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Abstract

Motivated by the relentless quest for program performandesmergy savings, pro-
gram execution environments (e.g. computer architectndeoperating systems) are
becoming reconfigurable and adaptive. But most programsaredespite dramatic
differences in inputs, machine configurations, and the gaxk of the underlying op-
erating systems, most programs always have the same cadaeguwnth the same data
structure. The resulting mismatch between program andamwient often leads to ex-
ecution slowdown and resource under-utilization. The |@ohs exacerbated as chip
multi-processors are becoming commonplace and most usgrgmns are still sequen-
tial, increasingly composed with library code and runninithunterpreters and virtual
machines. The ultimate goal of my research is an intelliggongramming system,
which injects into a program the ability to automaticallyaptiand evolve its code and
data and configure its running environment in order to ach&etbetter match between

the (improved) program, its input, and the environment.

Program adaptation is not possible without accuratelycisgng a program’s be-
havior. However, traditional modular program design andlysis are ill-fitted for
finding large-scale composite patterns in increasingly mlarated code, dynamically
allocated data, and multi-layered execution environm@nts interpreters, virtual ma-
chines, operating systems and computer architecture.)eSarch views a program as
a composition of large-scale behavior patterns, each oflwiniay span a large num-
ber of loops and procedures statically and billions of uindions dynamically. | apply

statistical technology to automatically recognize thegras, build models of program
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behavior, and exploit them in offline program transformat{e.g. array regrouping
based orlocality and reference affinity researchnd online program adaptation (e.g.
behavior-oriented parallelizatiobased orbehavior phas@so improve program per-

formance and reliability.
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1 Introduction

The relentless quest for performance motivated the fastldpment of computers in
the past decades. Although processors have been followoayd$ Law and doubled
the speed every two years, users are demanding more: ircghiysstudy the slip con-
dition, it takes hundreds of days to simulate fluid in chasyfelr computer architecture
research, it takes about 60 hours to simulate one-minuigrgmo execution; for gen-
eral users, the amount of data in the world is doubling eVerget years [Chen et al.,
2005]. Despite the urgency for performance, power and hwadtraints have stopped
the increase of CPU speed. Instead, computers are incrgasmugpped with more

processors. How can a programming system further accelpraggrams’ execution

and help users effectively utilize the extra computing vese?

This thesis presents a novel technigbehavior-based program analysi® sys-
tematically characterize and predict large-scale progoatmavior. Unlike previous
program analysis, we model program behavior as a compd#iet &om code, data,
input and running environment rather than study them séglsral’ he analysis builds
a regression model to better predict whole-program localitoss inputs. It develops
a lightweight approach to recognize data affinity groups iamatoves program local-
ity. For run-time adaptation, we propose behavior phasespbure large-scale dy-
namic behavior patterns. To ease the development of plapatigrams, we construct

a behavior-oriented parallelization system to (semiganattically parallelize complex



programs. All the techniques are based on our distinguishiaw of program behavior,

which leads to the definition of our program behavior model.

1.1 Program Behavior Model

Behaviorrefers to “the actions or reactions of an object or organissually in
relation to the environment ” (adapted from [Merriam-Welst998].) In program
world an “object ” is a program, including its code and datgamization (data struc-
ture and data layout in the memory); the “environment” isgpaon inputs and running
context, including the situations of hardware, operatysgjesms and virtual machines;
an “action” is a program operation (in different scales) #mel ensuing activities of
the computing system like instruction execution, memoeases and disk operations.

Formally, we define program behavior as follows:

Program behavior refers to the operations of a program—code and data—
and the ensuing activities of the computing system on diffescales in

relation to the input and running environment.

The definition implies thaprogram behavior is a composite multiscale effect from
program code, dynamic data, input, and running environmastdenoted by the fol-

lowing formula. In short, we call those factgeeogram behavior components
behavior = code + dynamic data + input + environment + scale

Program behavior has different granularities. It could$sraall as loading a single
data, or as large as the execution of the whole program. Thb&g focuses on large-
scale behavior: the locality and reference affinity modéksracterize whole-program
behavior; phase analysis explores recurring and predéctabgram segments, which
often span millions or billions of dynamic instructions aar@ not constrained by either

program code structures or a fixed window size.



There are three reasons for focusing on large-scale behakicst, it has more
significant influence on the whole-program execution thae-fjrain behavior. Sec-
ond, it is not as sensitive to the randomness of the runningament as small-scale
behavior, thus more regularity and better predicabilitgstbut not least, large gran-
ularity allows more sophisticated dynamic optimizationarks to better tolerance of

overhead.

1.2 New Challenges to Programming Systems

The mismatch among program behavior components, such asiamiayout with
temporally close data being spatially far or a paralleliea@pplication sequentially run-
ning on a parallel machine, usually causes program slowdawioomputing resource
under-utilized. It is the task of programming systems todenstand” a program, cap-
turing behavior patterns and modeling the relations amaigbior components, and

then transform the program for a better match.

Prior programming systems fall into four categories, gysteelying orstatic anal-
ysis offline profiling run-time analysisor hybrid approachesStatic program analysis
focuses on program code and has no knowledge of program moming environment
and thus run-time behavior. The analysis is therefore gcuasee, capturing only some
static properties [Allen and Kennedy, 2001; Cooper and Torc2004]. Techniques
of offline profiling run a program with some training input aadalyze that partic-
ular run to optimize the program (e.g. [Thabit, 1981]). Mamyds of behavior are
input-sensitive, making the patterns learned from theningi run unfit for other runs.
Run-time analysis, conducted during a program’s execui®@ple to measure the
most accurate run-time behavior, but cannot afford intenanalysis and large-scale
transformations. There are some hybrid systems (e.qg. {@&tazl., 1999a; Voss and

Eigenmann, 2001]), using compiler or offline-profiling aysa$ to pre-plan for more



efficient run-time optimizations. But due to the lack of lasgmale behavior models,

those techniques are limited in granularity and effeciagn

The recent hardware and software trends exasperate treultiéfs. In 1965, Intel
co-founder Gordon Moore made the prediction, popularlywkmas Moore’s Law, that
the number of transistors on a chip doubles about every twosyeProcessor manu-
factures have been following Moore’s law and keeping silicategration in the last
decades. However, the power leakage becomes a seriousmrablgate oxide layers
are becoming only several atoms thick. The power consumptio heat problem make
higher frequency very difficult, forcing processor mantifiaes to change their direc-
tion from increasing clock frequency to increasing conency. Technology trends
also show that global on-chip wire delays are growing sigaiftly, eventually increas-
ing cross-chip communication latencies to tens of cyclab ramdering the expected
chip area reachable in a single cycle to be less than 1% in@ $&chnology [Keckler
et al., 2003]. In the future, computers will therefore beipgad with more cores per
chip rather than faster processors. The different intra- iatel-chip wire delays re-
quire different granularities of concurrency, which raitliee urgency for programming
systems to better understand programs and capture belpatierns (e.g. locality and

concurrency) of different scales.

Another trend in hardware is more flexibility. To save enetpe voltage is be-
coming scalable [Burd and Brodersen, 1995] and cache systenigeaoming recon-
figurable [Balasubramonian et al., 2000b]. Guiding thosemégurations is critical
to effectively exploit the flexibility, which again reliesmmahe accurate prediction of

program large-scale behavior.

On the other hand, modern software is becoming more diffiouétnalyze. Pro-
grams are becoming more complex and increasingly compdsamties from libraries
and third parties; programmers are embracing high-lev@gadoriented languages
such as Java and C# due to their software engineering benéfiese programs use

small methods, dynamic class binding, heavy memory allmeashort-lived objects,



and pointer data structures, and thus obscure paralldisaljty, and control flow, in
direct conflict with hardware trends [McKinley, 2004]. Fuetmore, those programs
run on a multi-layered environment composed of interpsgt@rtual machines, oper-

ating systems and hardware.

The opposite trends of software and hardware implies isamgaurgencies and

challenges for programming systems to better match behewmponents.

This thesis presents behavior-based program analysistersgtically model and
predict the effects of various components on program laggde behavior. It demon-

strates the effectiveness in program adaptation and atitopzaallelization.

1.3 Behavior-Based Program Analysis

Behavior-based program analysis focuses on dynamic cotepmiavior and builds
statistical models to link large-scale program behavidhws code, data organization,
input and execution environment. It bridges static analygrofiling-based analysis
and runtime analysis, providing a new way to capture laggesprogram dynamic
behavior patterns. My research focuses on program memdwgvimr because of the
widening speedup gap between CPU and DRAM as shown in FigurfHgrinessy
and Patterson, 2003]. The gap results in a severe perfoartzotteneck in modern
computers. This thesis starts from the exploration of @ogaverage behavior to dy-
namic behavior, spanning offline program optimizations a8 as runtime adaptation

and automatic parallelization.
Data Locality

Locality or data reuse determines the effectiveness ofiegchn important factor
on system performance, cost, and energy usage, especaltigvacache designs are
adding more levels and dynamic reconfiguration. My resestianfts from modeling the
connection between program input amdole-program localitydefined as the distribu-

tion of data reuse distance in a program execution. Theglpessents a mixture model
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Figure 1.1: The speedup curves of CPU and DRAM from 1980 to 280@/ed by J.
Hennessy and D. Goldberg.

with regression analysis to predict whole-program logdbt all inputs. The new ap-
proach is distinguished from previous work in two aspecistRhe model relaxes the
“pure model per group” assumption by allowing mixed datasegpatterns. That makes
small inputs enough for locality analysis and consequamwtliyices the majority of the
training overhead. Second, regression analysis impracgity prediction accuracy
by taking advantage of more than two training inputs. Compéogrevious methods,
the new locality prediction reduces about half of the preaicerror, removes 95% of
space cost, and uses much smaller inputs and faster dagatowil [Shen et al., 2003].
The locality analysis has been used to generate a paramseteniodel of program cache
behavior. Given a cache size and associativity, the mo&eligis the miss rate for an
arbitrary data input. It also identifies critical data ingi#es where cache behavior ex-
hibits marked changes. Experiments show this techniquetisna2% of the hit rates
for set associative caches on a set of floating-point angéntprograms using array-
and pointer-based data structures [Zhong et al., To app@dng miss rate error can be
larger especially for low miss rates.) The model enablesebenderstanding of pro-
gram cache behavior, helps machine and benchmark desjasaists reconfigurable

memory systems.



Reference Affinity

While the memory of most machines is organized as a hierapchgram data are
laid out in a uniform address space. Data reorganizationtisal for improving cache
spatial locality and thus memory bandwidth. Array regrogpifor example, combines
arrays that are often accessed together into a structurg sorthat a single cache load
operation can load the elements from multiple arrays region the same cache line
after regrouping. We have proposeglierence affinitythe first trace-based model of
hierarchical data locality, and a distance-based affimglysis, which finds array and
structure field organization (among an exponential numbehoices) that is consis-
tently better than the layout given by the programmer, ctenpor statistical cluster-
ing [Zhong et al., 2004]. To make the affinity model practicalgeneral-purpose com-
pilers, this thesis proposes a lightweight affinity modeddzhon static interprocedure
analysis. The prototype has been implemented in the IBM C/CH#&RTRAN pro-
duction compiler. Both techniques lead to significant penfmnce improvements, up to
96% (on average 30%) speedup of a set of SPEC 2000 floatimgfmmchmarks [Shen
et al., 2005].

The second part of the thesis focuses on dynamic memory loehzatterns for

online program adaptation and parallelization.
Behavior Phases

While whole-program models give the average behavior, cagaech in program
phases goes one step further to model and predict dynamavioelchanges at run
time. We use multiple training runs to statistically idéntiarge-scale behavior pat-
terns, which we calbehavior phasesand exploits phases to guide online program
adaptation to improve cache performance, better memoragemnent, and increase

parallelism.

Many programs, e.g. scientific simulation programs, hawg loontinuous phases
of execution that have dynamic but predictable localitystipport phased-based mem-

ory adaptation (e.g. reorganizing data for different pepdais thesis presents a novel



technique which applies signal processing technique, awansform, to identify
phases from billions of data accesses. Frequency-baseé piarking is then used to
insert code markers that mark phases in all executions girtigram. Phase hierarchy
construction identifies the structure of all phases thragrgimmar compression. With
phase markers inserted, the run-time system uses the firséXecutions of a phase
to predict all its later executions. The technique showsotiffeness in guiding cache
resizing in reconfigurable systems, where the cache sizbeadjusted for energy and
performance, and memory remapping, where data can be renegaat phase bound-
aries [Shen et al., 2004b,c].

Outside the realm of scientific computing, many programshsas programming
tools, server applications, databases, and interpreterduce (nearly) identical service
to a sequence of requests. Those programs typically usemdydata and control struc-
tures and reveal different behavior for different requestsich can easily hide those
aspects of behavior that are uniform across inputs and ndkBdult or impossible for
current analysis to predict run-time behavior. We call thpsogramautility programs
The repetitive behavior of utility programs, while oftereat to users, has been diffi-
cult to capture automatically. This thesis proposeactive profilingtechnique, which
exploits controlled inputs to trigger regular behavior d@hen recognizes and inserts
common phase markers through profiling runs on normal inf@gsause users control
the selection of regular inputs, active profiling can alsaubed to build specialized
versions of utility programs for different purposes, briegkaway from the traditional
“one-binary-fits-all” program model. Experiments with firglities from SPEC bench-
mark suites show that phase behavior is surprisingly ptallie in many (though not
all) cases. This predictability can in turn be used for lvattiemory management in-
cluding preventive garbage collection (to invoke garbagkection at phase boundaries
which usually correspond to memory-usage boundaries),anemsage monitoring (to
better predict memory usage trend through monitoring as@haundaries), and mem-

ory leak detection (to detect potential memory leaks bytifigng phase-local objects),



leading in several cases to multi-fold improvements in@anence [Shen et al., 2004a;
Ding et al., 2005; Zhang et al., 2006].

