
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

An Automatic Synthesizer of Advising Tools for
High Performance Computing

Hui Guan, Member, IEEE, Xipeng Shen, Senior Member, IEEE, and Hamid Krim, Fellow, IEEE

Abstract—This paper presents Egeria, the first automatic synthesizer of advising tools for High-Performance Computing (HPC). When
one provides it with some HPC programming guides as inputs, Egeria automatically constructs a text retrieval tool that can advise on
what to do to improve the performance of a given program. The advising tool provides a concise list of essential rules automatically
extracted from the documents and can retrieve relevant optimization knowledge for optimization questions. Egeria is built based on a
distinctive multi-layered design that leverages natural language processing (NLP) techniques and extends them with HPC-specific
knowledge and considerations. This paper presents the design, implementation, and both quantitative and qualitative evaluation results
of Egeria.

Index Terms—Performance Tools, Natural Language Processing, Code Optimization

F

1 INTRODUCTION

A CHIEVING high performance on computing systems
is challenging. It requires programmers to have a

deep understanding of the underlying computing systems
and make proper implementations to effectively harness
the computing power. The problem becomes more com-
plicated with the rapid changes and increasing complexity
of modern systems (e.g. many-core heterogeneous systems
equipped with Graphic Processing Units) because the set of
knowledge and specifications programmers have to master
grows fast and continuously. Although performance pro-
filing tools (e.g., HPCToolkit [1], NVProf [2]) alleviate the
problem by identifying the potential issues, they do not
provide many guidelines on how to optimize the code
to address the issues. Coming up with available solutions
still demands lots of expertise specific to the underlying
architecture.

Programming and optimization guides usually contain
optimization rules. For example, both NVIDIA and AMD
have published guides [3], [4] explaining the many intri-
cate features of their Graphic Processing Units (GPUs) and
programming models, the detailed guidelines and methods
for developing code that runs efficiently on each major GPU
model. Programmers could read them and try to apply what
they’ve learned to optimize their code. Such documents,
however, are often hundreds of pages long. It is difficult
for application programmers to master and memorize all
the knowledge, and quickly come up with all the relevant
guidelines to apply when they encounter a specific program
optimization problem.

In this work, we propose a framework named Egeria1

to bridge the gap between programmers’ demands for opti-
mization guidelines and the hard-to-master programming
guides. Egeria consists of two stages. The first stage is

• H. Guan, X. Shen and H. Krim are with North Carolina State University,
Raleigh, NC, 27695.
E-mail: {hguan2, xshen5, ahk}@ncsu.edu

1. The name comes from a nymph Egeria in Greek mythology who
gives wisdom and prophecy.

advising sentence recognition. When one provides Egeria with
some HPC programming guides as inputs, it extracts a con-
cise list of essential rules, called advising sentences, from the
documents. The second stage is knowledge recommendation,
which builds a text retrieval (TR) agent to interactively
offer suggestions for specific optimization questions. The TR
agent together with the list of advising sentences compose
an advising tool synthesized by Egeria.

With such advising tools, programmers no longer need
to memorize every optimization guideline or spend time to
search. When encountering an optimization problem, they
can just feed the advising tool either a performance profiling
report of an execution of interest or some queries on how
to solve certain specific performance issues. The tool will
immediately provide a list of guidelines for solving those
performance problems.

Recognitions of advising sentences require the analy-
sis of the semantic and syntax of the sentences through
some Natural Language Processing (NLP) techniques. Ege-
ria adopts a multi-layered scheme guided by HPC domain-
specific properties. Advising sentences in programming
guides for HPC share some common syntactic and semantic
patterns and some special words and phrases related to
performance improvements in HPC. Exploiting such fea-
tures helps significantly simplify the problems. The multi-
layered design integrates the HPC domain properties into
the NLP techniques in each of the layers. Through treat-
ments at the levels of keywords, syntactic structures, and
semantic roles guided by the HPC special features, Egeria
is able to successfully recognize advising sentences from
raw programming guide documents. Coupled with some
text retrieval techniques (VSM [5] and TF-IDF [5]), Egeria
accurately finds the relevant advising sentences for users’
queries.

It is worth mentioning that Egeria itself is not a TR
system but a generator of TR systems for various HPC
domains. Having an easy-to-use generator of advising tools
is essential for meeting the needs of HPC, thanks to its many
domains and the fast changes in each of them. To our best

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

Advising
Sentence

Recognition

HPC
Documents

Knowledge
Recommendation

Collection of
advising sentences

Relevant
advising

sentences

Five selectors

Keywords
based filter

Syntactic
dependence

analysis

Semantic role
labeling

HPC domain-specific properties

Vector space
model (VSM) for
representations

TF-IDF
weighting
method

Query

user

Fig. 1: Overview of Egeria. The two boxes at the bottom
illustrate the two stages of Egeria respectively.

knowledge, Egeria is the first auto-synthesizer of advising
tools for HPC.

We conduct both quantitative and qualitative experi-
ments to evaluate Egeria. In the experiments, advising tools
are generated for CUDA programming on NVIDIA GPUs,
OpenCL programming on AMD GPUs, and Xeon Phi pro-
gramming on Intel Xeon Phi coprocessors. Egeria is able to
recognize the advising sentences from these programming
guides with over 80% precision rates, significantly higher
than other alternative methods. Its two-stage design makes
it able to answer CUDA program optimization queries
with a 80-100% accuracy, substantially higher than a single-
stage design. Two user studies also demonstrate the overall
usefulness of Egeria in easing their efforts in optimizing
programs. This work extends our conference paper [6] in
several aspects: (1) An adjustable relevance factor is added
for users to control the number of retrieved results in Section
4; (2) A sensitivity study on the factor is reported in Section
5.3. (2) Several semantic-based techniques are explored for
improving both knowledge recommendation and advising
sentence recognition components in Sections 6 and 7. (3) A
dependency-parsing selector is proposed to replace the SRL-
based selector in Section 7.

2 OVERVIEW

Our goal is to enable automatic synthesis of advising tools
that can give advice on what to do to improve the perfor-
mance of a given program. We call those advice “relevant
advising sentences”. Formally, we define “relevant advising
sentences” as sentences in a given document that can serve
as actionable solutions for an input query on improving
certain performance aspects of a program (e.g., “how to
improve memory throughput”). To determine whether each
of the sentences in the given document belongs to the
category of “relevant advising sentences” for the given
query is a binary classification problem. This section gives
an overview of our solution.

Egeria uses a two-stage design. As the top row in
Figure 1 shows, the two stages consider the “advising”
and “relevance” aspects respectively. The two boxes at the

bottom part of Figure 1 give the more detailed illustrations
of the two stages. The first stage, advising sentence recognition,
recognizes all advising sentences from the given document.
The second stage, knowledge recommendation, retrieves, from
the set of advising sentences collected in the first stage, the
sentences relevant to the input query through text retrieval
methods, and returns them as answers to the user. The
output from the first stage can also be directly reviewed
by the user as a reminding summary of all the essential
guidelines contained in the input document.

The first stage is more challenging due to the limited
efficacy of existing NLP techniques. Egeria overcomes the
difficulties by adopting a multi-layered scheme guided by
some HPC domain-specific properties, as the left bottom box
in Figure 1 shows. It builds its second stage upon two key
text retrieval techniques, namely the VSM representations
and the TF-IDF weighting method. We provide a detailed
explanation on the first stage in Section 3 and the second
stage in Section 4.

