reuse in DNNs by Exploiting Input Similarity. In 2018 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture (ISCA). 57–68. https:
//doi.org/10.1109/ISCA.2018.00016

[46] Manuele Rusci, Alessandro Capotondi, and Luca Benini. 2020. Memory-driven
mixed low precision quantization for enabling deep network inference on micro-
controllers. Proceedings of Machine Learning and Systems 2 (2020), 326–335.

[47] Falk Salewski and Stefan Kowalewski. 2008. Hardware/software design con-
siderations for automotive embedded systems. IEEE Transactions on Industrial
Informatics 4, 3 (2008), 156–163.

[48] Jiawei Shao and Jun Zhang. 2020. Bottlenet++: An end-to-end approach for feature
compression in device-edge co-inference systems. In 2020 IEEE International
Conference on Communications Workshops (ICC Workshops). IEEE, 1–6.

[49] Prerna Sharma and Deepali Kamthania. 2019. Intelligent object detection and
avoidance system. In International Conference on Transforming IDEAS (Inter-
Disciplinary Exchanges, Analysis, and Search) into Viable Solutions. 342–351.

[50] Stanislava Soro. 2021. Tinyml for ubiquitous edge ai. arXiv preprint
arXiv:2102.01255 (2021).

[51] Srinivasa R Sridhara. 2011. Ultra-low power microcontrollers for portable, wear-
able, and implantable medical electronics. In 16th Asia and South Pacific Design
Automation Conference (ASP-DAC 2011). IEEE, 556–560.

[52] Hidetoshi Teraoka, Fumiharu Nakahara, and Kenichi Kurosawa. 2017. Incremen-
tal update method for vehicle microcontrollers. In 2017 IEEE 6th Global Conference
on Consumer Electronics (GCCE). IEEE, 1–2.

[53] Ching-Biau Tzeng. 2018. Vibration detection and analysis of wind turbine based
on a wireless embedded microcontroller system. In 2018 IEEE International Con-
ference on Applied System Invention (ICASI). IEEE, 133–136.

[54] Jiayi Wang, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li. 2022. Core-
sets over Multiple Tables for Feature-rich and Data-efficient Machine Learning.
Proc. VLDB Endow. 16, 1 (2022), 64–76. https://www.vldb.org/pvldb/vol16/p64-
wang.pdf

[55] Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and Xipeng
Shen. 2022. Drew: Efficient winograd cnn inference with deep reuse. In Proceed-
ings of the ACM Web Conference 2022. 1807–1816.

[56] Ruofan Wu, Feng Zhang, Zhen Zheng, Xiaoyong Du, and Xipeng Shen. 2021.
Exploring deep reuse in winograd CNN inference. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 483–484.

[57] Yan Yan, Yuxing Mao, and Bo Li. 2018. Second: Sparsely embedded convolutional
detection. Sensors 18, 10 (2018), 3337.

[58] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han.
2018. Neural adaptive content-aware internet video delivery. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 645–661.

[59] JZ Yi, YK Tan, ZR Ang, and SK Panda. 2007. Microcontroller based voice-activated
powered wheelchair control. In Proceedings of the 1st international convention on
Rehabilitation engineering & assistive technology: in conjunction with 1st Tan Tock
Seng Hospital Neurorehabilitation Meeting. 67–72.

[60] Yunkai Yu, Zhihong Yang, Yuyang You, andWenjing Shan. 2021. FASSNet: fast ap-
nea syndrome screening neural network based on single-lead electrocardiogram
for wearable devices. Physiological Measurement 42, 8 (2021), 085005.

[61] Jian Yuan, Kok Kiong Tan, Tong Heng Lee, and Gerald Choon Huat Koh. 2014.
Power-efficient interrupt-driven algorithms for fall detection and classification
of activities of daily living. IEEE Sensors Journal 15, 3 (2014), 1377–1387.

[62] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818–833.

[63] Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wenguang Chen.
2016. Understanding co-running behaviors on integrated CPU/GPU architectures.
IEEE Transactions on Parallel and Distributed Systems 28, 3 (2016), 905–918.

[64] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2022.
POCLib: a high-performance framework for enabling near orthogonal processing
on compression. IEEE Transactions on Parallel and Distributed Systems 33, 2 (2022),
459–475.

[65] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello
edge: Keyword spotting on microcontrollers. arXiv preprint arXiv:1711.07128
(2017).

Received 2022-10-20; accepted 2023-01-19

https://doi.org/10.1109/ISCA.2018.00016
https://doi.org/10.1109/ISCA.2018.00016
https://www.vldb.org/pvldb/vol16/p64-wang.pdf
https://www.vldb.org/pvldb/vol16/p64-wang.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Overview
	4 TREC Architecture
	5 Achieving Space Efficiency
	5.1 Space Pressure For DNNs on Microcontrollers
	5.2 TREC Space Optimization
	5.3 Kernel Reuse
	5.4 Two-Step Stack Substitution

	6 Implementation
	6.1 Lasting Redundancy Elimination
	6.2 Meeting Accuracy Requirements
	6.3 Implementing TREC

	7 Evaluation
	7.1 Experimental Setup
	7.2 Performance
	7.3 Single Layer Speedup
	7.4 Space Saving Analysis
	7.5 Detailed Analysis

	8 Conclusion
	A Appendix for Sparse Input Matrices: Converting Sparse Convolution to Dense Convolution
	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact Check-List (Meta-Information)
	B.3 Description
	B.4 Installation
	B.5 Experiment Workflow
	B.6 Evaluation and Expected Results

	References