Behavior-Oriented Parallelization

Adaptive profiling also suggests the possibility of autamabarse-grain paral-
lelization, a special kind of program adaptation. Many paogs have high-level paral-
lelism that users understand well at the behavioral levehniples include a file com-
pressor compressing a set of files, a natural language gaasgng many sentences,
and other utility programs. These programs are widely usddraportant to parallelize

as desktop and workstations are increasingly equippedohithmulti-processors.

High-level parallelization of utility programs is difficufor traditional compiler
analysis as the large parallelization region may span mamgtions with complicated
control-flow and dynamic data accesses. Furthermore, tiadlgdesm is often dynamic
and input dependent: depending on the input, there may hepaurtial, or no paral-

lelism in an execution.

This thesis presents behavior-oriented parallelizat®@F), which is adaptive to
program inputs and run-time behavior, but relies on no gpéardware. It has three
components. The first is training-based behavior analygis;h identifies the recur-
ring phases in a utility program, measures the parallelistargg phase instances, and
analyzes the control flow and data structures for possibilpization. The second is
behavior speculation, which transforms the program sodtslatively executes later
phase instances, checks the correctness, jumps forwapgdukation succeeds, but
cancels the effects if speculation fails. Finally, whilaiting-based analysis identifies
likely behavior, a behavior support system ensures coargtefficient execution for all
behavior. Experiments on two commonly used open-sourckcagipns demonstrate

as much as 78% speedup on a dual-CPU machine [Shen and Diraj, 200
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1.4 Dissertation Organization

The dissertation is organized as follows. Chapter 2 focus@gwole-program local-
ity prediction. It presents a regression model to predicbledprogram locality across
inputs. Chapter 3 discusses the reference affinity model amgbpes a lightweight
affinity analysis to determine data affinity groups and imverprogram locality. Both
chapters are devoted to the average behavior of a wholegimdChapter 4 starts the
study of program behavior phases by presenting a waveletftran based analysis to
detect and predict large-scale program phase behavior. t&€hagxtends the phase
analysis to input-sensitive utility programs througheerofiling. Chapter 6 focuses
on a framework to (semi-)automatically parallelize complgeger programs through
the support of a modified C compiler, offline profiling, and atimne system. Chapter 7

summarizes the contributions and discusses possiblestaten
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2 Data Locality

Locality is critical for amortizing the memory bottleneckealto the increasing CPU-
memory speed gap. As a locality metric, the distance of daiaes has been used
in designing compiler, architecture, and file systems. Datese behavior is input-
sensitive: two executions with different input often havgn#icantly different data
reuse patterns. To better understand locality across gmogrputs, Ding and Zhong
proposed a method to build linear model using two trainingsrwhich for the first
time enables the prediction of reuse distance histogramheaxecution on an arbitrary
input [Ding and Zhong, 2003]. This chapter discusses thienigcie and presents a set
of new methods with two extensions. First is the regressimalyasis on more than
two training inputs. Second is a multi-model technique tluce prediction errors due
to small training inputs or coarse-grain data collectiorhe Thew locality prediction
improves accuracy for 50%, removes 95% of space cost, aschuseh smaller inputs

and thus much faster data collection in model training.

2.1 Introduction

Caching is widely used in many computer programs and systentscache per-
formance increasingly determines system speed, cost,rerdyeusage. The effect of

caching is determined by the locality of the memory accessowbgram. As new cache
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designs are adding more cache levels and dynamic recortfgusghemes, cache per-

formance increasingly depends on the ability to predicgpam locality.

Many programs have predictable data-access patterns. gateens change from
one input to another, for example, a finite-element anafgsigifferent size terrains and
a Fourier transformation for different length signals. ®opatterns are constant, for
example, a chess program looking ahead a finite number of sraawé a compression

tool operating over a constant-size window.

The past work provides mainly three ways of locality analyby a compiler, which
analyzes loop nests but is not as effective for dynamic obfiow and data indirec-
tion; by a profiler, which analyzes a program for select isguit does not predict its
behavior change in other inputs; or by run-time analysisciwicannot afford to ana-
lyze every access to every data. The inquiry continues faedigtion scheme that is

efficient, accurate, and applicable to general-purposgrams.

Ding and Zhong [Ding and Zhong, 2003] presents a method fmlity prediction
across program inputs, using a concept calledr¢luse distanceln a sequential ex-
ecution, thereuse distanceof a data access is the numberd$tinct data elements
accessed between this and the previous access of the saanét tathe same asRU

stack distanc@roposed by Mattson et al. [Mattson et al., 1970].

Ding and Zhong describe three properties of the reuse distdrat are critical for
predicting program locality across different executiohg @rogram. First, the reuse
distance is at most a linear function of the program data 3ike search space is much
smaller for pattern recognition and prediction. Second,rtuse distance reveals in-
variance in program behavior. Most control flow perturbsyatiort access sequences
but not the cumulative distance over a large amount of datanglreuse distances
suggest important data and signal major phases of a prodramally, reuse distance
allows direct comparison of data behavior in different peog runs. Different exe-
cutions of a program may allocate different data or allotlagesame data at different

locations. They may go through different paths. Distanaseld correlation does not
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require two executions to have the same data or to execusathe functions. There-
fore, it can identify consistent patterns in the presenagyofimic data allocation and

input-dependent control flows [Ding and Zhong, 2003].

Ding and Zhong show that the histogram of reuse distance caledreuse signa-
ture, of many programs has a consistent pattern across differpuats. The pattern is
a parameterized formula that for a given program input,edpots the reuse signature

for the corresponding execution.

However, their pattern analysis has two limitations. Fitsises only two training
runs and therefore may be misled by noises from specific ¢éoesu Second, the
accuracy is limited by the precision of data collection. &&te prediction requires
large size program inputs and fine-grained reuse distarstegnams. The space and
time cost of the analysis is consequently high, which makesanalysis slower and
prohibits simultaneous analysis of different patternsef@mple, patterns of individual

data elements.

This chapter presents a new set of techniques that overdwse limitations in two
ways. First, we use regression to extract signature pattesm more than two training

runs. Second, we employ multi-models.

2.1.1 Basic Prediction Method

This section describes the basic locality prediction appincand the main factors

affecting the prediction accuracy.

Given an input to a program, we measure the locality of thewken by the his-
togram of the distance of all data reuses also cattede distance histogramr reuse
signature(see Section 2.2 for formal definitions). The predictionimoeitby Ding and
Zhong uses a training step to construct a pattern by runmwogdifferent inputs of a
program. Lets ands be the sizes of the two input data. For each of the reuse distan

histogram, the analysis forms 1000 groups by assigning @fl&4 memory accesses
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to each group, starting from the shortest reuse distandeettatgest. We denote the
two sets of 1000 groups d§1, g2, -+ , g1000) @nd (g1, ga, - - - , Giooo) @nd denote the
average reuse distancesgfand g, by rd; andrd; respectively { = 1,2, --,1000.)
Based onrd; andrd;, the analysis classifies grou@s a constant, linear, or sub-linear
pattern. Group has a constant pattern if its average reuse distance s&gathe in

the two runs, i.erd; = rd;. Groupi has a linear pattern if the average distance changes
linearly with the change in program input size, |<:€f;— = ¢+ k3, wherec andk are
both constant parameters. Ding and Zhong measured the fsimpub data through
distance-based sampling [Ding and Zhong, 2003]. We usedaime sampling method

in this work.

After the training step, the reuse signature for anotheutimgan be predicted by
calculating the new distance for each group according tpatgern. Interested reader
can find a more detail discussion of this process in Ding ar@hgls paper [Ding and
Zhong, 2003]. Figure 2.1 shows the flow diagram of their prééain method. We will

explain the different types of histograms in Section 2.2.

Note that not all programs have a consistent pattern, analhpatterns are pre-
dictable. However, Ding and Zhong showed that their mettaodfimd predictable pat-
terns in a wide range of large, complex programs. The godlisfvtork is to improve

the analysis accuracy and efficiency for programs that haredictable pattern.

2.1.2 Factors Affecting Prediction Accuracy

Three factors strongly affect the prediction accuracy:nimaber of training inputs,
the precision of data collection, and the complexity of @ais. The number of training
inputs needs to be at least two, although using more inpuysath@w more precise
recognition of common patterns. The precision of data cobe is determined by
the number of groups. Since each group is represented byetage reuse distance,

the more groups the analysis uses, the more precise thedstgece information is.
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Patterns
RD-Histogram 2 RF-Histogram 2_, |
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'

New RF-Histogram
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Figure 2.1: The flow diagram of Ding and Zhong’s predictiontimoel, which uses
only two training inputs. A RD-Histogram is a reuse-distahtgogram, and a RF-
Histogram is a reference histogram. Sample size is the adnnput data size by
sampling.

However, using more groups leads to slower pattern readogréind prediction since
the space and time costs are proportional to the number apgroThe third factor
is the complexity of patterns in each group. If we assumetti@entire group has a
single pattern, the analysis issmngle-modeprediction. If we assume that the group

may consist of different subgroups that each may have aé€iftgattern, the analysis

is amulti-modelprediction.

Single-model prediction has two limitations. First, thewaacy of the prediction
is strictly limited by the precision of data collection,.i.¢he number of groups. A
large group tends to include subgroups with different pagtewhich breaks the single-
model assumption and causes low prediction accuracy. 8et@mning runs need to

have a sufficient size so that the range of reuse distancefferedt patterns can be
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well separated. The larger the input data size is, the mkedyldifferent patterns is
separated. If the distances of two patterns are similay,fdieinto the same group, and
the prediction cannot tear them apart. Because of the nedardertraining inputs and
number of groups, single-model prediction usually incularge time and space cost.
Multi-model prediction, however, may overcome these twotktions by allowing sub-

portions of a group to have a different pattern.

Our extension to their method has three contributions. Theidéi single-model pre-
diction using more than two training runs. The next is a seholti-model prediction
methods using different types of reuse distance histogrameduces the space cost
from O(M) to O(logM ), whereM is the size of program data. The last is a strategy

for choosing the appropriate histograms based on andlginchexperimental results.

The rest of the chapter is organized as follows. Section @sZribes the types of
histograms used in our prediction. Section 2.3 and 2.4 destne new regression-
based multi-model methods. Followed are the experimentteeand discussions. Sec-
tion 2.7 discusses related work. Section 2.8 speculatepdbsible extensions, and

Section 2.9 summarizes our findings.

2.2 Terminology

This section explains the two types of histograms and relegans used in later

discussions.

e A Reuse-distance Histogram (RD-Histogram):the X-axis is reuse-distance
ranges, and the Y-axis is the percentage of data accessashmiistance range.
The size of distance ranges can be in linear scale, €@.1k),[1k,2k),
2k, 3k),-- -, or log scale, e.g.[0, 1k), [1k, 2k), [2k, 4k), [4k,8k), - - -, or mixed
linear andog scales. Figure 2.2(a) shows the reuse-distance histograi m

log scale ranges.
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Figure 2.2: Reuse-distance histogramS#fwith input of size283. (a) distance his-
togram (b) reference histogram

e A Reference Histogram (RF-Histogram): the X-axis is the groups of data ac-
cesses, sorted by the average reuse distance. The Y-akis &/¢rage reuse
distance of each partition. Figure 2.2(b) is the referenstwgram ofSP for a
partition of 100 groups. A reference histogram can be vieagd special type
of reuse-distance histogram whose distance ranges haveniimnm lengths so

that each range holds the same number of program data ascesse

Reference histogram provides a trade-off between infoomdtiss and computa-
tion/space efficiency. For dense regions in the reuse distaistogram, where a large
portion of memory accesses have similar reuse distancesefiirence histogram uses
short range to increase accuracy. For sparse regions iadke distance histogram, the

reference histogram uses large ranges to reduce the totddarwof ranges.

2.3 Single-Model Multi-Input Prediction

Using more than two training inputs may reduce two kinds o$@® and thus im-
prove prediction accuracy. One kind of noise is brought lrtuse distance measure-

ment. Ding and Zhong used approximation to trade accuracgfficiency [Ding and
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Zhong, 2003]. The approximation brings errors to the reustuwce histogram. The
second kind of noise is the estimated data size from sampAligough distance-based
sampling [Ding and Zhong, 2003] finds a size reflecting the efza program input, the

sampled size is not always accurate. These noises reduaedineacy of the prediction.

According to the regression theory, more data can reduceftiet of noises and
reveal a pattern closer to the real pattern [Rawlings, 1988tordingly, we apply a
regression method on more than two training inputs. Thensxte is straightforward.

For each input, we have an equation as follows.

di = c; +e; * fi(s) (2.1)

whered; is the average reuse distance ¢freference group when the input sizesjs;
ande; are two parameters to be determined by the prediction me#raty/; is one of

the following functions ofs:

Given the histograms of two training runs, Ding and Zhongld@olve a linear
equation, determine the two unknowns for each group, amiledé the reuse distance
histogram for a new input given its input size. Using twornag inputs is sufficient

because there are only two unknowns in each model (Equatign 2

While the previous method has two equations, we have moretthamrquations
because of more training inputs. We usast square regressigfiRawlings, 1988] to
determine the best values for the two unknowns. We use 3 tairirtg inputs in our
experiment. Although more training data can lead to beé#sults, they also lengthen
the profiling process. We will show that a small number ofriirag inputs is sufficient

to gain high prediction accuracy.
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2.4 Multi-Model Prediction

A multi-model method assumes that memory accesses in a gesuipave different
models. For example in a histogram, a bar (group) may cobiatim a constant model

and a linear model.