3 ADVISING SENTENCE RECOGNITION

Recognizing advising sentences requires the analysis of the
semantic and syntax of the sentences through some NLP
techniques. The main challenge is the limited efficacy of
each individual existing NLP techniques.

Two key features of Egeria help it circumvent those
difficulties. (1) It leverages some important properties of
HPC domains, including the common patterns in the sug-
gesting sentences in programming guides for HPC, and
the importance of some special words and phrases related
with performance improvements in HPC. These signifi-
cantly simplify the problem. (2) It adopts a multi-layered
design, employing techniques at the levels of keywords
based filtering, syntactic dependence analysis, and semantic
role labeling. The combination creates a synergy for one
technique to complement the weaknesses of another. Mean-
while, it effectively integrates the HPC domain knowledge
into the NLP techniques at each of the layers. Together, these
techniques lead to five selectors that work as an assembly to
recognize advising sentences with a high accuracy. We next
explain these two features in more detail.

3.1 HPC Domain-Specific Properties

According to our observations on some HPC documents,
advising sentences of HPC are often featured with certain
patterns along with some key words. We crystallize the
observations into six categories as shown in Table 1 and
five sets of keywords as shown in Table 2.

As Table 1 shows, the first category corresponds to
sentences that contain some critical keywords (e.g., “good
choice” in the example sentence). Our observation shows
that appearances of such keywords can usually offer a
sufficient indication, regardless of the forms of the sen-
tences. We put together a collection of such keywords as
FLAGGING WORDS shown in Table 2.

The second category includes sentences that in-
volve comparative relations that are formed with certain
optimization-related words (part of XCOMP GOVERNORS
in Table 2).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

TABLE 1: HPC Advising Sentence Categories.
Categories Patterns Example Sentences (w/ key words underlined) Selection Rules* Key Techniques
I Contains certain

keywords
This can be a good choice when the host does not
read the memory object to avoid the host having to
make a copy of the data to transfer.

#1: ∃ w in S, w∈ FLAG-
GING WORDS

Keyword
Matching

II Certain kind
of comparative
sentences

Thus, a developer may prefer using buffers instead
of images if no sampling operation is needed.

#2: lemma(g) ∈
XCOMP GOVERNORS
where g is the governor in a
xcomp or ccomp relation

Syntactic
Dependence
Parsing

III Certain kind of pas-
sive sentences

This synchronization guarantee can often be
leveraged to avoid explicit clWaitForEvents() calls
between command submissions.

IV Certain kind of im-
perative sentences

Pinning takes time, so avoid incurring pinning
costs where CPU overhead must be avoided.

#3: ∃v in S, v’s governor is
ROOT and v ∈ IMPERA-
TIVE WORDS

V Sentences with cer-
tain subjects

For peak performance on all devices, developers
can choose to use conditional compilation for key
code loops in the kernel, or in some cases even
provide two separate kernels.

#4: lemma(d) ∈
KEY SUBJECTS where
d is the dependent in a
nsubj relation

VI Sentences with cer-
tain purposes

The first step in maximizing overall memory
throughput for the application is to minimize data
transfers with low bandwidth.

#5: ∃v as the predicate of
a component c in S, p ∈
KEY PREDICATES and c
doesn’t have a A0 tag.

Semantic Role
Labeling

* (S: a given sentence; Upper-cased words: sets of keywords shown in Table 2)

The third category includes some passive sentences
that involve certain optimization-related keywords (part of
XCOMP GOVERNORS in Table 2).

The fourth category includes imperative sentences that
involve words included in IMPERATIVE WORDS shown
in Table 2. Such a form of sentence is a frequent form used
by suggesting sentences, and those keywords hint on their
relevance with performance optimizations.

The fifth category includes sentences whose subjects are
developer, programmer, or other special words contained in
KEY SUBJECTS in Table 2.

The final category consists of sentences with a purpose
clause related with performance optimizations.

Except the first category, the patterns in the other cat-
egories are related with either the syntactic or semantic
structure of the given sentence. We employ a series of NLP
techniques to construct five selectors to help recognize the
six patterns from an arbitrarily given sentence, as explained
next.

3.2 Five Selectors

The five selectors we have developed work in a series. From
the first to the fifth, they try to check whether the given
sentence meets a certain condition. As long as the sentence
meets the condition of one of the selectors, it is considered
to be an “advising sentence”.

3.2.1 Keyword Marching and Selector 1

The first selector is for the recognition of the first cate-
gory in Table 1. It is a simple keyword matching process.
One minor complexity is that one word could be in many
different variations of form, such as, “argue”, “argued”,
“argues”, and “argument”. We use the standard stemming
technique in NLP to reduce all the forms into the stem of
the word (e.g., “argu”). We do that for all the words in
FLAGGING WORDS and those in the given sentence before
conducting the keyword matching. The principal rule of this
selector can be formally expressed as follows:

Rule 1. A sentence is an advising sentence if it contains at
least one of the keywords in the FLAGGING WORDS.

3.2.2 Dependency Parsing and Selectors 2,3,4
The next three selectors are for categories 2, 3, 4, and 5.
As these categories are all about syntactic structures of the
sentence, these selectors are all based on syntactic dependency
parsing. Dependency parsing is an automatic syntactic anal-
ysis approach that analyzes the grammatical structure of a
sentence. It focuses on analyzing binary asymmetrical rela-
tions (called dependency relations) between words within
a sentence [7]. Dependency parsing has been successfully
applied to information extraction and text analysis [8]. A
dependency relation is composed of a subordinate word
(called the dependent), a word on which it depends (called
the governor), and an asymmetrical grammatical relation
between the two words.

Figure 2 shows the dependency structure for an example
sentence generated by the Stanford CoreNLP dependency
parser [9]. The dependency relations are represented as
arrows pointing from a governor to a dependent. Each
arrow is labeled with a dependency type. For example, the
noun developer is a dependent of the verb prefer with the
dependency type nominal subject (nsubj) while it is a gov-
ernor of the article a with the dependency type determiner
(det). Dependency relations are usually written in the for-
mat: relation(governor, dependent) [10]. The relations in the
two aforementioned examples are written as nsubj(prefer,
developer) and det(developer, a). For the uniformity of rep-
resentation, a virtual governor ROOT and a virtual relation
“root” are used when expressing a word without an actual
governor in the sentence. For example, for the verb prefer
in the sentence Figure 2, one may write the following:
root(ROOT, prefer).