Figure 2.3 gives a graphical illustration of the multi-mbpgeediction. We arbitrar-
ily pick one of the training inputs as tletandard input In this examplesg, is the size
of the standard input (the other training inputs are not sbim the figure.) Its reuse
distance histogram, callesfandard histogramhas 12 groups, and each group consists
of two models—constant and linear models. Together, thay the histogram of,.
Using regression technique on all training histograms sthedard histogram in Fig-
ure 2.3(a) is decomposed into constant and linear modelgunrd=-2.3(b) and (c). The
decomposition process is described below. For predicti@ntwo histograms become
Figure 2.3(d) and (e) respectively according to the size@htew inpuB * s,. Constant
histogram keeps unchanged, and the distance of each dataanlistogram increases
to 8 times long. The X-axis is ifvg scale, so each bar in linear histogram moves 3
ranges right-toward. The reuse distance histogram foreeimput is the combination

of the new constant and linear histograms, see Figure 2.3(f)

Formally, the reuse distance function of a group is as falow

hl(S) = Pmy (S’ Z) + 90m2(8, Z) oot Omy (Svi) (2.2)

where,s is the size of input data,;(s) is the Y-axis value of thé¢/ bar/group for input

of sizes, andy,,, ..., are the functions corresponding to all possible models.

Eachh;(s) can be represented as a linear combination of all the pessibtlels of

the standard histogram:

@m1(507 1)7 Pmy (807 2)a e 7§0m1(807 G)a Pmo (SOa ]-)a @mz(SOa 2)7 oy Pmg (SOa G)7
s Pmy (507 1)7 Pm; (307 2)7 T Pmy (507 G)
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where,G is number of groups in standard histogram.

For example, a program has both constant and linear patfeongasy description,

we assume the following ranges.
range 0: [0,1); range 1: [1,2); range 2: [2,4); range 3: [4,8)

For another input of size; = 3 * sy, we calculate the Y-axis value of range38)

as follows:

h3(31) = 900(807 3) + ¢1<SU7T)

where, r is range(s, $). This is because the constant model of rafge) in the
standard histogram gives entire contribution, and thelineodel ofi3(s;) comes from
the linear portions in rangé, §) of standard histogramp; (s, r) can be calculated as

follows:

©1(50,7) = @1(50,71) + ©1(50,72)

where,r; = [3,2) andr, = (2, 3).

We assume the reuse distance has uniform distribution imeexge. Thus,

901(8077’1) = (2;1{3)901(50, 1) = %@1(807 1)
1
3

1(s0,72) = (4252)01(50,2) =

Finally, we calculaté:;(s;) as follows:
hs(s1) = @o(s0.3) + 3¢1(s0, 1) + 5¢1(s0,2)

After we represent eadh(s) of all training inputs in the above manner, we obtain an
equation group. The unknown variables are the models intmelard histogram. The
equations correspond to the groups in all training histograRegression techniques
can solve the equation group. This completes the deconopitocess and also com-

pletes the construction of reuse distance predictor. Qupnediction process, for any



21

input, each of its reuse distance group can be calculatedliasaa combination of
standard histogram models in the same manner as in decdropgsiocess. Then, its

reuse distance histogram can be obtained by the combiratihthe groups.

One important assumption is that the percentage of memaogsaes in each model
remains unchanged for different inputs. There is no guagltitat this is the case,
although Ding and Zhong showed that it is an acceptable gasumfor a range of

programs including those used in this work.

A multi-model method does not depend on the type of histogrdincan use dis-
tance histograms witkvg or linear size groups. It can also use reference histograms.

The equations are constructed and solved in the same manner.

We now describe three methods of multi-model predictioreyTthffer by the type
of reuse distance histograms. The first two methods use dests@éce histograms with
log andlog-linear scale ranges respectively. The first 13 ranges itididinear scale
is in log scale (power-of-two) and the rest have length 2048. Theqaapf thelog
part is to distinguish groups with short reuse distancese Jpface and time cost of
the second method i©(M), where M is the size of program data in training runs.
The space and time cost of the first metho®igog M ), which saves significant space
and time because it has much fewer equations and variabtege\ér, the linear scale
has higher precision, which can produce better resultcedpevhen using small size

training runs.

The third multi-model method uses a reference histogramexXample, with 1000
groups. Unlike the first two methods, in this method, the neimdf equations and
variables is the same as the number of groups. We can chocsditiary number.
This provides freedom but also raises a problem: how to ahttos best number of
groups. In fact, the last method represents as many metisoilee anaximal number
of groups, which igD(NV), whereN is the number of memory accesses in the smallest
training run. We will see in the evaluation section that thedction accuracy depends

heavily on the choice of groups.
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Figure 2.3: An example for multi-model reuse signature otexh. Figure (a) is the
reuse distance histogram of the execution on standard kpuBy using regression
technique on all training histograms, the standard histogis decomposed into two
histograms—constant and linear histograms in Figure (@)&n During the prediction
process, the two histograms become Figure (d) and (e) regglg@ccording to the size
of the new inpuB * so. The constant histogram remains unchanged, and the désténc
each data in a linear histogram increases to 8 times longX¥nds is inlog scale, so
each bar of linear pattern moves 3 ranges right-toward. €hse distance histogram
for the new input is the combination of the new constant amedr histograms, showed
in Figure (f).

2.5 Evaluation

2.5.1 Experimental Setup

We compare five prediction methods: the single-model tvpadirmethod given by
Ding and Zhong, the single-model multi-input regressiosatéed in Section 2.3, and

the three multi-model methods described in Section 2.4. ribki-input methods use
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Table 2.1: Benchmarks for locality prediction

| Benchmark| Description | Suite |
Applu solution of five coupled nonlinear PDE’s Spec2K
SP computational fluid dynamics (CFD) simulation NAS
FFT fast Fourier transformation
Tomcatv vectorized mesh generation Spec95
GCC based on the GNU C compiler version 2.5.3 Spec95
Swim finite difference approximations for shallow water equatioSpec95

3 to 6 training inputs. We measure accuracy by comparing thdigted histogram
with the measured histogram for a test input. The definitibaczuracy is the same
as Ding and Zhong’s [Ding and Zhong, 2003]. Letandy; be the size ofth groups
in the predicted and measured histograms. The cumulatiferehce,F, is the sum
of | y; — z; | for all i. The accuracyl is (1 — £/2), which intuitively is the overlap

between the two histograms.

Table 2.1 lists the names of six test programs, their detsonig, and the sources.
Table 2.2 and Figure 2.4 show the accuracy of the five appesach six benchmarks
when training and testing inputs are large. In the table, XMmputs Num.” is the
maximal number of inputs among all the five methods for eacichmark. In our
experiment, for each benchmark, the size of the biggestitiguinput is the same for

all five methods. This is to make the comparison fair.

2.5.2 Results on Large Inputs

Using a large input has two benefits. First, different modtdy separated from
each other. For example, suppose constant and linear mool&sist in a range
when the input size isy. For a larger input whose size 1824 x s, the linear model
will move far out of range-, but constant model remains unchanged. Thus, there will
not be an overlap of models. The separation of models is itapbfor the two single-

model methods since they assume that only one model exiséemrange. The second
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Figure 2.4: Locality prediction accuracy bar graph.

benefit is that the percentage of individual models is mdeelyli to remain constant
when the input size is large. This is required by both simgteel and multi-model

based methods.

Table 2.2: Comparison of prediction accuracy by five methods

Bench- Single Model Multi-model Max.
mark 2 inputs | >2 inputs| Log log-Linear | Fixed Inputs
RF-Hist. | RF-Hist. | RD-Hist. | RD-Hist. | RF-Hist. | Numx
Applu 70.49 97.40 93.65 93.90 90.83 6
SP 91.08 96.69 94.20 94.37 90.02 5
FFT 73.28 93.30 93.22 93.34 95.26 3
Tomcatv| 92.32 94.38 94.70 96.69 88.89 5
GCC 98.50 97.95 98.83 98.91 93.34 4
SWIM | 93.89 94.05 84.67 92.20 72.84 5
Average | 86.59 95.63 93.21 94.90 88.53 4.7

The first column of Table 2.2 gives the results of Ding and Zf®method. Other
columns show the accuracy of the new methods. All methodbased on histograms

given by the same reuse-distance analyzer and the inpstgizn by the same distance-



25

based sampler. The numbers of the first column is slightliediht from Ding and
Zhong'’s paper [Ding and Zhong, 2003], because they usedexretit reuse-distance
analyzer than we do. Different analyzers lose precisiotightty different ways. The
sampled input size is also slightly different because «f.thirom Table 2.2, we make

the following observations:

For most programs, all four new approaches produce betseitsethan Ding
and Zhong’s method. Therefore, regression on multipletsipdeed improves

prediction accuracy.

e Except forSWIM multi-model logarithmic scale method is comparable to the
best predictors, although it uses 95% less storage spacesnamalysis. It is the

most efficient among all methods.

e The performance of multi-model log-linear scale methodightly better than
multi-model logarithmic scale method for the first four blemarks and much
better forSWIM However, log-linear scale costs more than 20 times in spade

computations than logarithmic scale for most programs.

e The multi-model method based on reference histograms datpes single-model
two-input method for two out of six programs. It gives thehegt accuracy for
FFT. As we explained in Section 2.4, this approach is very flex#aid its per-
formance depends heavily on the number of groups. In ourewpat, we tried 7
different numbers of groups for each benchmark and pregénéehighest accu-
racy, but finding the maximal accuracy requires trying tlamas of choices. The
result for FF'T shows the potential of this method, but the overhead of fopdin

the best result is prohibitively high.

SWIMis a special program. The multi-model logarithmic scale @ result for
SWIM but multi-model log-linear scale and single-model methgive very accurate

predictions. Figure 2.5 shows the reuse distance histogf&WwIM Note it has a high
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Figure 2.5: The reuse distance histogram curv8\&4iM

peak in a very small reuse distance range. Multi-model ittyaic scale use&yg scale
ranges. It assumes that the reuse distance is evenly distlilin each range, which
brings significant noise for the analysis 8WIM Log-linear scale methods alleviate

the problem because their histograms are much more precise.

2.5.3 Results on Small Inputs

As we explained at the beginning of Section 2.5.2, diffepgatterns may overlap
with each other when the input size is small. In this caseylstimodel methods are
not expected to perform well, while multi-model methodsddonork as well as in
large input sizes. But these methods still require that thegmeage of each model
keeps unchanged for different input for each reuse disteamoge. Table 2.3 shows
the performance of the four methods on small size inputS®foenchmark (We do
not show the results of the multi-model method using refesemstograms because
it is difficult to tune). The results show that multi-modebtinear scale method is
significantly more accurate than other methods. The goodracg shows that the

percentage of each model remains unchanged even for sipatkinThe performance
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of multi-model logarithmic scale method is worse than thg-lioear scale method
because of the low precision in logarithmic scale histogradlthough multi-model
log-linear scale method needs more computation and more gpan the logarithmic

scale method, this cost is less an issue for small-sizesnput

Table 2.3: Accuracy fo6 P with small-size inputs

largest testing| single-model| single-model| multi-model | multi-model
training | input | 2 inputs >2 inputs log scale log-linear
input size| size scale
83 103 79.61 79.61 85.92 89.5
123 79.72 75.93 79.35 82.84
143 69.62 71.12 74.12 85.14
283 64.38 68.03 76.46 80.3
103 123 91.25 87.09 84.58 90.44
143 81.91 83.20 78.52 87.23
163 77.28 77.64 76.01 84.61
163 283 75.93 74.11 77.86 83.50

2.5.4 Comparison
We compare the five methods in Table 2.4, which uses the foltpwotations:

SM-2 Ding and Zhong's original method

SM-m Extended version of SM-2 on multiple inputs
MMLg: Multi-modellog scale method

MMLn: Multi-model log-linear scale method

MMRF. Multi-model on reference histogram
A comparison of the four new approaches is as follows.

e SM-mand MMRF are based on reference histograms wMlklLg and MMLn
are based on reuse distance histograms. TMiH,.g andMMLn do not need to

transform between the two histograms BlMi-mandMMRF do.
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Table 2.4: Features of various reuse distance predictiaghade

Approach | SM-2 SM-m MMLg | MMLn MMRF
Input No. | 2 >2 >2 >2 >2
Model No.

per Range | 1 1 >1 >1 >1
Histogram | Ref. Ref. Dist. Dist. Ref.
Granularity | log-linear | log-linear | log log-linear | log-linear

¢ MMLg saves 20 times in space and computation compar&iktanandMMLn.
MMRF can also save cost because it can freely select the numbesugisy but

it is hard to pick the right number.

e MMLgloses information because it assumes a uniform distribunitarge ranges.
That hurts the prediction accuracy for programs liké / M, which has a high
peak in a very small range. In that caS&/-mandMMLn produce much better

results because they use shorter ranges.

e MMLn predicts with higher accuracy th&M-mdoes if multiple models over-
lap. Overlapping often happens for inputs of small sizewbich MMLg cannot

perform well because of its loss of information.

Summary The experiments show that regression on more than two rigimputs
gives significant improvement compared to the method uswegriputs. Single-model
multi-input, and multi-model logarithmic and log-linearate methods produce compa-
rable results for most programs when the input size is largeir overall performance
is the best among all five approaches. The multi-model metisath reference his-
tograms method is flexible but hard to control. Multi-modgglinear scale method
can produce better results than multi-model logarithmatesmethod. But the former
needs over 20 times of more space and time than the lattethemerformance is not
significantly different in most programs when the input s&karge. For input of small

size, the log-linear scale method is clearly the best amtmgethods.
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2.6 Uses in Cache Performance Prediction

Prior work on cache characterization addresses how to lyugsiplore the planar
space delineated by the size and associativity. Localdgiption across inputs extends
the exploration along the program data set size dimensian é&fficient manner [Zhong

et al., To appear, 2003a].

Percent of references
=
<
S

g L s

Reuse distance (cache block

Figure 2.6: Reuse distance histogram example

Treating each distinct cache block as a basic data elementuse the regression
technique to build the cache reuse distance histogram mdaelan arbitrary input,
the new cache reuse distance histogram can be predictddsisatied by Figure 2.6.
The number of intervening cache blocks between two consecatcesses to a cache
block, along with cache size, determines whether the seaooelss hits or misses in a
fully associative LRU cache. This is the basis for our predicmodel. In Figure 2.6,
the fraction of references to the left of the marlwill hit in a fully associative cache
having capacity of” blocks or greater. For set associative caches, reuse cksiastill
an important hint to cache behavior [Smith, 1978; Beyls anddllander, 2001].

We use the cache simulat@heetah[Sugumar and Abraham, 1991] included in
SimpleScalar 3.0 toolset [Burger and Austin, 1997] to collsache miss statistics.
Cache configurations are fully associative cache, 1-, 2yd-8aways, all having block
size of 32 bytes. Our experiments on 10 benchmarks (from SBEEREC2k, NAS,
and Olden suites) show that the prediction accuracy of chithiates is always higher

than 99% for fully associative caches, and better than 98%dohes of limited as-
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sociativity for all but two programs, excluding compulsorysses. In addition, the
predicted miss rate is either very close or proportionahé&nhiss rate of direct-map or

set-associative cache.

2.7 Related Work

Locality prediction is one example to connect input withgnaam behavior. Adap-
tive algorithms is another one. For example, we proposeddaptie data partition
algorithm, which estimates input data distribution to ioy® load balance among pro-
cessors [Shen and Ding, 2004]. The details are out of theesobghis thesis. The

following discussions are focused on memory behavior aily

2.7.1 Other Research on Reuse Distance

This section discusses the related work in the the measuteind the use of reuse

distance.

Performance modelingReuse distance gives richer information about a programgthan
cache miss rate does. At least four compiler groups haveressé distance for differ-
ent purposes: to study the limit of register reuse [Li etl?196] and cache reuse [Huang
and Shen, 1996; Ding, 2000; Zhong et al., 2002], and to etatha effect of program
transformations [Ding, 2000; Beyls and D’Hollander, 200imaAsi et al., 2002; Zhong
et al., 2002]. For cache performance prediction, besidegmup’s work, Marin and
Mellor-Crummey applied distance-based analysis to memlargks and reported ac-
curate miss-rate prediction across different programtspad cache sizes[Marin and
Mellor-Crummey, 2005, 2004]. Fang et al. [Fang et al., 200942 examined the reuse
pattern per instruction and predicted the miss rate of 90%stfuctions with a 97%
accuracy. They used the prediction tool to identfitical instructions that generate

the most cache misses and extended the distance model toryneiseimbiguation.
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Program transformation Beyls and D’Hollander [Beyls and D’Hollander, 2002] is the
first to show real performance improvement using the reusarmte information. They
used reuse distance profiles to generate cache hints, waliché hardware whether
and which level to place or replace a loaded memory blockaheaTheir method im-
proved the performance of SPEC95 CFP benchmarks by an ave¥aga @n Itanium
processor. The next chapter of this thesis presents a tpehito sub-divide the whole-
program distance pattern in the space of its data. The spatdysis identifies locality
relations among program data. Programs often have a lamgéeof homogeneous
data objects such as molecules in a simulated space or no@esearch tree. Each
object has a set of attributes. In Fortran 77 programspates of an object are stored
separately in arrays. In C programs, the attributes aredttmgether in a structure.
Neither scheme is sensitive to the access pattern of a pnogkdetter way is to group
attributes based on the locality of their access. For aythggransformation is array re-
grouping. For structures, it is structure splitting. Weuged arrays and structure fields
that have a similar reuse signature. The new data layouistently outperformed array
and structure layouts given by the programmer, compilelyarsa frequency profiling,

and statistical clustering on machines from all major veadidhong et al., 2004].

Memory adaptation A recent trend in memory system design is adaptive caching
based on the usage pattern of a running program. Balasubi@menal. [Balasub-
ramonian et al., 2000a] described a system that can dynbdyebange the size, asso-
ciativity, and the number of levels of on-chip cache to inygrgpeed and save energy.
To enable phase-based adaptation, our recent work diviéedistance pattern in time

to identify abrupt reuse-distance changes as phase boesddihe new technique is
shown more effective at identifying long, recurring phases previous methods based
on program code, execution intervals, and manual anal§is et al., 2004b] (see
Chapter 4 for details). For FPGA-based systems, So et al.t[&8q 2002] showed that

a best design can be found by examining only 0.3% of desigoeswih the help of

program information, including the balance between copart and memory transfer
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as defined by Callahan et al [Callahan et al., 1988b]. So etatl agompiler to adjust
program balance in loop nests and to enable software anevherdto-design. While
our analysis cannot change a program to have a particulant®las techniques such
as unroll-and-jam do [Carr and Kennedy, 1994)), it can be @usedeasure memory
balance and support hardware adaptation for programs thatc amenable to loop-

nest analysis.

File caching For software managed cache, Jiang and Zhang [Jiang and ZP@D2]
developed an efficient buffer cache replacement palifyS based on the assumption
that the reuse distance of cache blocks is stable over arcértee period. Zhou et
al. [Zhou et al., 2001] divided the second-level server ednto multiple buffers ded-
icated to blocks of different reuse intervals. The commopregch is partition cache
space into multiple buffers, each holding data of differenise distances. Both studies
showed that reuse distance based management outperfogtesldRU cache and other
frequency-based schemes. Our work will help in two ways. fifseis faster analysis,
which reduces the management cost for large buffers (suskerasr cache), handles
larger traces, and provides faster run-time feedbackss@&bend is predication, which
gives not only the changing pattern but also a quantitatieasure of the regularity

within and between different types of workloads.

2.7.2 Comparison with Program Analysis Techniques

Data reuse analysis can be performed mainly in three waya:daynpiler, by pro-
filing or by run-time sampling. Compiler analysis can moddbd&use behavior for
basic blocks and loop nests. An important tool is dependamedysis. Allen and
Kennedy’s recent book [Allen and Kennedy, 2001] containsraprehensive discus-
sion on this topic. Various types of array sections can nreagata locality in loops
and procedures. Such analysis includes linearization ifgr-tlimensional arrays by

Burke and Cytron [Burke and Cytron, 1986], linear inequalit@sconvex sections by
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Triolet et al. [Triolet et al., 1986], regular sections by l@hbn and Kennedy [Callahan
et al., 1988a], and reference list by Li et al. [Li et al., 1P96lavlak and Kennedy
studied the effect of array section analysis on a wide rarigeagrams [Havlak and
Kennedy, 1991]. Cascaval extended dependence analysisimaesthe distance of
data reuses [Cascaval, 2000]. Other locality analysis deduithe unimodular matrix
model by Wolfe and Lam [Wolf and Lam, 1991], the memory ordgemMcKinley et
al. [McKinley et al., 1996], and a number of recent studieseobon more advanced

models.

Balasundaram et al. presented a performance estimatorratgd@rograms [Bal-
asundaram et al., 1991]. A set of kernel routines includeitiie computations and
common communication patterns are used to train the estim#thile their method
trains for different machines, our scheme trains for défeérdata inputs. Compiler
analysis is not always accurate for programs with inputedelent control flow and dy-
namic data indirection. Many types of profiling analysisé@&een used to study data
access patterns. However, most past work is limited to usisiggle inputs or measur-
ing correlation among a few executions. The focus of thiskweito predict changes

for new data inputs.

Run-time analysis often uses sampling to reduce the overlizgiag and Kennedy
sampled program data [Ding and Kennedy, 1999a], while Atawmid Ryder sampled
program execution [Arnold and Ryder, 2001]. Run-time analgain identify patterns
that are unique to a program input, while training-basediptin cannot. On the other

hand, profiling analysis can analyze all accesses to all data

2.8 Future Directions

Although the models presented in this chapter reduce muehigiton overhead, the

whole process is still hundreds of times slower than theimaigorogram’s execution.
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The bottleneck is the measurement of reuse distance. Itimeraa open question to

improve the measurement efficiency.

Besides locality, some other kinds of behavior are inpusiter also, such as run-
ning time, concurrency granularity, and energy consumptiche accurate estimation
of running time is important for task scheduling. Knowing ttunning time of each
task could help task assignment with better balance; Sdingdsmall tasks before
large ones could improve response time. It is also impoftartiuilding a cost-benefit

model, and thus determining whether a dynamic optimizasamorthwhile.

Computers are providing multi-level concurrencies. Fosdng the parallelism
level of a program is critical for the intelligent utilizat of the extra computing re-
source. For a phase with few concurrencies, it could be wdritk to turn off some
processors for energy savings and turn them on before ayhpginhllel phase. That
requires the prediction of the concurrency in both shortlangd term (e.g. in several

phases) because of the overhead to shut down and restadespon

At the end of the next chapter, we will discuss another futlirection, extending
the locality analysis, together with reference affinitygaeted in the next chapter, to a
wider range of applications, including parallel programd abject-oriented programs

with garbage collections.

2.9 Summary

This chapter presents a novel technique based on regremsadysis for locality
prediction across program inputs. Through the comparistndapproaches, we draw

the following conclusions.

1. Regression significantly improves the accuracy of reustanite prediction, even

with only a few training inputs.
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2. The multi-model method using logarithmic histograms save 95% space and
computations and still keep the best accuracy in most pnegjralthough it is not
as consistent as those methods using log-linear histogriinssa good choice

when efficiency is important.

3. The multi-model method using log-linear scale histograsnthe best for small
input sizes, where different models tend to overlap eacérothis also efficient

because of the small input size.

4. The single-model multi-input method has the highest ey but it cannot ac-
curately model small-size inputs. It is the best choice wbea can tolerate a

high profiling cost.

Reuse distance prediction allows locality analysis andnuiptitions to consider
program inputs other than profiled ones. The techniquesisigd in this work may

also help to solve other prediction problems, such as rgntirime and concurrency.

Reuse signature of the whole program reveals the big pictuiteedocality of the
execution. If we focus on a particular object such as an awaycould get per-object
reuse signature, which turns out to be critical for imprgviata locality as shown in

the next chapter.
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3 Reference Affinity

While the memory of most machines is organized as a hierapchgram data are laid
out in auniform address space. This chapter defines a modefeoeénce affinitywhich
measures how close a group of data are accessed togethesfarence trace. Based
on the model, a profiling-based technigéedistance analysiss briefly described to
demonstrate the finding of the hierarchical data affinitye Téchnique, however, re-
quires detail instrumentation to obtain the reuse sigeabfia profiling run, the high

overhead impeding its adoption in a general compiler.

The main part of this chapter is devoted tbgintweight affinity modelipon an in-
terprocedural analysis. The technique summarizes thessaqagtern of an array by a
frequency vector and then estimates the affinity of two @rnasing their vector dis-
tance. Being context sensitive, the analysis tracks thetexaay accesses. Using
static estimation, the analysis removes all profiling oeadh Implemented in the IBM
FORTRAN compiler to regroup arrays in scientific programs, ltghtweight analysis
achieves similar results @sdistance analysis, and generates data layout consistentl
outperforming the ones given by the programmer, compilatyais, frequency profil-
ing and statistical clustering. It suggests the applidgtof affinity analysis for general

compilers.
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3.1 Introduction

All current PCs and workstations use cache blocks of at leaby&s, making the
utilization an important problem. If only one word is usefmleach cache block, a
cache miss will not serve as a prefetch for other useful datehermore, the program
would waste up to 93% of memory transfer bandwidth and 93%cifie space, causing

even more memory access.

To improve cache utilization we need to group related datia ihe same cache
block. The question is how to define the relation. We beli&a it should meet three
requirements. First, it should be solely based on how d&aecessed. For example
in an access sequencebb..ab”, a andb are related and should be put in the same
cache block, regardless how they are allocated and whétbegate linked by pointers.
Second, the relation must give a unique partition of data. siciem for example the
access sequencebub..ab...bcbe..bc”. Since datar andc are not related; cannot relate
to both of them because it cannot stay in two locations in nrgntanally, the relation
should be a scale. Different memory levels have blocks sémsing sizes, from a cache
block to a memory page. The grouping of “most related” data ihe smallest block
should precede the grouping of “next related” data intodaigocks. In summary, the

relation should give a unique and hierarchical organiradioall program data.

We define such a relation asference affinitywhich measures how close a group
of data are accesséaoletherin an execution. Unlike most other program analysis, we
measure the “togetherness” using ttedume distancehe number of distinct elements
accessed between two memory accesses, also d¢dfedstack distanceNotice the
volume distance is an extensionrefise distancethe latter is a distance between the
accesses to the same data but the former could be betweeocttsses to the differ-
ent data. As a notion of locality, volume distance is boundsen for long-running
programs. The long volume distance often reveals longeaaga access patterns that

may otherwise hide behind complex control flows, indirecadeccess, or variations in
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coding and data allocation. We prove that the new definitisesga unique partition of
program data for each distanteWhen we decrease the valueigthe reference affin-
ity gives a hierarchical decomposition and finds data swaygs with closer affinity,

much in the same way we sharpen the focus by reducing thesraflaicircle.