Selector 2 takes advantage of dependency parsing to
detect sentences in category II (certain comparative sen-
tences) and category III (certain passive sentences). It specif-
ically checks a dependency relation open clausal complement
(xcomp) and clausal complement (ccomp). The definition of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

TABLE 2: Sets of Keywords Used in the Selectors.
FLAGGING WORDS ‘better’, ‘best performance’, ‘higher performance’, ‘maximum performance’, ‘peak performance’, ‘improve

the performance’, ‘higher impact’, ‘more appropriate’, ‘should’, ‘high bandwidth’, ‘benefit’, ‘high through-
put’, ‘prefer’,‘effective way’, ‘one way to’, ‘the key to’, ‘contribute to’, ‘can be used to’, ‘can lead to’,
‘reduce’, ‘can help’, ‘can be important’, ‘can be useful’, ‘is important’, ‘help avoid’, ‘can avoid’, ‘instead’,
‘is desirable’, ‘good choice’, ‘ideal choice’, ‘good idea’, ‘good start’, ‘encouraged’

XCOMP GOVERNORS ‘prefer’, ‘best’, ‘faster’, ‘better’, ‘efficient’, ‘beneficial’, ‘appropriate’, ‘recommended’, ‘encouraged’, ‘lever-
aged’, ‘important’, ‘useful’, ‘required’, ‘controlled’

IMPERATIVE WORDS ‘use’, ‘avoid’, ‘create’, ‘make’, ‘map’, ‘align’, ‘add’, ‘change’, ‘ensure’, ‘call’, ‘unroll’, ‘move’, ‘select’,
‘schedule’, ‘switch’, ‘transform’, ‘pack’

KEY SUBJECTS ‘programmer’, ‘developer’, ‘application’, ‘solution’, ‘algorithm’, ‘optimization’, ‘guideline’, ‘technique’
KEY PREDICATES ‘maximize’, ‘minimize’, ‘recommend’, ‘accomplish’, ‘achieve’, ‘avoid’

Fig. 2: Dependency structure for a sentence in Comparative Sentence category. xcomp(prefer, using).

xcomp relations is as follows: The governor of an xcomp
relation is a verb or an adjective while the dependent is
a predicative or clausal complement without its own sub-
ject [10]. For example, in Table 1, the given sentences in
categories II and III have relations xcomp(prefer, using) and
xcomp(leveraged, avoid) respectively. ccomp is similar to
xcomp. The principal rule used by Selector 2 is as follows:

Rule 2. A sentence is an advising sentence if it contains the
following dependency relation: xcomp(g, *) or ccomp(g,
*), where, g ∈ XCOMP GOVERNORS.

Selector 3 is about the relevant imperative sentences. An
imperative sentence is a type of sentence that gives advice
or instructions or that expresses a request or command, as
illustrated by the example sentence in Table 1 Category IV.
Such sentences can be recognized based on such a feature:
The root verb (i.e., the principal verb) in the sentence shall
have no subject dependent. There are two complexities to
note. First, the subject of a verb could have two types:
nominal subject (nsubj) and passive nominal subject (nsubj-
pass). A nominal subject is a noun phrase which is the
syntactic subject of a clause, such as “instructions” in the
sentence “the scalar instructions can use up to two SGPR
sources per cycle”. A passive nominal subject is that of a
passive clause [7], such as “allocations” in the sentence “all
allocations are aligned on the 16-byte boundary”. Both types
of subjects should be checked and neither should appear in
the sentence. Second, the sentence must at the same time
be relevant to HPC optimizations. We notice that the root
verb in such sentences provide good hints in this aspect.
Specifically, the selector checks whether the root verb is
part of the IMPERATIVE WORDS in Table 2, and label the
imperative sentence as an HPC advising sentence if so. To
address the complexities in the various verb tenses, we use
the lemma of a verb, which is the verb’s canonical form (e.g.,
“run” for “runs”, “ran”, “running”). The principal rule used
by Selector 3 is as follows:

Rule 3. A sentence is an advising sentence if its root verb v
meets both of the following conditions:

1) lemma(v) ∈ IMPERATIVE WORDS;
2) v is not in nsubj or nsubjpass dependency relations.

Selector 4 is for category V, sentences with certain kinds
of subjects (e.g., “developers” in the category V exam-
ple sentence in Table 1). It finds out the dependent of
nsubj relations and then checks whether they belong to the
KEY SUBJECTS set. The principal rule used by this selector
is as follows (lemma gets the canonical form of the words):

Rule 4. A sentence is an advising sentence if it contains
the nsubj dependency relation and the lemma of the
dependent ∈ KEY SUBJECTS.

3.2.3 Semantic Role Labeling and Selector 5
Selector 5 treats category VI. This category involves the
semantic roles (e.g., purpose) of the parts of the sentence.
The selector hence employs semantic role labeling (SRL).
Because SRL is generally a more complex task compared
with dependency parsing and thus more error-prone, we
will discuss the possibilities of getting rid of SRL by consid-
ering specific dependency patterns in Section 7.

Semantic role labeling (SRL), also called shallow se-
mantic parsing, is an approach to detecting the semantic
arguments associated with predicates or verbs of a sentence
and classifying them into specific semantic roles. Semantic
arguments refer to the constituents or phrases in a sentence.
Semantic roles are representations that express the abstract
roles that arguments of a predicate take that reveal the gen-
eral semantic properties of the arguments in the sentence.

Figure 3 shows an example attained through a SRL
Demo2 [11]. The demo follows the definition of semantic
roles encoded in the lexical resource PropBank [12] and
CoNLL-2004 shared task [13]. There are six different types
of arguments labeled as A0-A5. These labels have different
semantics for each verb as specified in the PropBank Frames
scheme. In addition, there are also 13 types of adjuncts
labeled as AM-XXX where XXX specifies the adjunct type. In
the example, V is the predicate, A0 the subject, A1 the object,
A2 the indirect object, AM-PNC the purpose. The example
shows three “SRL” columns, with each corresponding to one
semantic role relation centered on one verb. The first “SRL”
column, for instance, centers around the verb ‘maximize’.
This verb takes the meaning of maximize.01 in the PropBank

2. http://cogcomp.cs.illinois.edu/page/demo view/srl

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Sentence SRL SRL SRL

The
causer,

agent [A0]

topic [A1]
causer of

smallness,
agent [A0]

first

step

in

maximizing V: maximize.01

overall

thing which is
being the
most [A1]

memory

throughput

for

the

application

is V: be.01

to

proper noun
component [AM-

PNC]

minimize V: minimize.01

data
thing which is

being the
least [A1]

transfers

with

low

bandwidth

Fig. 3: Semantic role labeling results for a sentence.

and has a subject ‘The first step’ and an object ‘overall mem-
ory throughput for the application’. The purpose argument
for the verb ‘be’ also contains a predicate ‘minimize’ and its
object ‘data transfer with low bandwidth’.

Selector 5 uses SRL to detect sentences with purpose
clauses. It particularly seeks for the purposes related to HPC
optimizations. The predicate of the purpose clause usually
offers good hints on the relevance. Our empirical study
shows that, instead of finding the purpose clause of the
sentence, the selector can simply check whether the pred-
icate of a labeled argument (sentence component) belongs
to KEY PREDICATES shown in Table 2. The principal rule
of this selector is put as follows:
Rule 5. A sentence is HPC advising sentence if it meets all

the following conditions:

1) the sentence contains an argument arg whose pred-
icate v ∈ PREDICATE SET.;

2) the arg doesn’t have any word with label A0.

We implement the selectors based on several NLP tools.
We use Stanza [14] for dependency parsing, AllenNLP [15]
for SRL, and NLTK [16] for tokenization, word stemming
and lemmatization. The design of the selection rules and
keywords and NLP uses, are currently based on our obser-
vations about advising sentences found in HPC guides. The
approach is possible to apply to non-HPC domains; some
extensions in the design (keywords, rules, NLP uses) might
be necessary.

4 KNOWLEDGE RECOMMENDATION

The second stage of Egeria is modeled as a text retrieval
problem. It builds a recommendation engine that tries to
identify advising sentences that are closely related with a
given query. Our exploration shows that two techniques,
vector space model (VSM) and term frequency-inverse doc-
ument frequency (TF-IDF), suit the problem well.