Chapter 2 shows that threuse signaturethe histogram of reuse distance, has a
consistent pattern across all data inputs even for compbtegrams or regular programs
after complex compiler optimizations. This suggests thattan analyze the reference

affinity of the whole program by looking at its reuse signatufrom training runs.

We presenk-distance analysis, which simplifies the requirementsfefesmce affin-
ity into a set of necessary conditions about reuse sigratdige simplified conditions
can then be checked efficiently for large, complex prograrhe.parameter has anin-
tuitive meaning—elements in the same group are almost alwsgd within a distance
of k£ data elements. The analysis handles sequential prograimasiitrarily complex
control flows, indirect data access, and dynamic memorygaition. The analysis uses

multiple training runs to take into account the variationsed by program inputs.

Reuse-distance profiling, however, carries a high overh@dek slowdown is at
least 10 to 100 times. No production compiler is shipped witbh a costly technique.

No one would before a careful examination whether such adoghis justified.

To solve that problem, we present a lightweight technifp@guency-based affinity
analysis It uses a frequency-based model to group arrays even ifatepot always
accessed together. It uses interprocedural program amabysieasure the access fre-
guency in the presence of array parameters and aliasesll@ct¢be frequency within
a loop or a function, we study two methods. The first is synbalialysis by a com-

piler. The second is lightweight profiling.

The rest of the chapter is organized as follows. Section 8¢&fly presents the
distance-based affinity model and the analysis technidtieaggter 5 and 6 of Zhong’s
thesis have the details [Zhong, 2005].) Section 3.3 desstite frequency-based affin-

ity mode and the analysis method. Section 3.4 introducesldte reorganization tech-
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niques. Secion 3.5 demonstrates the effectiveness offthayafnalysis in helping data
reorganization to improve locality and thus speed up progral he chapter concludes

with the related work and future directions.

3.2 Distance-based Affinity Analysis

3.2.1 Distance-Based Reference Affinity Model

The affinity model is based on several concepts. alldress traceor reference
string is a sequence of accesses to a set of data elements. We esedatth as, y, =
to represent data elements, subscripted symbols such @sto represent accesses to
a particular data element and the array indeX'[a,] to represent the logical time of

the access, on a tracel’.

Volume distancés the number of distinct elements accessed between two ngemo

accesses, also calléfRU stack distance

Based on the volume distance, we defili@ked pathin a trace. It is parameterized
by a distance bounkl. There is a linked path from, to a, (z # y) if and only if there
existt accessesy,,, a,, ..., az,, such that (14is(a,,a,,) < kA dis(ay,,az,) <

kN...ANdis(ay,,a,) < kand (2)zy, zo, ...,z x andy are different data elements.
We now present the formal definition of the reference affinity
Definition 1. Strict Reference Affinity. Given an address trace, a s6tof data ele-

ments is a strict affinity group (i.e. they have the refereaitiaity) with the link length
k if and only if

1. foranyx € G, all its accesses, must have a linked path fron), to somez,, for
each other membey € G, that is, there exist different elements x5, ..., x; €

G such thatdis(a,, a,,) < k Adis(ag,,az,) < kA...ANdis(ay,,a,) <k.

2. adding any other element & will make Condition (1) impossible to hold.
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Three properties have been proved about strict referefficatyagroups [Zhong,
2005]:

¢ Unique partition for a given link length, the data partition is consisterd, each

data element belongs to one and only one affinity group.

e Hierarchical structure an affinity group with a shorter link length is a subset of

an affinity group with a greater link length.

e Bounded distancenvhen one element is accessed, all other elements will be ac-

cessed within a bounded volume distance.

The strict affinity requires that the members of an affinityugy be always accessed
together. On most machines, it is still profitable to groupadhat are almost always

accessed together because the side effect would not otttvesdpenefit.

3.2.2 k-Distance Affinity Analysis

Distance-based affinity analysis is a profiling-based teglento measure the “al-
most strict” reference affinity in complex programs. It agseaffinity groups according
to the similarity of the reuse distance histograms of the sédata in the program.

That's a necessary but not sufficient condition.

Let a reuse histogram havebins after removing short-distance bins. léandY
be the two sets of data, antbg* and Avg!” be the average reuse distance of the two

data sets in théh bin.

B
d= Z|Avgl‘x—Ang—Y| <k-B (3.1)
i=1

The equation ensures that the average reuse distance mkfféia by no more than.
The left-hand side of the inequality is the difference betw& andY known as the

Manhattan distance of the two vectors.
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A reuse distance does not include the exact time of the datsac It is possible
that two elements are accessed in the same reuse distahoaebun the first half of the
execution, and the other in the second half. An improveneett divide the execution

trace into sub-parts and check the condition for each part.

The maximal difference between any two members @fedement affinity group is
no more thar2gk. For each data set, we find all other sets whose average distance
differs no more thamk and letb range froml to 2¢. The solution is the largestsuch
that exactlyb — 1 data sets satisfy the condition. The process must terminiétethe

correct result.

In practice, we use a stricter condition to build a groupeneentally. Initially each
data set is a group. Then we traverse the groups and mergerowpsgif a member
in one group and another member in the other group satisfatioqu3.1. The process
terminates if no more groups can be merged. The referenodéyafforms a hierarchy
for differentk values. Interested readers please refer to Zhong’s th&sanfy, 2005]

for details.

3.3 Lightweight Frequency-Based Affinity Analysis

The distance-based analysis requires the monitoring afyawemory access to
collect reuse distance histograms, the overhead posing &Halllenge for the use
in a product compiler. This section presents a lightweidfihity analysis based on
interprocedure-estimation of the access frequenciestaf dae analysis shows similar

effectiveness as distance-based analysis for floatingt P&JRTRAN programs.

First of all, the affinity model becomes different from theearsed in the distance-
based analysis. In the new model, arrays are nodes andieffiate edge weights
in the affinity graph, and the affinity groups are obtainecdbdigh linear-time graph

partitioning.
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3.3.1 Frequency-Based Affinity Model

A program is modeled as a set of code units, in particulapdodSuppose there
are K code units. Letf; represent the total occurrences of tbeunit in the program
execution. We use;(A) to represent the number of references to dataan execution

of theith unit. The frequency vector of dathais defined as follows:
V(A) = (Ul,Ug, e ,UK>

where

=0;

v =

A code unit; may have branches inside and may call other functions. Weeten
vatively assume that a branch goes both directions wheeatinlyy the data access. We

use interprocedural analysis to find the side effects oftfancalls.

To save space, we can use a bit vector to replace the acceéssafegach data and

use a separate vector to record the frequency of code units.

The affinity between two data is the Manhattan distance leiwibeir access-
frequency vectors, as shown below. It is a number betweenared one. Zero means
that two data are never used together, while one means tthealwaccessed whenever

one is. The formula is as follows withequal to 0.0001 to avoid zero divider.

N S| (0(4) — (B)) |
af finity(A,B) =1 - =“—
JIimity( 4 B) = 1= R A) + o B)

We construct an affinity graph. Each node represents a dadaha weight of an
edge between two nodes is the calculated affinity betwean.tAdere are additional
constraints. To be regrouped, two data must be compatibtearfays for example,

they should have the same number of elements and they sheudddessed in the
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same order [Ding and Kennedy, 2004]. The data access ordet &ways possible to
analyze at compile time. However, when the information &ilable to show that two
arrays are not accessed in the same order in a code unit, ifpletweétheir affinity edge

will be reset to zero. The same is true if two arrays differizes

Graph partitioning gives reference affinity groups; theseloess in a group is deter-
mined by the partition threshold values. The next secti@sgnts the technical detail

on program units, frequency estimation, and graph pantim.

3.3.2 Lightweight Affinity Analysis Techniques
3.3.2.1 Unit of Program Analysis

For scientific programs, most data accesses happen in IMpsause a loop as a
hot code unit for frequency counting for three reasons: @&, independence, and

efficiency.

e Coverage:A loop often accesses an entire array or most of an arrayalrctse,
branches and function calls outside the loop have no effeattether two arrays

are accessed together or not.

¢ IndependenceVicKinley and Temam reported that most cache misses in SPEC95
FP programs were due to cross-loop reuses [McKinley and ierh@99]. We
expect the same for our test programs and ignore the cacke eswoss two
loops. Therefore, the temporal order in which loops are @esthas no effect
on the affinity relation. Without the independence, when am@ys appear in
different code units, their affinity may depend on the terapoelations across
units. The independence property simplifies the affinitylysis by allowing it

to compose the final result from analyzing individual codesun

o Efficiency:The total number of loops determines the size of the aceegsincy

vector. In a context-sensitive analysis, a unit becomediphellelements in the
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access-frequency vector, one for each distinct callingecan The number of
loops is small enough to enable full context-sensitive y8ig] as described in

Section 3.3.2.4. In our experiment, the maximum is 351 foxchenark Galgel.

In comparison, other types of code units are not as good fay aegrouping. For
example, a basic block has too little data access to be imdieppe from other basic
blocks. Basic blocks may be too numerous for compiler analgsiightweight pro-
filing to be affordable. A small procedure lacks indepen@eincdata access. A large
procedure has less coverage because it often has a moreesocoplitrol flow than a
loop does. Other possible code units are super-blocks gimmhie but none satisfies the
three requirements as well as loops do. Loops have goodendence, so the temporal
order of loops has little impact on the affinity result. Thember of loops is not overly
large in most programs. Branches inside loops hurt the cgeerdlowever, very few

branches exist in loops in scientific programs, especialthe innermost loop.

3.3.2.2 Static Estimate of the Execution Frequency

Many past studies have developed compiler-based estinhdbe @xecution fre-
guency (e.g., [Sarkar, 1989; Wagner et al., 1994]). The mhifficulties are to estimate
the value of a variable, to predict the outcome of a branct,tartumulate the result
for every statement in a program. We use standard constapagation and symbolic

analysis to find constants and relations between symbaiiahias.

We classify loops into three categories. The bounds of tlsé dmoup are known
constants. The second group of loops have symbolic boumdisi&pend on the input,
e.g. the size of the grid in a program simulating a three-dsranal space. The number
of iterations can be represented by an expression of a mipmdtants and symbolic
values. We need to convert a symbolic expression into a nuimdeause the later
affinity analysis is based on numerical values. The exaidtitan count is impossible

to obtain. To distinguish between high-trip count loopsrrlmw-trip count loops, we
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assume that a symbolic value is reasonably large (100) smose low-trip count loops

have a constant bound. This strategy works well in our erpemis.

The third category includes many while-loops, where theeadition is calculated
in each iteration. Many while-loops are small and do not ss@arays, so they are
ignored in our analysis. In other small while-loops, we tHiesize of the largest array
referenced in the loop as the number of iterations. If the sfzall arrays is unknown,

we simply assign a constant 100 as the iteration count.

The array regrouping is not very sensitive to the accuradgay iteration estima-
tions. If two arrays are always accessed together, theydvoelregarded as arrays
with perfect affinity regardless how inaccurate the iteratestimations are. Even for
arrays without perfect affinity, the high regrouping thr@shprovides good tolerance

of estimation errors as discussed in Section 3.5.

The frequency of the innermost loop is the product of itsaien count, the number
of iterations in all enclosing loops in the same procedund,the estimated frequency
of the procedure invocation. The execution frequency opsoand subroutines is esti-
mated using the same interprocedural analysis methodideddn Section 3.3.2.4. It

roughly corresponds to in-lining all procedural calls.

For branches, we assume that both paths are taken exceptombdiranch leads
to the termination of a program, i.e. the stop statementhan ¢ase, we assume that
the program does not follow the exist branch. This schemeawuasestimate the affin-
ity relation. Consider a loop whose body is a statement with Iimanchesy and j.
Suppose arrays is accessed in the branch and in the § branch. In an execution,
if the two branches are taken in alternative loop iteratioinen the affinity relation is
accurate, that is, the two arrays are used together. Howéveris taken in the first
half iterations and’ in the second half (or vice versa), then the two arrays aresed

together. The static result is an overestimate.
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3.3.2.3 Profiling-Based Frequency Analysis

By instrumenting a program, the exact number of iteratiom®bees known for the
particular input. To consider the effect of the entire cohflow, we count the fre-
guency of execution of all basic blocks. Simple counting lansert a counter and
an increment instruction for each basic block. In this wevk,use the existing imple-
mentation in the IBM compiler [Silvera et al., unpublishedhich implements more
efficient counting by calculating from the frequency of ridagring blocks, considering
a flow path, and lifting the counter outside a loop. Its ovarhis less than 100% for all
programs we tested. The execution frequency for an innernoag is the frequency of
the loop header block. When a loop contains branches, thgsis&éd an overestimate

for reasons described in Section 3.3.2.2.

3.3.2.4 Context-Sensitive Lightweight Affinity Analysis

Aliases in FORTRAN programs are caused by parameter passthgtarage as-
sociation. We consider only the first cause. We use an irdeegplural analysis based
on the invocation graph, as described by Emami et al [Emaral.e1994]. Given
a program, the invocation graph is built by a depth-firsteéraal of the call structure
starting from the program entry. Recursive call sequenagancated when the same
procedure is called again. In the absence of recursionptloeation graph enumerates
all calling contexts for an invocation of a procedure. A spkeback edge is added in

the case of a recursive call, and the calling context can peoapnated.

The affinity analysis proceeds in two steps. The first stepgalne procedure at
a time, treats the parameter arrays as independent ardeydifies loops inside the

procedure, and the access vector for each array.

The affinity analysis proceeds in two steps. The first stepgalne procedure at

a time, treats the parameter arrays as independent ardeydjfies loops inside the
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procedure, and the access vector for each array. The pneciesdgiven byBuildStati-
CAFVListin Figure 3.1.

The second step traverses the invocation graph from therbaip. At each call
site, the affinity results of the callee are mapped up to tHerdaased on the parameter
bindings, as given by procedurBsiildDynamicAFVListUpdateAFVListandUpdat-
eDynin Figure 3.1. As an implementation, the lists from all prdaees are merged
in one vector, and individual lists are extracted when ndeds inUpdateDyn The
parameter binding for a recursive call is not always preciat a fixed point can be
obtained in linear time using an algorithm proposed by CoaperKennedy (Section
11.2.3 of [Allen and Kennedy, 2001]).

Because of the context sensitivity, a loop contributes mlelelements to the access-
frequency vector, one for every calling context. In the woese, the invocation graph
is quadratic to the number of call sites. However, Emami et@borted on average
1.45 invocation nodes per call site for a set of C programsdiénet al., 1994]. We

saw a similar small ratio in FORTRAN programs.

The calculation of the access-frequency vector uses theeigga frequency of each
loop, as in procedurgpdateDyn In the case of static analysis, the frequency of each
invocation node is determined by all the loops in its calloogtext, not including the
back edges added for recursive calls. The frequency infiiomés calculated from the
top down. Indeed, in our implementation, the static freqyas calculatect the same

timeas the invocation graph is constructed.

The frequency from the lightweight profiling can be direaised if the profiling is
context sensitive. Otherwise, the average is calculateth®onumber of loop execu-

tions within each function invocation. The average freaqyea an approximation.

The last major problem in interprocedural array regroupsthe consistency of
data layout for parameter arrays. Take, for example, a druoeethat has two formal
parameter arrays. It is called from two call sites; each gmadifferent pair of actual

parameter arrays. Suppose that one pair has referencaydfiutithe other does not.
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To allow array regrouping, we will need two different laystibr the formal parameter
arrays. One possible solution is procedural cloning, bistlgrads to code expansion,
which can be impractical in the worst case. In this work, weeaisonservative solution.
The analysis detects conflicts in parameter layouts andléisarray regrouping to
resolve a conflict. In the example just mentioned, any paarcdys that can be passed
into the procedure are not regrouped. In other words, aggsouping guarantees no

need of code replication in the program.

The invocation graph excludes pointer-based control flodvsome use of dynami-
cally loaded libraries. The former does not exist in FORTRAbBgoams and the latter

is a limitation of static analysis.

3.3.2.5 Implementation

As a short summary, the frequency-based analysis inclidef®liowing steps:

1. Building control flow graph and invocation graph with dataflanalysis
2. Estimating the execution frequency through eitherstatalysis or profiling

3. Building array access-frequency vectors using integutacal analysis, as shown

in Figure 3.1

4. Calculating the affinity between each array pair and coosirg the affinity

graph

5. Partitioning the graph to find affinity groups in linear &m

This work has been implemented in the IBM TPO (Toronto Poetabptimizer),
which is the core optimization component in IBM C/C++ and FORTRé&d\npilers.
It implements both compile-time and link-time methods futira- and interprocedural
optimizations. It also implements profiling feedback optiations. We now describe

the structure of TPO and the implementation of the referafioaty analysis.
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TPO uses acommon graph structure based on Single Statgrissnt form (SSA) [Allen
and Kennedy, 2001] to represent the control and data flowimélprocedure. Global
value numbering and aggressive copy propagation are ugeetfirm symbolic anal-
ysis and expression simplifications. It performs pointealgsis and constant propaga-
tion using the same basic algorithm from Wegman and Zadeeigiién and Zadeck,
1985], which is well suited for using SSA form of data flow. Foop nests, TPO per-
forms data dependence analysis and loop transformatitersiatta flow optimizations.

We use symbolic analysis to identify the bounds of arraysestuinate the execution
frequency of loops. We use dependence analysis to idewifylar access patterns to

arrays.

During the link step, TPO is invoked to re-optimize the peagr Having access
to the intermediate code for all the procedures in the pragfEPO can significantly
improve the precision of the data aliasing and functionsatig information. Interpro-

cedural mod-use information is computed at various stagesglthe link step.

The reference affinity analysis is implemented at the limpstA software engi-
neering problem is whether to insert it before or after lagms$formations. Currently
the analysis happens first, so arrays can be transformee aathe compilation pass
as loops are. As shown later, early analysis does not leddwesperformance in any
of the test programs. We are looking at implementation ogtibat may allow a later

analysis when the loop access order is fully determined.

We have implemented the analysis that collects the statiessefrequency vector
and the analysis that measures per-basic-block execuggndncy through profiling.
We have implemented a compiler flag that triggers eitheicstaiprofiling-based affin-
ity analysis. The invocation graph is part of the TPO datacstire. We are in the
process of completing the analysis that includes the camplentext sensitivity. The
current access-frequency vector takes the union of allestsit We have implemented
the reference affinity graph and the linear-time partitigniThe array transformations

are semi-automated as the implementation needs time yddioitid inside the compiler.
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The link step of TPO performs two passes. The first is a foryass to accumulate
and propagate constant and pointer information within thteéeeprogram. Reference
affinity analysis is part of the global reference analysedufer remapping global data
structures. It can clone a procedure [Allen and Kennedy1P@ben needed, although
we do not use cloning for array regrouping. The second passres the invocation
graph backward to perform various loop transformationgerprocedural code motion
is also performed during the backward pass. This transfoomavill move upward
from a procedure to all of its call points. Data remapping¢farmations, including
array regrouping when fully implemented, are performedlpegore the backward pass
to finalize the data layout. Loop transformations are pené during the backward
pass to take full advantage of the interprocedural infoionatnterprocedural mod-use
information is recomputed again in order to provide moreugaie information to the

back-end code generator.

3.4 Affinity-Oriented Data Reorganization

Reorganize data according to their affinity could improvegpam locality and thus
effective memory bandwidth. We experimented with two ranigation techniques:
structure splitting and array regrouping. This sectiorcdbss the two techniques fol-

lowed by the experiment results.

3.4.1 Structure Splitting

The elements of a structure may have different affinity antbegh. Structure split-
ting is to split a structure into multiple ones, each inchglthe elements with good
affinity. Figure 3.2 illustrates the splitting of one struie V into two when element

val andleft are always accessed together. There are many issues torienilauto-
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Data Structure

staticAFV List . the list of local frequency vectors, one per array per subroutine
dynAFV List . the list of global frequency vectors, one per array
loopFreq . the local estimate of the execution frequency of a loop
IGNode . anode in the invocation graph, with the following attributes
freq . the estimated frequency of the node
staticStartId : the position of the subroutine’s first loop in staticAFVList vectors
dynStartld . the position of the subroutine’s first loop in dynAFVList vectors
groupList . the list of affinity groups
Algorithm

1) building control flow graph and invocation graph with data flow analysis

2) estimating the execution frequency (Section 3.3.2.2 and 3.3.2.3)

3) building array accesfrequency vectors using interprocedural analysis (Section 313.2.4
4) calculating the affinity and constructing the affinity graph (Section 3.3.1)

5) linear-time graph partitioning to find affinity groups (Section 3.3.1)

Procedure BuildAFVList() Procedure UpdateAFVList(IGNode n)
// build access frequency vectors For each array a i.” n.refSet

BuildStaticAFVList (); UpdateDyn(a.n);

BuildDynamicAFVList (); End
End par = n.Parent();

if (par == NULL) return;
For each array virtual parameter p

Procedure BuildStaticAFVList() q = GetRealParameter(p);
UpdateDyn(q,n);
/I local access frequency vectors End
id=0; n.visited = true;
For each procedure proc If (IsAlIChildrenUpdated(par))
For each inner-most loop | in proc UpdateAFVList(par);
refSet = GetArrayRefSet(l); End
If (refSet == NULL) End
Continue;
E”ir, Procedure UpdateDyn(array a, IGNode n)

For each member a in refSet

A . ) sl=n.staticStartld,;
staticAFVList[a][id]

s2=n.dynStartld;

=loopFreq(l); i=0:
End While (i< n.loopNum)
End dynAFVList[a][s2+i]
End += staticAFVList[a][s1+i]*n.freq;
End i+
. ] ] End
Procedure BuildDynamicAFVList() End
/I global access frequency vectors Procedure Graph Partition()

For each leaf node n in

the invocation graph /I partition into affinity groups

UpdateAFVList(n); For each edge e in the affinity graph g
End If (edge.affinity> Threshold)
End g.merge(edge);
End
End
groupList = g.GetNodeSets();
End

Figure 3.1: Interprocedural reference affinity analysis
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matic structure splitting such as addressing problemjldetiee in Chapter 6 of Zhong's

thesis [Zhong, 2005].

struct N { struct N_fragmO {
int val; int val;
struct N* left; unsigned int left;
struct N* right; 3

h struct N_fragm1 {

unsigned int right;
5
(a) before splitting (b) after splitting

Figure 3.2: Structure splitting example in C

3.4.2 Array Regrouping

Figure 3.3 shows an example of array regrouping. Part (aysl@oprogram that
uses four attributes of N molecules in two loops. One atteptposition”, is used
in both the compute loop and the visualization loop, but tteothree are used only
in the compute loop. Part (b) shows the initial data layoutese each attribute is
stored in a separate array. In the compute loop, the foubuatiss of a molecule are
used together, but they are stored far apart in memory. Qayt®tiigh-end machines
from IBM, Microsystems, and companies using Intel Itaniurd AMD processors, the
largest cache in the hierarchy is composed of blocks of ndlenthan 64 bytes. In the
worst case, only one 4-byte attribute is useful in each chtik, 94% of cache space
would be occupied by useless data, and only 6% of cache imbleafor data reuse. A
similar issue exists for memory pages, except that thezatibn problem can be much

worse.

Array regrouping improves spatial locality by groupingeé@rof the four attributes
together in memory, as shown in part (c) of Figure 3.3.Afegrouping, a cache block
should have at least three useful attributes. One may suggesping all four at-

tributes. However, three of the attributes are not used envikualization loop, and
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(b) initially all arrays are separately stored (c) three arrays are grouped together

Figure 3.3: An example of array regrouping. Data with refieeeaffinity are placed
together to improve cache utilization
therefore grouping them with “position” hurts cache-blatkization. However, if the

loop is infrequently executed or it touches only a few molesuthen we may still

benefit from grouping all four attributes.

Array regrouping has many other benefits. First, it redulsesrtterference among
cache blocks because fewer cache blocks are accessed. Bincagmbultiple arrays,
array regrouping reduces the page-table working set ansecmently the number of
Translation Lookaside Buffer (TLB) misses in a large prograinalso reduces the
register pressure because fewer registers are neededdcastay base addresses. It
may improve energy efficiency by allowing more memory pagesrtter a sleeping
model. For the above reasons, array regrouping is benedegad for arrays that are

contiguously accessed.

These benefits have been verified in our previous study [Dialgennedy, 2004].
Finally, on shared-memory parallel machines, better cédbek utilization means

slower amortized communication latency and better banitiwitllization.
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Array regrouping is mostly orthogonal to traditional lonpst transformations and
single-array transformations. The latter two try to effeohtiguous access within a
single array. Array regrouping complements them by exjplgitross-array spatial lo-
cality, even when per-array data access is contiguous. Amaatchnsformation, it is
applicable to irregular programs where the dependencennation is lacking. In the
example in Figure 3.3, the correctness of the transformatoes not depend on know-
ing the value of index variables andk. While array regrouping has a good potential
for complex programs, it has not been implemented in anyymtoh compiler because

the current techniques are not up to the task.

Ding and Kennedy gave the first compiler technique for aregyouping [Ding and
Kennedy, 2004]. They defined the concegfierence affinity A group of arrays have
reference affinity if they aralwaysaccessed together in a program. Their technique is
conservative and groups arrays only when they are alwaysssed together. We call
this schemeconservative affinity analysisConservative analysis is too restrictive in

real-size applications, where many arrays are only spcaidiaccessed.

3.5 Evaluation

In this section, we focus on array regrouping in FORTRAN paogs. Zhong’s
thesis presents the results of distance-based affinitysindbr structure splitting on a

wider range of programs [Zhong, 2005].