VSM [5] is used to represent a sentence (the query or an
advising sentence) in a feature vector form. It prepares for

the relevancy calculations. VSM represents a piece of text
as a vector of indexed terms. Each dimension corresponds
to a separate term. If a term occurs in the text, its value
in the vector is non-zero—the exact value is computed
based on TF-IDF [5], one of the best-known weighting
methods. In TF-IDF, the weight vector for a sentence s is
vs = [w1,s, w2,s, · · · , wN,s]

T . Each entry is computed as:

wt,s = tft,s ∗ log
|S|

|{s′ ∈ S|t ∈ s′}|
, (1)

where tft,s is the term frequency of term t in the sentence
and log |S|

|{s′∈S|t∈s′}| is the inverse sentence frequency. |S| is
the total number of sentences in the sentence set and |{s′ ∈
S|t ∈ s′}| is the number of sentences containing the term t.
The sentence similarity between a sentence s and a query q
is calcuated as cosine similarity:

sim(s, q) =
vT
s vq

‖vd‖‖vq‖
. (2)

Our implementation of VSM is based on Gensim [17].
An advising tool produced by Egeria reports the top-

ranked sentences (having a similarity score higher than an
adjustable similarity threshold) as the answer to user’s query.
We use 0.15 as the default similarity threshold. Users can
easily adjust the similarity threshold through the interface to
control the number of advising sentences they get. To make
the sentences easy to understand, the answer is shown in an
HTML web page with the hyper references associated with
the sentences that link to the paragraph in the original doc-
ument. The advising tool contains an interface for inputting
queries. Besides directly inputting queries, users may also
upload a performance report of a program execution as the
query. Egeria currently supports GPU performance reports
(a PDF file output from NVIDIA NVPP3), from which, the
advising tools by Egeria can find the described key per-
formance issues through simple regular expression based
search according to the report format.

5 EVALUATIONS

We conduct a set of experiments to examine the efficacy
of Egeria. Our experiments are designed to answer the
following four major questions: 1) Is Egeria useful for pro-
grammers in easing their efforts in optimizing programs?
2) Do we really need the recognition of advising sentences
for easing the use of programming guides? How much does
it help compared to simple keyword search or other meth-
ods? 3) How does the similarity threshold in knowledge
recommendation stage affect the performance? 4) Do we
really need the sophisticated NLP-based design to recognize
advising sentences? Howe much does it help compared to
other designs?

Due to space limit, please refer to our conference pa-
per [6] for the comparisons between our multi-layered
design and alternative methods (Question 4). Here, we
just briefly mention the key observations. Experiments on
CUDA [18], OpenCL [19], and Xeon Phi [20] programming
guides show that Egeria can recognize the advising sen-
tences from these guides with over 80% precision rates,
significantly higher than other alternative methods.

3. https://developer.nvidia.com/nvidia-visual-profiler

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

We next report our experiments and results on the
first three questions. We start with a user study, showing
how useful Egeria is to help programmers address some
performance issues of CUDA programs. We then provide
some detailed examinations of the benefits of the two-staged
design of Egeria in Section 5.2 and a sensitivity study of the
similarity threshold in Section 5.3.

5.1 User Study

The user study focuses on an advising tool generated by
Egeria to show how one can use NVIDIA profiler data or
questions to retrieve relevant and helpful tuning advice. We
got the advising tool by applying Egeria on the NIVIDA
CUDA Programming Guide [18], which was created to
guide the development or optimizations of code to run on
NVIDIA GPUs. We call the tool CUDA Adviser. The interface
of the tool is shown in Figure 4.

Given a query, either an Nvidia Visual Profiler (NVVP)
report or a natural language-based query, our CUDA Adviser
responds with recommended sentences. (Users can option-
ally ask it to also list all other advising sentences in the
subsections containing those recommended sentences. In
that case, the recommended ones will be highlighted) We
do not limit the number of sentences the tool can suggest.
An advising sentence is suggested as long as it is sufficiently
relevant (the similarity threshold is 0.15 as stated in Section
4). In our experiments, the number of suggested sentences
for a query is typically 5–25. In the extreme case that no
good answers exist, the advising tool gives “No relevant
sentences found”.

In the user study, 37 graduate students were asked to
manually optimize a sparse matrix manipulation program
written using CUDA. The program contains a kernel that
makes some normalization to values in a matrix. The origi-
nal program has optimization potential in multiple aspects,
including memory accesses, thread divergences, loop con-
trols, and cache performance. All students were given the
original CUDA programming guide and were allowed to
use any other resources and tools (including NVIDIA GPU
profiling tools) in the process, while Egeria were provided
to 22 randomly chosen students out of the 37. There are two
ways that students could use CUDA Adviser. One is to feed
it with an NVVP report, the other is to directly query it with
questions. We gave no restrictions on how the students can
use the tool. They typically started with the first approach
and then used the second approach when they had other
questions. As a course project, the students were asked to
submit the optimized code and report in two weeks.

An NVVP report usually has four sections. The first
section provides an overview of the performance issues
while the later three sections each describe the problems
in each of the three main aspects: instruction and memory
latency; compute resources; memory bandwidth. Some of
the later three sections could be empty if no issues exist in
those aspects. Each performance issue in a section contains
three parts ‘title’, ‘description’, and optional ‘optimization’.
We use all the three parts to compose our queries.

When fed with an NVVP report, our CUDA Adviser
searches within each section and take subsections that con-
tain the “Optimization:” identifier as performance issue-

related contents. It then extracts those subsections as per-
formance issue-related contents. Table 3 shows the extracted
performance issues for the sparse matrix program used in
this case study. Each title and its description are combined
to form a query to our CUDA Adviser.

Figure 5 shows the sentences suggested by our CUDA
Adviser given the example NVVP report. For space limita-
tions, it shows only the sentences selected from Chapter 5
of the CUDA Guide (eight other sentences were chosen in
the other 14 chapters). Besides the recommended sentences,
the figure also shows some of the other advising sentences
residing in the same subsections as the suggested sentences
do. The recommended ones are highlighted in the figure.

Among the eight recommended sentences, we can see
that the following sentence directly provides suggestions on
handling the “register usage” issue:

Register usage can be controlled using the maxr-
regcount compiler option or launch bounds as
described in Launch Bounds.

The following sentence is closely related to the “divergent
branches” issue:

To obtain best performance in cases where the con-
trol flow depends on the thread ID, the controlling
condition should be written so as to minimize the
number of divergent warps.

With the response, if users want to learn more details,
they can easily access the corresponding subsections in the
original document through hyper-links associated with each
section/subsection title in the summary (these titles are
underlined in Figure 5). For example, by examining Section
5.4.2. Control Flow Instruction, which contains the aforemen-
tioned recommended sentence on “divergent branches”,
users can find the following sentences that explain warp
divergence:

Any flow control instruction (...) can significantly
impact the effective instruction throughput by
causing threads of the same warp to diverge (...).
If this happens, the different executions paths have
to be serialized, increasing the total number of
instructions executed for this warp...

The reports we received from the students in the user
study indicated that the retrieved advising sentence along
with its context from the original document helped them
identify an optimization opportunity on the if-else block
shown in Figure 6a. The optimized version of the block is
shown in Figure 6b which has the if-else branches removed.

In addition to NVVP reports, students also posted
queries to the advising tool. Some example queries were
“warp execution efficiency”, “How to avoid thread diver-
gence”, “memory access coalescence”, and so on.