Array regrouping experiments are conducted with 11 bencksan two machines
as shown in table 3.1. Table 3.2 gives the source and a desorgd the test programs.
Eight are from SPEC CFP2000. The other three are prograneedtih the evaluation
of distance-based affinity analysis [Zhong et al., 2004]. sMaf them are scientific
simulations for quantum physics, meteorology, fluid andeuolar dynamics. Two are

on image processing and number theory. They have 4 to 92sarray
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Table 3.1: Machine architectures for affinity study

Machine Type| IBM p690 Turbo+ Intel PC

Processor Power4d+ 1.7GHz Pentium 4 2.8GHz
L1 data cache 32KB, 2-way, 128B cache line 8KB, 64B cache line
L2 data cache 1.5MB, 4-way 512KB, 8-way

Table 3.2: Test programs in affinity experiments

Benchmark | Source | Description Arrays
Applu Spec2K| Physics / Quantum Chromodynamic88
Apsi Spec2K| Meteorology: Pollutant Distribution| 92
Facerec Spec2K| Image Processing: Face Recognitiod4
Galgel Spec2K| Computational Fluid Dynamics 75
Lucas Spec2K| Number Theory / Primality Testing | 14
Mgrid Spec2K| Multi-grid Solver:3D Potential Field| 12
Swim2K Spec2K| Shallow Water Modeling 14
Wupwise Spec2K| Physics / Quantum Chromodynamic20
Swim95 Zhong+| Shallow Water Modeling 14
Tomcatv Zhong+ | Vectorized Mesh Generation 9
MolDyn Zhong+ | Molecular Dynmaics Simulation 4

3.5.1 Affinity Groups

Table 3.3 shows the affinity groups identified by interpragetreference affinity
analysis using static estimates. The program that has noostrivial affinity groups
is Galgel. It has eight affinity groups, including 24 out of 75 arrayghe program.
Four programs-Apsi, Lucas, Wupwise, and M ol Dyn—do not have affinity groups
with more than one arraydps: uses only one major array, although different parts as
many different arrays in over 90 subroutines. It is posdiblsplit the main array into
many smaller pieces. It remains our future wotkucas, Wupwise, and Mol Dyn
have multiple arrays but no two have strong reference affinithe affinity groups
in Facerec and M grid contain only small arrays. The other three SPEC CPU2000

programs Applu, Galgel, andSwim2 K, have reference affinity among large arrays.
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Table 3.3: Affinity groups
Benchmark | Affinity groups

Applu (imax,jmax,kmax) (idmax,jdmax,kdmax) (phil,phi2) (&),
(Idx,ldy,ldz) (udx,udy,udz)

Apsi <none>

Facerec (coordx,coordy)

Galgel (91,02,93,94) (f1,12,13,f4) (vyy,vyy2,vxy,vxy2)

(VXXX,VYXX) (VYYY,VXXY,VXYY,Vyxy) (V1,v2)
(wxtx,wytx) (wypy,wxpy)

Lucas <none>
Mgrid (41,j2,j3)
Swim2K (unew,vnew,pnew) (u,v) (uold,vold,pold) (cu,cv,z,h)
Wupwise <none>
Swim95 (unew,vnew,pnew) (u,v) (uold,vold,pold) (cu,cv,z,h)

compare to [Zhong et al., 2004]: (unew,vnew,pnew) (u,v
(uold,pold) (vold) (cu,cv,z,h)

Tomcatv (%,y) (rxm,rym) (rx,ry)

compare to [Zhong et al., 2004]: (x,y) (rxm,rym) (rx,ry)

MolDyn < none>

compare to [Zhong et al., 2004k:none>

3.5.2 Comparison with Distance-Based Affinity Analysis

Swim95, Tomcatv, andMol Dyn are three FORTRAN programs also tested using

distance-based analysis. The profiling time is in hours forogram.

The bottom six rows of Table 3.3 compare the affinity groupsifdistance-based
analysis. Frequency-based analysis gives the same resUlbvfcatv and Mol Dyn
without any profiling. The results fobwim95 differ in one of the four non-trivial
groups. Table 3.4 shows the performance difference betieetwo layouts on IBM
and Intel machines. At “-O3”, the compiler analysis givestdreimprovement than
distance-based profiling. The two layouts have the samepeaihce at “-O5”, the
highest optimization level. Without any profiling, the freancy-based affinity analysis

is as effective as distance-based affinity analysis.
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Table 3.4: Comparison of compiler aid-distance analysis oflwim95

Static K-distance
Groups unew,vnew,pnew unew,vnew,pnew
u,v u,v
uold,vold,pold | uold,pold
cu,cv,z,h cu,cv,z,h
IBM | -03 | time 17.1s 17.6s
speedup 96% 90%
-05 | time 15.2s 15.3s
speedup 91% 91%
Intel | -03 | time 41.2s 42.3s
speedup 48% 44%
-05 | time 34.9s 34.9s
speedup 42% 42%

3.5.3 Comparison with Lightweight Profiling

The lightweight profiling gives the execution frequencyadp bodies and call sites.
These numbers are used to calculate data-access vectersestiting affinity groups
are the same compared to the pure compiler analysis. Therefode profiling does
not improve the regrouping results of the analysis. Onegi@e, however, is when a
program is transformed significantly by the compiler. Thefiting results reflect the
behavior of the optimized program, while our compiler asayneasures the behavior
of the source program. Among all test progratfig;m2K andSwim95 are the only
ones in which binary-level profiling of the optimized progrgields different affinity

groups than compiler analysis.

3.5.4 Performance Improvement from Array Regrouping

Table 3.5 and Table 3.6 show the speedup on IBM and Intel meshiespec-
tively. We include only programs where array regroupingppleed. Each program is
compiled with both “-O3” and “-O5” optimization flags. At “& on IBM machines,

array regrouping obtained more than 10% improvementemwn2K, Swim95, and
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Tomcatv, 2-3% onApplu and Facerec, and marginal improvement odalgel and
Mgrid. The improvement is significantly higher at “-O3”, at lea8b Sor all but
Mgrid. The difference comes from the loop transformations, winakes array ac-
cess more contiguous at “-O5” and reduces the benefit of aegpuping. The small
improvements forF'acerec and M grid are expected because only small arrays show

reference affinity.

Our Intel machines did not have a good FORTRAN 90 compileradiel3.6 shows
results for only FORTRAN 77 programs. At “-O5”, array regrougp gives similar
improvement forSwim2 K andSwim95. It is a contrast to the different improvement
on IBM, suggesting that the GNU compiler is not as highly tufedSPEC CPU2000
programs as the IBM compiler isipplu runs slower after array regrouping on the Intel
machine. The regrouped version also runs 16% slower at “t0é&ri “-O3”. We are

investigating the reason for this anomaly.

Table 3.5: Execution time (sec.) on IBM Power4+

Benchmark -03 Optimization -05 Optimization
Original | Regrouped Original | Regrouped
(speedup) (speedup)
Applu 176.4 136.3 (29.4%) 161.2 157.9 (2.1%)
Facerec 148.6 141.3 (5.2%) | 94.2 92.2 (2.2%)
Galgel 123.3 111.4 (10.7%) 83.2 82.6 (0.7%)
Mgrid 231.4 230.1 (0.6%) | 103.9 103.0 (0.9%)
Swim2K 236.8 153.7 (54.1%) 125.2 110.1 (13.7%)
Swim95 33.6 17.1(96.5%) | 29.0 15.2 (90.8%)
Tomcatv 17.3 15.4 (12.3%) | 16.8 15.1 (11.3%)

3.5.5 Choice of Affinity Threshold

In the experiment, the affinity threshold is set at 0.95, nregathat for two arrays to
be grouped, the normalized Manhattan distance betweerctessfrequency vectors

is at most 0.05. To evaluate how sensitive the analysis ikisothreshold, we apply



Table 3.6: Execution time (sec.) on Intel Pentium IV

Benchmark -03 Optimization -05 Optimization

Original | Regrouped Original | Regrouped
(speedup) (speedup)

Applu 427.4 444.0 (-3.7%)| 429.4 444.6 (-3.4%)

Facerec - - - -

Galgel - - - -

Mgrid 461.7 460.6 (0.2%) | 368.9 368.1 (0.2%)

Swim2K 545.1 | 315.7 (72.7%) 408.8 | 259.4 (57.6%)

Swim95 61.1 41.2 (48.3%) | 49.7 34.9 (42.4%)

Tomcatv 48.8 445 (9.7%) | 40.9 37.8 (8.2%)

Table 3.7: Gap between the top two clusters of affinity values

Benchmark | Cluster-I Cluster-II
lower boundary | upper boundary

Applu 0.998 0.667
Apsi 1 0.868
Facerec 0.997 0.8
Galgel 1 0.8
Lucas 1 0.667
Mgrid 1 0.667
Swim 0.995 0.799
Swim95 0.995 0.799
Tomcatv 1 0.798
Wupwise 1 0.8
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X-means clustering to divide the affinity values into graupeble 3.7 shows the lower

boundary of the largest cluster and the upper boundary o$¢lsend largest cluster.

All programs show a sizeable gap between the two clustet8, for Apsi and more

than 0.2 for all other programs. Any threshold between 0r&¥ @99 would yield the

same affinity groups. Therefore, the analysis is quite isisiga to the choice of the

threshold.
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3.6 Related Work

3.6.1 Affinity Analysis

Early compiler analysis identifies groups of data that asglisgether in loop nests.
Thabit used the concept of pair-wise affinity he called mfiee proximity [Thabit,
1981]. Wolf and Lam [Wolf and Lam, 1991] and McKinley et al. §inley et al.,
1996] used reference groups. But none of them consideredtbiocedure com-

plexity.

Program profiling has long been used to measure the frequédeya access [Knuth,
1971]. Seidl and Zorn grouped frequently accessed objectsgrove virtual memory
performance [Seidl and Zorn, 1998]. Using pair-wise affin€alder et al. [Calder
et al., 1998] and Chilimbi et al. [Chilimbi et al., 1999b] demeéd algorithms for hier-
archical data placement in dynamic memory allocation. Dallty model of Calder
et al. was an extension of the temporal relation graph of @log Smith, who con-
sidered reuse distance in estimating the affinity relat®loy and Smith, 1999]. The
pair-wise affinity forms a complete graph where each datum m®de and the pair-
wise frequency is the edge weight. However, the refererfagtgfis not transitive in
a (pair-wise) graph. Consider the access sequebde.ab ... bcbe..be: the pair-wise
affinity exists fora andb, for b andc, but not fora andc. Hence the pair-wise affinity
is indeed pair wise and cannot guarantee the affinity relddodata groups with more
than two elements. Furthermore, the criterion for two datacéssed together” is based
on preselected “cut-off” radii. In comparisoh;distance analysis defines affinity in
data groups and measures the “togetherness” with a scadedati volume between

accesses.
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3.6.2 Data Transformations

Thabit showed that the optimal data placement using thevgag affinity is NP-
hard [Thabit, 1981]. Kennedy and Kremer gave a general mthdel considered,
among others, run-time data transformation. They also eHativat the problem is
NP-hard [Kennedy and Kremer, 1998]. Ding and Kennedy useddhults of Thabit
and of Kennedy and Kremer to prove the complexity of the phaind dynamic ref-
erence affinity [Ding and Kennedy, 1999b]. To reduce falsaisly in multi-treaded
programs, Anderson et al. [Anderson et al., 1995] and Eggaisleremiassen [Jeremi-
assen and Eggers, 1995] grouped data accessed by the saadk tAinderson et al.
optimized a program for computation as well as data logdiity they did not combine
different arrays. Eggers and Jeremiassen combined neuiiphys for thread locality,

but their scheme may hurt cache locality if not all threachdaie used at the same time.

For improving the cache performance, Ding and Kennedy grdwgsrays that are
always used together in a program [Ding and Kennedy, 1999igy gave the optimal
array layout for strict affinity. They later grouped arraysraultiple granularity [Ding
and Kennedy, 2004]. An earlier version of the distance-thasterence affinity work
defined hierarchical reference affinity and tested two @ogr using x-means and k-

means clustering [Zhong et al., 2003Db].

Chilimbi et al. split Java classes into cold and hot portiorsoading to their refer-
ence frequency [Chilimbi et al., 1999a]. Chilimbi later imped structure splitting us-
ing the frequency of data sub-streams called hot-streambrif®h 2001]. Hot-streams
combines dynamic affinity with frequency but does not yeegihole-program refer-
ence affinity and requires a time-consuming profiling prec&abbah and Palem gave
another method for structure splitting. It finds opportigsitftor complete splitting by
calculating theneighbor affinity probabilitywithout constructing an explicit affinity
graph [Rabbah and Palem, 2003]. The probability shows thktygjoaa given layout

but does not suggest the best reorganization.
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Reference affinity may change during a dynamic execution. &elsers have ex-
amined various methods for dynamic data reorganizatiors [®al., 1992; Ding and
Kennedy, 1999a; Han and Tseng, 2000b; Mellor-Crummey e2@0D]; Mitchell et al.,
1999; Strout et al., 2003]. Ding and Kennedy found that coate packing (first-
touch data ordering) best exploits reference affinity fogoams with good temporal lo-
cality [Ding and Kennedy, 1999a], an observation later coréd by Mellor-Crummey
et al. [Mellor-Crummey et al., 2001] and Strout et al [Strougalk, 2003]. Ding and
Kennedy considered the time distance of data reuses andhesgdormation in group
packing. They also gave a unified model in which consecutking and group pack-
ing became special cases. In principle, the model of referaffinity can be used at
run time to analyze sub-parts of an execution. However, gtrba very efficient to be
cost effective. In Chapter 4, the distance-based analysisgbed to phase-based data

reorganization.

Locality between multiple arrays can be improved by arraydueg [Bailey, 1992;
Rivera and Tseng, 1998], which changes the space betweegs arreolumns of arrays
to reduce cache conflicts. In comparison, data regroupipigeierable because it works
for all sizes of arrays on all configurations of cache, butdiagl is still needed if not

all arrays can be grouped together.

The distance-based affinity model is the first trace-basedkiad hierarchical data
locality providing strict properties. The distance-baa#ihity analysis finds array and
structure field organization (among an exponential numbehoices) that is consis-
tently better than the layout given by the programmer, céenpor statistical clustering.
The interprocedure lightweight analysis presents thegdnattical interprocedure affin-

ity analysis.
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3.7 Future Directions

The locality prediction presented in last chapter and ajfimodels in this chapter
all targeted traditional sequential programs. A possibieresion is to make those
techniques applicable to a wider range of applicationsh siscparallel programs and
object-oriented programs running on virtual machines ggibage collectors, and a
larger class of architectures, including Symmetric Mutigessors (SMP) and Chip

Multiprocessors (CMP).

A difficulty of parallel programs is to obtain accurate dagéerence traces. An in-
strumented parallel program usually won't have the samedde as the original one,
which may deviate the observed access sequence from theabrigmong the few ef-
forts to measure locality of parallel programs, peopleegitised simulators [Faroughi,
2005; Forney et al., 2001] or instrumentors with the pedtidn caused by the instru-
mented code ignored [Kim et al., 1999]. It is yet unclear hbe/ perturbation and the
simulator affect the accuracy of locality measurementeiains an open question to

obtain accurate data reference traces of a parallel programng on a real machine.