According to students’ report and optimized code, opti-
mizations by the Egeria group included memory optimiza-
tions (e.g., “rearrange memory access instructions”), min-
imize thread divergences (e.g., “remove if-else”), increase
the amount of parallelism (e.g., “tuning the dimensions of
thread blocks and grids”), and minimize the number of
instructions a thread needs to do (e.g. “loop unrolling”).
The non-Egeria group as a whole covered most of these
optimizations, but an individual in that group typically
implemented fewer optimizations than an individual in the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

TABLE 3: Subsections from an Example NVVP Report for Indicating Performance Issues (with the descriptions abridged).
Subsection Description
GPU Utilization May Be
Limited By Register Us-
age

Theoretical occupancy is less than 100% but is large enough that
increasing occupancy may not improve performance.... The kernel uses
31 registers for each thread (7936 registers for each block)...

Divergent Branches Compute resource are used most efficiently when all threads in a
warp have the same branching behavior. When this does not occur
the branch is said to be divergent. Divergent branches lower warp
execution efficiency which leads to inefficient use of the GPU’s compute
resources....

Fig. 4: The initial webpage of the CUDA Adviser, displaying the advising sentences of CUDA Programming Guide. The
two buttons on top allow users to upload a performance report in PDF as a query. The search box at the right top corner
allows users to directly input queries. The range bar in the middle allow users to adjust the number of retrieved sentences.

TABLE 4: Speedups on a GPU Program.
GeForce GTX 780 GeForce GTX 480
Average Median Average Median

Group 1: Egeria used 6.27X 5.93X 4.15X 4.43X
Group 2: Egeria not used 4.09X 3.58X 2.59X 2.39X

Egeria group did, as with Egeria, it is easier to identify a
comprehensive set of relevant optimizations. We did not see
a significant difference in the amount of prior GPU expe-
rience between the two groups of students. A quantitative
examination of responses’ accuracy and comparison is in the
next subsection.

Table 4 reports the speedups that the students’ optimiza-
tions have achieved on two GPUs of different models over
the original CUDA program. The much larger speedups
obtained by the students that have used Egeria suggest the
usefulness of the advising tool by Egeria: With its advice, the
students were able to better target the set of suitable opti-
mizations in their explorations, which has saved them time
in searching in the original documents or other resources
and has helped prevent them from trying many irrelevant
optimizations.

5.2 Effectiveness of the Two-Level Design
In this part, we report a deeper examination of the effec-
tiveness of the two-level design featured by Egeria, and
compare it with some alternative methods.

Recall that the key idea of the two-stage design is to first
recognize advising sentences, and then from them, find the

sentences related with the input query. We compare it with
two one-stage methods:

• Keywords method: This method uses keywords in the
input query to directly search the original program-
ming guide to find relevant sentences. Both the key-
words and the words in the document are reduced to
their stem forms to allow matchings among different
variants of a word.

• Full-doc method: This method also queries the original
programming guide without first extracting advising
sentences. Unlike the keywords method, this method
does not use keywords, but uses the same knowl-
edge recommendation method as Egeria uses—that
is, through the use of VSM and TF-IDF techniques as
Section 4 describes.

We applied the several methods to four GPU per-
formance profiling reports. These reports were collected
through an NVIDIA GPU profiling tool (NVPP)4, with each
containing a detailed description of the performance issues
of a GPU program execution. The four reports are for the
following four CUDA programs:

• knnjoin.cu: a K-Nearest Neighbor (KNN) program
that has thread divergence problems in the kernel;

• knnjoin-opt.cu: knnjoin.cu after some task reordering
to reduce the thread divergence for the kernel;

• trans.cu: a matrix transpose that has a large number
of non-coalesced memory accesses;

• trans-opt.cu: trans.cu after optimizing the memory
accesses through the use of 2D surface memory.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

5. Performance Guidelines
5.1. Overall Performance Optimization Strategies

● Performance optimization revolves around three basic strategies: Maximize parallel execution to achieve maximum utilization; Optimize memory usage to achieve maximum
memory throughput; Optimize instruction usage to achieve maximum instruction throughput.

● Which strategies will yield the best performance gain for a particular portion of an application depends on the performance limiters for that portion; optimizing instruction
usage of a kernel that is mostly limited by memory accesses will not yield any significant performance gain, for example.

● Optimization efforts should therefore be constantly directed by measuring and monitoring the performance limiters, for example using the CUDA profiler.

5.2. Maximize Utilization
5.2.3. Multiprocessor Level

● At an even lower level, the application should maximize parallel execution between the various functional units within a multiprocessor.
 ……

● Register usage can be controlled using the maxrregcount compiler option or launch bounds as described in Launch Bounds.
 ……

● Applications can also parameterize execution configurations based on register file size and shared memory size, which depends on the compute capability of the
device, as well as on the number of multiprocessors and memory bandwidth of the device, all of which can be queried using the runtime (see reference manual).

● The number of threads per block should be chosen as a multiple of the warp size to avoid wasting computing resources with under-populated warps as much as
possible.

5.4. Maximize Instruction Throughput

● To maximize instruction throughput the application should: Minimize the use of arithmetic instructions with low throughput; this includes trading precision for speed when it
does not affect the end result, such as using intrinsic instead of regular functions (intrinsic functions are listed in Intrinsic Functions), single-precision instead of
double-precision, or flushing denormalized numbers to zero; Minimize divergent warps caused by control flow instructions as detailed in Control Flow Instructions Reduce the
number of instructions, for example, by optimizing out synchronization points whenever possible as described in Synchronization Instruction or by using restricted pointers as
described in __restrict__.

5.4.1. Arithmetic Instructions

● cuobjdump can be used to inspect a particular implementation in a cubin object.
 ……

● As the slow path requires more registers than the fast path, an attempt has been made to reduce register pressure in the slow path by storing some intermediate
variables in local memory, which may affect performance because of local memory high latency and bandwidth (see Device Memory Accesses).

 ……
● This last case can be avoided by using single-precision floating-point constants, defined with an f suffix such as 3.141592653589793f, 1.0f, 0.5f.

5.4.2. Control Flow Instructions

● To obtain best performance in cases where the control flow depends on the thread ID, the controlling condition should be written so as to minimize the number of
divergent warps.

 ……
● The programmer can also control loop unrolling using the #pragma unroll directive (see #pragma unroll).

Fig. 5: Retrieved Sentences from Chapter 5 of CUDA Guide for a Given NVVP Report. (Highlighted are recommended
sentences; others, including omitted ones, are advising sentences in the same subsections as the recommended ones are.)

(a) The If-else Block from the Original Program.

(b) The Optimized Block.

Fig. 6: Optimization to Minimize Thread Divergence.

The second column in Table 5 lists the top issue(s) of the
most time-consuming kernel of each of the four programs.

We fed the reports into our CUDA advising tool and
the full-doc method; they each returned a set of sentences for
each of the reports as their answers on how to resolve the
performance issues in that report. For the keywords method,
we tried a number of keywords for each performance issue
as listed below:

• knnjoin (issue 1): warp, execution, efficiency, warp
efficiency, warp execution efficiency;

• knnjoin (issue 2): divergence, branch, divergent
branch;

• knnjoin opt: memory, alignment, memory align-
ment, access pattern;

• trans (issue 1): utilization, memory, instruction,
memory instruction;

• trans (issue 2): instruction, latency, instruction la-
tency;

• trans opt: memory, bandwidth, memory bandwidth;

The underlined are the keywords that yield the best overall
results in terms of F-measure (defined in the next para-

graph).
Table 5 reports the quality of the results by the three

methods. For keywords method, the table shows only the
results by the aforementioned best keywords. The three
metrics we use are commonly used in information retrieval:
precision P (#true positive/#answers), recall R (#true pos-
itive/#groundTruth), and the combined metric F-measure
F = 2 ∗ P ∗ R/(P + R). We asked three domain experts to
manually label all the sentences in the CUDA programming
guide regarding whether they are advising sentences rele-
vant for resolving each of the performance issues listed in
Table 5. The Fleiss’ kappa values [21] (a standard measure
for assessing the reliability of agreement of a number of
raters) of the labeling results are all above 0.8, indicating
large agreements among the raters. Majority vote is used to
generate the ground truth answers for each of the perfor-
mance issues.

As the “Egeria” column in Table 5 shows, our advising
tool returns most relevant advising sentences, with the recall
rates at 83-100%. The small number of missing sentences
are mostly due to some difficulties in advising sentence
recognitions. A fraction (0-35%) of the answers are false
positives for some limitations of the VSM/TF-IDF technique
used for similarity computations. But overall, the advising
tool gives answers significantly better than both alternative
methods give.

Because the “full-doc” method uses the same knowledge
recommendation method as the Egeria-based advising tool
uses and advising sentences are part of the original docu-
ment, this method finds all the sentences returned by the
Egeria-based CUDA advising tool. However, it also yields
many sentences that are not advising sentences because it
works on the original document. Some of these sentences,
for instance, are detailed explanations of some terms or

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

TABLE 5: Quality of Answers on Performance Queries. (P: precision; R: recall; F: F-measure).

NVVP
Report

Performance
Issues

#gnd Egeria Method Full-doc Method Keywords Method
truth P R F P R F P R F

knnjoin P1 6 0.667 1.0 0.8 0.146 1.0 0.255 0.154 1.0 0.267
P2 2 0.667 1.0 0.8 0.167 1.0 0.286 0.333 1.0 0.5

knnjoin opt P3 7 1.0 0.857 0.923 0.304 1.0 0.467 0.571 0.571 0.571

trans P4 8 0.667 1.0 0.8 0.211 1.0 0.348 0.571 0.5 0.533
P5 11 0.667 0.909 0.769 0.182 0.909 0.303 0.364 0.364 0.364

trans opt P6 18 0.652 0.833 0.732 0.308 0.889 0.457 0.545 0.333 0.414

P1: Low Warp Execution Efficiency; P2: Divergent Branches; P3: Global Memory Alignment and Access Pattern; P4: GPU Utilization is Limited by
Memory Instruction Execution; P5: Instruction Latencies may be Limiting Performance; P6: GPU Utilization is Limited by Memory bandwidth.

concepts, and some are details of some example architec-
tures. Although these may have some relevancy to the input
queries, they do not give suggestions on how to optimize
the program to resolve the performance issues specified in
the queries. As Table 5 shows, the precision of the returned
results by the full-doc method is only 30% or below.

The “keywords” method is inferior in both precision and
recall. The reason is that lots of sentences containing the
keywords are not advising sentences, but explanations of
some details or examples. At the same time, many relevant
advising sentences do not contain the keywords. Please refer
to [6] for example sentences.

We applied stemming to the keywords and documents
to allow matchings between variants of words. Without
stemming, the false positives of the “keywords” method
could get reduced slightly, but the recall rate would get
much lower; the overall results would be even worse.

5.3 Sensitivity Analysis

In knowledge recommendation stage (Section 4), the default
similarity threshold is set to 0.15 as shown in Figure 4. The
advising tools only recommend advising sentences with a
similarity score higher than the default threshold. To inves-
tigate the influence of the similarity threshold, we evaluated
the performance of the three methods (Egeria, Full-doc, and
Keywords) under different threshold settings.

We vary the similarity threshold from zero to 0.5 with
a step size of 0.01. Figure 7 shows the Precision and Recall
curves (PRCs) and Receiver Operating Characteristic curves
(ROCs) for two benchmarks used in Table 5. The PRCs and
ROCs for other benchmarks are similar. Since the Keywords
method does not use the knowledge recommendation algo-
rithm as Egeria and Full-doc method use, it is not affected by
different similarity thresholds. The different triangle points
correspond to different keywords in the input query. The
smaller the similarity threshold is, the larger number of
recommended sentences and higher false-positive rate and
true positive rates we see.

According to the PRCs in Figure 7, with the same recall,
the Egeria method gives the highest precision consistently.
Also, it is worth mention that our default similarity thresh-
old (i.e. 0.15) achieves a good balance between recall and
precision: it yields, in most cases, a recall rate of 100% and
also the highest precision. With a smaller threshold, more
sentences are recommended at the expense of a decrease
in precision since the query results are diluted by advising
sentences that may not be solutions to the specific query.
For instance, in Figure 7b, a similarity threshold of 0.8 can

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
ec

isi
on

Egeria Full-doc Keywords

(a) P1 (st ∈ [0.16, 0.29])

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Egeria Full-doc Keywords

(b) P5 (st ∈ [0.08, 0.38]

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
Egeria Full-doc Keywords

(c) P1

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Egeria Full-doc Keywords

(d) P5

Fig. 7: PRCs and ROCs. The “Egeria” and “Full-doc” curves
correspond to a spectrum of sampled similarity thresholds
(st) as shown in the sub-graph captions. P1, P5 refer to
performance issues listed in Table 5.

give a recall rate of 100% but a precision rate of 35.5% (31
recommended sentences). This means that a user needs to
go through more information to find potential solutions.
In practice, with our advising tools, users can adjust the
similarity threshold to control the number of recommended
sentences to meet their needs.

6 EXTENSIONS FOR SEMANTIC SENSITIVITY

We adopted the term frequency-inverse document fre-
quency (TF-IDF) to represent advising sentences. This repre-
sentation allows sentence ranking according to their possi-
ble relevance based on the number of overlapped words and
the importance of those words. The main limitation is that
it cannot recognize the relevance between sentences with
a similar meaning but in different term vocabularies. It is
called the semantic sensitivity problem.

Several models (e.g. Latent Semantic Indexing (LSI) [22],
Latent Dirichlet Allocation (LDA) [23], Random Projection
(RP) [24]) have been proposed to avoid the semantic sen-
sitivity problem by learning representation for a document

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

TF-IDF
LSI
LDA
RP
Word2Vec

(a) P1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

TF-IDF
LSI
LDA
RP
Word2Vec

(b) P5

Fig. 8: ROC curves for P1 knnjoin(issue 1) and P5 trans (issue
2) listed in Table 5.

in a latent semantic space with lower dimensionality. Each
latent dimension corresponds to a latent topic. Each doc-
ument is represented in terms of latent topics rather than
words. These models rely on different techniques to deter-
mine the relationship between words and latent topics. LSI,
also called Latent Semantic Analysis, uses a mathematical
technique called Singular Value Decomposition (SVD) for
dimension reduction. For real corpora, the recommended
number of target dimensions is 200-500 [25]. LDA is a
probabilistic extension of LSI, which means that the latent
topics of LDA are probability distributions over words and
also that each document is a soft mixture of topics. RP is
a more computationally efficient, yet sufficiently accurate
method for dimension reduction, compared with LSI. In RP,
the original high dimensional data is projected onto a lower-
dimensional subspace using a random matrix.

Recent proposed word embeddings (e.g., Word2Vec [26],
[27], [28] and GloVe [29] learn a low-dimensional vector rep-
resentation, called embedding, for each word. These embed-
dings capture the semantic relationships among words. For
example, vec(Berlin) - vec(Germany) + vec(France) is close to
vec(Paris), where vec(.) is the embedding function. Based on
the embeddings, one can calculate the distance between two
documents by Word Mover’s Distance (WMD) [30].

We compared these advanced models and Word2Vec
with TF-IDF. For methods LSI, LDA, and RP, we set the
latent dimension to 50, 100, and 200. For Word2Vec, we
used word embeddings of dimension 100 pre-trained on
Wikipedia and Gigaword [29] and finetuned these embed-
dings on the CUDA programming guide using Gensim [17].
The ROCs for the benchmark knnjoin (issue 1) and trans (is-
sue 2), with different models and a latent dimension 100 are
shown in Figure 8. Other benchmarks and latent dimensions
have similar observations. Given the same false-positive
rate, these advanced models yield similar or even worse
true positive rate compared with TF-IDF. This may result
from the limited size of the training corpus (i.e. sentences
from CUDA Programming Guide). Further explorations
with larger training data sizes can be more meaningful.

7 EXTENSIONS FOR ADVISING SENTENCE
RECOGNITION

Advising sentence recognition takes advantage of HPC
domain-specific properties, including advising sentence pat-
terns and corresponding keywords, to simplify the problem

into five simpler ones. This results in five selectors working
as an ensemble to identify advising sentences with high
accuracy. Although this multi-layered design has shown
much better results over the alternatives in our conference
paper [6], the five selectors rely on exact matching with the
sets of keywords listed in Table 2. The first open question
is whether we can further improve the classification accu-
racy if Egeria can identify advising sentences that contain
semantic-equivalent or semantic-similar words. Also, the
fifth selector (Rule #5) uses semantic role labeling (SRL)
which is generally a more complex task than dependency
parsing and thus more error-prone. The second open ques-
tion is whether we can replace semantic role labeling with
the more accurate dependency parsing technique by consid-
ering specific dependency patterns. This section reports our
explorations to answer the two open questions.

Keyword Expansion. We leveraged pre-trained
word2vec [27] to expand the sets of keywords in Table 2.
We add a word w from the programming guide into a
set of keywords S, where S ∈ {FLAGGING WORDS,
XCOMP GOVERNORS, IMPERATIVE WORDS,
KEY SUBJECTS, KEY PREDICATES} if the cosine
similarity between w and any word in the set S is
larger than a threshold. We vary the threshold from 0.8
to 0.95. The five selectors then use the expanded sets of
keywords to classify advising sentences.

We call the method egeria-word2vec and show its clas-
sification performance in Figure 9 as a ROC curve. We
compare egeria-word2vec with two other methods egeria and
keywordAll. For the keywordAll approach, we used the same
experiment setting: we apply the first selector (the keyword-
based selector) but use the union of all the keywords used in
all selectors as the replacement of the FLAGGING WORDS.

According to Figure 9, egeria-word2vec with a high sim-
ilarity threshold can achieve the same accuracy as egeria in
recognizing advising sentences. When we lower the similar-
ity threshold to include more semantic-similar keywords, it
is worse than the keywordAll approach under the same false-
positive rate. This means incorporating semantic-similar
words into the sets of keywords lower the precision of the
advising sentence recognition.

Selector Approximation We replaced the fifth selector
(Rule #5) introduced in Section 3.2.3 using the following
simpler dependency parsing-based rule:
Rule 6. A sentence is a HPC advising sentence if it meets all

the following conditions:

1) The sentence contains a verb v and lemma(v) ∈
KEY PREDICATES.

2) v is not in any subj dependency relation.

We use egeria-apsrl to refer to the advising sentence
recognition method using the five selectors, Rule #1-#4 and
Rule #6. Its classification performance is shown in Figure 9.
egeria-apsrl is able to achieve similar precision and recall
compared with egeria.

8 RELATED WORK

The importance of tools for HPC has been well recognized.
Through the years, many high quality HPC tools have
been developed. HPCToolkit [1] provides a set of tools for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

0.2 0.4 0.6 0.8 1.0
False positive rate

0.94
0.95
0.96
0.97
0.98
0.99
1.00

Tr
ue

 p
os

iti
ve

 ra
te

keywordAll
egeria
egeria-apsrl
egeria-word2vec

(a) CUDA

0.2 0.4 0.6 0.8 1.0
False positive rate

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

Tr
ue

 p
os

iti
ve

 ra
te

keywordAll
egeria
egeria-apsrl
egeria-word2vec

(b) OpenCL

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Tr
ue

 p
os

iti
ve

 ra
te

keywordAll
egeria
egeria-apsrl
egeria-word2vec

(c) Xeon

Fig. 9: ROCs for advising sentence recognition on three programming guides: CUDA [18], OpenCL [19], and Xeon [20].

profiling and analyzing HPC program executions. Other
tools for performance profiling include some code-centric
tools (e.g., VTune [31], Oprofile [32], CodeAnalyst [33], and
Gprof [34]) and some other data-centric tools [35], [36],
[37], [38]. Just for GPU, there are numerous performance
profiling tools (e.g., NVVP [2], NVProf [2], CodeXL [39],
GPU PerfStudio [40], Snapdragon [41]. There have also been
many profiling tools developed for data centers and cloud
(e.g., PerfCompass [42]). All these tools have concentrated
on measuring and identifying the main performance issues,
rather than creating advising tools for offering advice on
how to fix the issues.

NLP has been used in software engineering broadly.
For instance, it has been used for some bug report classi-
fication [43], bug report summarization [44], bug severity
prediction [45], and relevant source files retrieval [46]. The
goals of those work differ from the recognition of advising
sentences. For instance, report summarization aims at cre-
ating a representative summary or abstract of a report [47].
It focuses on finding the most informative sentences, which
may not be advising sentences. The different goals of Egeria
motivate its unique design and distinctive ways to leverage
NLP techniques.

9 CONCLUSION

We developed the framework Egeria for automatic synthesis
of HPC advising tools. Advising tools generated by Egeria
can provide users with a list of important optimization
guidelines to remind them of available optimization rules,
and suggest related optimization advice based on the perfor-
mance issues of a program or questions from a user. Egeria
is made possible by integrating HPC domain properties
with NLP techniques for recognizing advising sentences
with a high accuracy. Both qualitative and quantitative
experiments demonstrate the usefulness of Egeria for HPC.

ACKNOWLEDGEMENTS

John Mellor-Crummey gave us some valuable suggestions
on this work. We thank Lars Nyland and Huiyang Zhou
for their comments at the early stage of this work. This
material is based upon work supported by DOE Early
Career Award (DE-SC0013700), and the National Science
Foundation (NSF) Grants No. 1455404, 1455733 (CAREER),
and 1525609. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of DOE or
NSF.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance
analysis of optimized parallel programs,” Concurrency and Compu-
tation: Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[2] C. NVidia, “Cuda profiler users guide (version 6.5): Nvidia,” Santa
Clara, CA, USA, p. 87, 2014.

[3] S. Cook, CUDA programming: a developer’s guide to parallel computing
with GPUs. Newnes, 2012.

[4] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL
programming guide. Pearson Education, 2011.

[5] P. D. Turney, P. Pantel et al., “From frequency to meaning: Vector
space models of semantics,” Journal of artificial intelligence research,
vol. 37, no. 1, pp. 141–188, 2010.

[6] H. Guan, X. Shen, and H. Krim, “Egeria: a framework for au-
tomatic synthesis of hpc advising tools through multi-layered
natural language processing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2017, p. 10.

[7] S. Kübler, R. McDonald, and J. Nivre, “Dependency parsing,”
Synthesis Lectures on Human Language Technologies, vol. 1, no. 1,
pp. 1–127, 2009.

[8] C. Niklaus, M. Cetto, A. Freitas, and S. Handschuh, “A survey on
open information extraction,” arXiv preprint, 2018.

[9] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[10] M.-C. De Marneffe and C. D. Manning, “Stanford typed depen-
dencies manual,” Technical report, Stanford University, Tech. Rep.,
2008.

[11] V. Punyakanok, D. Roth, and W. Yih, “The importance of
syntactic parsing and inference in semantic role labeling,”
Computational Linguistics, vol. 34, no. 2, 2008. [Online]. Available:
http://cogcomp.cs.illinois.edu/papers/PunyakanokRoYi07.pdf

[12] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank:
An annotated corpus of semantic roles,” Computational linguistics,
vol. 31, no. 1, pp. 71–106, 2005.

[13] X. Carreras and L. Màrquez, “Introduction to the conll-2005 shared
task: Semantic role labeling,” in Proceedings of the Ninth Conference
on Computational Natural Language Learning. Association for
Computational Linguistics, 2005, pp. 152–164.

[14] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A
Python natural language processing toolkit for many human lan-
guages,” in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, 2020.

[15] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu,
M. Peters, M. Schmitz, and L. S. Zettlemoyer, “Allennlp: A deep
semantic natural language processing platform,” 2017.

[16] S. Bird, “Nltk: the natural language toolkit,” in Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

[17] R. Řehůřek and P. Sojka, “Software Framework for Topic Mod-
elling with Large Corpora,” in Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA,
May 2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[18] “NIVIDA CUDA Programming Guide,” https://docs.nvidia.
com/cuda/cuda-c-programming-guide/, [Online; accessed 19-
July-2017].

[19] “AMD OpenCL Optimization Guideline,” http:
//developer.amd.com/tools-and-sdks/opencl-zone/
amd-accelerated-parallel-processing-app-sdk/
opencl-optimization-guide/, [Online; accessed 19-July-2017].

[20] “Intel Xeon Phi Best Practice Guide,” http://www.prace-ri.eu/
best-practice-guide-intel-xeon-phi-html/, [Online; accessed 19-
July-2017].

[21] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[22] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala,
“Latent semantic indexing: A probabilistic analysis,” in Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, ser. PODS ’98. New York,
NY, USA: ACM, 1998, pp. 159–168. [Online]. Available:
http://doi.acm.org/10.1145/275487.275505

[23] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[24] E. Bingham and H. Mannila, “Random projection in dimensional-
ity reduction: Applications to image and text data,” in Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’01. New York, NY, USA:
ACM, 2001, pp. 245–250.

[25] R. B. Bradford, “An empirical study of required dimensionality for
large-scale latent semantic indexing applications,” in Proceedings of
the 17th ACM conference on Information and knowledge management.
ACM, 2008, pp. 153–162.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[28] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proceedings of the 2013
conference of the north american chapter of the association for computa-
tional linguistics: Human language technologies, 2013, pp. 746–751.

[29] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vec-
tors for word representation,” in Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), 2014.

[30] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word
embeddings to document distances,” in International conference on
machine learning, 2015, pp. 957–966.

[31] J. Reinders, VTune performance analyzer essentials. Intel Press, 2005.
[32] J. Levon and P. Elie, “Oprofile: A system profiler for linux,” 2004.
[33] P. J. Drongowski, A. C. Team, and B. D. Center, “An introduction

to analysis and optimization with amd codeanalyst performance
analyzer,” Advanced Micro Devices, Inc, 2008.

[34] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call
graph execution profiler,” in ACM Sigplan Notices, vol. 17, no. 6.
ACM, 1982, pp. 120–126.

[35] B. R. Buck and J. K. Hollingsworth, “Data centric cache measure-
ment on the intel ltanium 2 processor,” in Proceedings of the 2004
ACM/IEEE conference on Supercomputing. IEEE Computer Society,
2004, p. 58.

[36] R. Lachaize, B. Lepers, and V. Quéma, “Memprof: A memory
profiler for numa multicore systems,” in Presented as part of the
2012 USENIX Annual Technical Conference (USENIX ATC 12), 2012.

[37] X. Liu and J. Mellor-Crummey, “Pinpointing data locality prob-
lems using data-centric analysis,” in Code Generation and Optimiza-
tion (CGO), 2011 9th Annual IEEE/ACM International Symposium on.
IEEE, 2011, pp. 171–180.

[38] C. McCurdy and J. Vetter, “Memphis: Finding and fixing numa-
related performance problems on multi-core platforms,” in Perfor-
mance Analysis of Systems & Software (ISPASS), 2010 IEEE Interna-
tional Symposium on. IEEE, 2010, pp. 87–96.

[39] “Codexl quick start guide,” ”http://developer.amd.com/tools-
and-sdks/opencl-zone/codexl, [Online; accessed 14-Dec.-2016].

[40] “Gpu perfstudio,” ”http://developer.amd.com/tools-and-sdks/
graphics-development/gpu-perfstudio, [Online; accessed 14-
Dec.-2016].

[41] I. Qualcomm Technologies. (2016) Qualcomm snapdragon profiler
quick start guide.

[42] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut,
“Perfcompass: Online performance anomaly fault localization and
inference in infrastructure-as-a-service clouds,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 6, pp. 1742–1755,
2016.

[43] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining
and data mining for bug report classification,” Journal of Software:
Evolution and Process, 2016.

[44] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum:
approach for unsupervised bug report summarization,” in Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, 2012, p. 11.

[45] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction,”
in 2012 19th Working Conference on Reverse Engineering. IEEE,
2012, pp. 215–224.

[46] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 689–699.

[47] D. Das and A. F. Martins, “A survey on automatic text summa-
rization,” Literature Survey for the Language and Statistics II course at
CMU, vol. 4, pp. 192–195, 2007.

Hui Guan Hui Guan is a Ph.D. candidate in the
Department of Electrical and Computer Engi-
neering, North Carolina State University, work-
ing under the supervision of Dr. Xipeng Shen
and Dr. Hamid Krim. Her research lies in the
intersection between Machine Learning and Pro-
gramming Systems.

Xipeng Shen Dr. Xipeng Shen is a professor
at the Computer Science Department, North
Carolina State University. He is an ACM Dis-
tinguished Speaker, and a senior member of
IEEE. His current research focuses on Het-
erogeneous Massively Parallel Computing, High
Performance Machine Learning, and High-Level
Large-Scale Program Optimizations.

Hamid Krim Dr. Hamid Krim is presently on
the faculty in the ECE Department, North Car-
olina State University, Raleigh, leading the Vi-
sion, Information and Statistical Signal Theories
and Applications group, whose research inter-
ests are in statistical signal and image analysis
and mathematical modeling with a keen empha-
sis on applied problems.