CMP is becoming the trend of the future computers, which saike urgency of
a better understanding and prediction of the shared-caetfermance. Chandra et
al. proposed a statistical scheme to predict the inteathigache contention on a
CMP based on the stack distance profile of each thread’s éxelagecution on the
chip [Chandra et al., 2005]. Although they showed less thanad@éage prediction

error, their model cannot predict the behavior on any inpigiothan the training one.

The garbage collector in Java-like programs provides ayhaay to manipulate
memory objects during run-time. It eases the locality opation, but on the other
hand, those programs tend to have a large number of objettsranches. The garbage
collection itself introduces new memory problems. It remsaan open question to

effectively characterize and optimize locality of thosegnams online.
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3.8 Summary

Affinity analysis is an effective tool for data layout traoshations. This chap-
ter describes a hierarchical affinity model, and two analtesthniques through profil-
ing and an intereprocedural analysis respectively. THewgight technique has been
tested in a production compiler and has demonstrated signifperformance improve-
ment through array regrouping. The result suggests they aegrouping is an excellent

candidate for inclusion in future optimizing compilers.

The locality and affinity models discussed in the prior cbaptreat a program’s
execution as a whole. However, a program usually consistsooé than one phases. A
compiler, for example, includes parsing, loop optimizaticegister coloring and other
steps. Different phases likely have different behaviowaduld be desirable to detect
those phases, predict their behavior, and dynamically tatth@oprogram or running

environment accordingly, which is the next topic of thissise
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4 Locality Phase Analysis through

Wavelet Transform

As computer memory hierarchy becomes adaptive, its pedgooa increasingly de-
pends on forecasting the dynamic program locality. Thisepapesents a method that
predicts the locality phases of a program by a combinatioloadlity profiling and
run-time prediction. By profiling a training input, it idefiéis locality phases by sift-
ing through all accesses to all data elements using vardibtance sampling, wavelet
filtering, and optimal phase partitioning. It then constsuag phase hierarchy through
grammar compression. Finally, it inserts phase markeostiv@ program using binary
rewriting. When the instrumented program runs, it uses tis¢ fiev executions of a

phase to predict all its later executions.

Compared with existing methods based on program code andtexeitervals,
locality phase prediction is unique because it uses Igcatibfiles, and it marks phase
boundaries in program code. The second half of the papeemiesa comprehensive
evaluation. It measures the accuracy and the coverage oktligechnique and com-
pares it with best known run-time methods. It measures itefiein adaptive cache
resizing and memory remapping. Finally, it compares theraatic analysis with man-
ual phase marking. The results show that locality phaseigired is well suited for

identifying large, recurring phases in complex programs.
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4.1 Introduction

Memory adaptation is increasingly important as the memaeyanchy becomes
deeper and more adaptive, and programs exhibit dynamittioceo adapt, a program
may reorganize its data layout multiple times during an eiien. Several studies have
examined dynamic data reorganization at the program I®mb[and Kennedy, 1999a,;
Han and Tseng, 2000a; Mellor-Crummey et al., 2001; Pingai.eR003; Strout et al.,
2003] and at the hardware level [Luk and Mowry, 1999; Zhanglgt2001]. They
showed impressive improvements in cache locality and fmeifeg efficiency. Unfor-
tunately, these techniques are not yet widely used partadme they need manual
analysis to find program phases that benefit from memory atiapt In this chapter,

we show that this problem can be addressed by locality-baisaske prediction.

Following early studies in virtual memory management by Batnd Madison [Bat-
son and Madison, 1976] and by Denning [Denning, 1980], wendefilocality phase as
a period of a program execution that has stable or slow chgrdta locality inside the
phase but disruptive transition periods between phaddeést optimization purpose, we
are interested in phases that are repeatedly executedimitarsiocality. While data
locality is not easy to define, we use a precise measure ipéusr. For an execution
of a phase, we measure the locality by its miss rate acrosadike sizes and its number
of dynamic instructions. At run time, phase prediction neelamowing a phase and its
locality whenever the execution enters the phase. Accyratiction is necessary to

enable large-scale memory changes while avoiding any seledfects.

Many programs have recurring locality phases. For exanagdenulation program
may test the aging of an airplane model. The computation gsvéeough the mesh

structure of the airplane repeatedly in many time steps. Ceobe behavior of each

INote that different authors define “phase” in different ways this thesis, We use it to refer to a
span of program execution whose behavior, while potegptigdry nonuniform, ispredictablein some
important respect, typically because it resembles the wehaf some other execution span. Some
authors, particularly those interested in fgr@in architectural adaptation, define a phase to be arvaite
whose behavior iginiformin some important respect (e.g., instruction mix or cach&smate).
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time step should be similar because the majority of the datass is the same despite
local variations in control flow. Given a different input,rfexample another airplane
model or some subparts, the locality of the new simulatioy otenge radically but
it will be consistent within the same execution. Similar ddehavior are common
in structural, mechanical, molecular, and other sciengifid commercial simulations.
These programs have great demand for computing resourcesugeof their dynamic
but stable phases, they are good candidates for adaptdtiwa,can predict locality

phases.

We describe a new prediction method that operates in theps.sThe first analyzes
the data locality in profiling runs. By examining the distan¢elata reuses in varying
lengths, the analysis can “zoom in" and “zoom out" over lorgcetion traces and
detects locality phases usimgriable-distance samplingvavelet filtering andoptimal
phase partitioning The second step then analyzes the instruction trace antlfide
the phase boundaries in the code. The third step uses graromaression to identify
phase hierarchies and then inserts program markers thimogty rewriting. During
execution, the program uses the first few instances of a ploageedict all its later
executions. The new analysis considers both program catieata access. It inserts

static markers into the program binary without accessiegsthurce code.

Phase prediction has become a focus of much recent reselslast. techniques
can be divided into two categories. The first is interval bask divides a program
execution into fixed-length intervals and predicts the behaf future intervals from
past observations. Interval-based prediction can be mgieed entirely and efficiently
at run time [Balasubramonian et al., 2000b, 2003; DhodapkdrSamith, 2002, 2003;
Duesterwald et al., 2003; Sherwood et al., 2003; Nagpurkat.£2006]. It handles
arbitrarily complex programs and detects dynamically ¢ patterns. However,
run-time systems cannot afford detailed data analysis rbaghnd counting the cache
misses. In addition, it is unclear how to pick the intervaldgth for different programs

and for different inputs of the same program. The secondjoayes code based. It
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marks a subset of loops and functions as phases and estitinaitesehavior through

profiling [Hsu and Kremer, 2003; Huang et al., 2003; Magktisle 2003; Lau et al.,

2006]. Pro-active rather than reactive, it uses phase msatkecontrol the hardware
and reduce the need for run-time monitoring. However, tlogm@m structure may not
reveal its locality pattern. A phase may have many procedanel loops. The same
procedure or loop may belong to different locality phasegnvhccessing different
data at different invocations. For example, a simulati@p sh a program may span

thousands of lines of code with intertwined function catigl indirect data access.

In comparison, the new technique combines locality anslgsd phase marking.
The former avoids the use of fixed-size windows in analysigrediction. The lat-
ter enables pro-active phase adaptation. In addition, tiaese marking considers all
instructions in the program binary in case the loop and moeestructures are obfus-

cated by an optimizing compiler.

In evaluation, we show that the new analysis finds recurrimagsps of widely vary-
ing sizes and nearly identical locality. The phase lengtinges in tune with program
inputs and ranges from two hundred thousand to three biltistnuctions—thidength
is predicted with 99.5% accuracy. We compare it with othexrsghprediction methods,

and we show its use in adaptive cache resizing and phasd-besaory remapping.

Locality phase prediction is not effective on all progral@eme programs may not
have predictable phases. Some phases may not be predictablés data locality. We
limit our analysis to programs that have large predictalblases, which nevertheless
include important classes of dynamic programs. The nexptehalescribes another
technique to tackle other input-sensitive programs as gpdemtranscoding utilities

and a database.
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4.2 Hierarchical Phase Analysis

This section first motivates the use of locality analysis #&h describes the steps

of locality-based phase prediction.

4.2.1 Locality Analysis Using Reuse Distance

In 1970, Mattson et al. defined th&®U-stack distancas the number of distinct data
elements accessed between two consecutive references sartite element [Mattson
et al., 1970]. They summarized the locality of an executipthe distance histogram,
which determines the miss rate of fully-associative LRUneaef all sizes. Building on
decades of development by others, Ding and Zhong reduceahthligsis cost to near
linear time. They found that reuse-distance histogramagdan predictable patterns
in large programs [Ding and Zhong, 2003]. In this work we ge step further to see
whether predictable patterns exist for subparts of a pragFeor brevity, as mentioned
in previous chapters, we call the LRU stack distance betwseraccesses of the same

data thereuse distancef the latter access (to the previous access).

Reuse distance reveals patterns in program locality. Wenesexample ofomcaty
a vectorized mesh generation program from SPEC95 knownddrighly memory-
sensitive performance. Figure 4.1 shows the reuse disteam® Each data access is a
point in the graph—the-axis gives the logical time (i.e. the number of data acssse
and they-axis gives the reuse distanteThe points are so numerous that they emerge

as solid blocks and lines.

The reuse distance of data access changes continuousighioat the trace. We
define a phase change as an abrupt change in data reuse.pltinis example, the
abrupt changes divide the trace into clearly separatedeghd$e same phases repeat

in a fixed sequence. Reading the code documentation, we sssditiclat the program

2To reduce the size of the graph, we show the reuse distaree after variable-distance sampling
described in Section 4.2.2.1.
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Figure 4.1: The reuse-distance trace of Tomcatv

has a sequence of time steps, each has five sub-steps—piepaifadata, residual
values, solving two tridiagonal systems, and adding ctioes. What is remarkable is
that we could see the same pattern from the reuse distamesviithout looking at the

program.

The example confirms four commonly held assumptions abadrpm locality.
First, the data locality may change constantly in an exeagtiowever, major shifts in
program locality are marked by radical rather than gradbhahges. Second, locality
phases have different lengths. The size of one phase Hagdithtion with the size of
others. Third, the size changes greatly with program inpkits example, the phases
of Tomcatvcontain a few hundred million memory accesses in a trainimghbut over
twenty-five billion memory accesses in a test run. Finallphase often recurs with
similar locality. A phase is a unit of repeating behavior rather than a unit afarm
behavior. To exploit these properties, locality phase predictiorsuseise distance to
track fine-grain changes and find precise phase boundarigses small training runs

to predict larger executions.
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Reuse distance measures locality better than pure progréwardware measures.
Compiler analysis cannot fully analyze locality in prograthat have dynamic data
structures and indirect data access. The common hardwasunee the miss rate, is
defined over a window. Even regular programs may have ireegalche miss rate dis-
tributions when we cut them into windows, as shown later guFe 4.4. It is difficult
to find a fixed window size that matches the phases of unequgths. We may use the
miss trace, but a cache miss is a binary event—nhit or miss §orem cache configura-
tion. In comparison, reuse distance is a precise scaleplinsly a program property,

independent of hardware configurations.

Reuse distance shows an interesting picture of programitippdakext we present a

system that automatically uncovers the hierarchy of lbcalhases from this picture.

4.2.2 Off-line Phase Detection

Given the execution trace of training runs, phase detecpmrates in three steps:
variable-distance sampling collects the reuse distaace twavelet filtering finds abrupt

changes, and finally, optimal phase partitioning locategtiase boundary.

4.2.2.1 Variable-Distance Sampling

Instead of analyzing all accesses to all data, we sample & samber of repre-
sentative data. In addition, for each data, we record omlg4distance reuses because
they reveal global patterns. Variable-distance sampbrgased on the distance-based
sampling described by Ding and Zhong [Ding and Zhong, 2008kir sampler uses
ATOM to generate the data access trace and monitors the destaace of every ac-
cess. When the reuse distance is above a thresholdj(idédication thresholyl the
accessed memory location is taken as a data sample. A la&essao a data sample is
recorded as an access sample if the reuse distance is ovaralgareshold (theem-

poral threshold. To avoid picking too many data samples, it requires thad\a data
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sample to be at least a certain space distance awag|ftiteal thresholdlin memory

from existing data samples.

The three thresholds in Ding and Zhong's method are difftouttontrol. Variable-
distance sampling solves this problem by using dynamicldaekl to find suitable
thresholds. Given an arbitrary execution trace, its lepaytid the target number of sam-
ples, it starts with an initial set of thresholds. It perizally checks whether the rate of
sample collection is too high or too low considering the ¢agample size. It changes
the thresholds accordingly to ensure that the actual sasmses not far greater than
the target. Since sampling happens off-line, it can use riore to find appropriate
thresholds. In practice, variable-distance sampling fitllshousand to 30 thousand
samples in less than 20 adjustments of thresholds. It takega hours for the later
steps of wavelet filtering and optimal phase partitioningmalyze these samples, al-
though the long time is acceptable for our off-line analysigl can be improved by a

more efficient implementation (currently using Matlab aada).

The variable-distance sampling may collect samples at awamrate. Even at a
steady rate, it may include partial results for executidvas have uneven reuse density.
However, the target sample size is large. The redundaneyenshat these samples
together contain elements in all phase executions. If asiatgple has too few access

samples to be useful, the next analysis step will remove @enoise.

4.2.2.2 Wavelet Filtering

Viewing the sample trace as a signal, we usdilserete Wavelet Transform (DWT)
as a filter to expose abrupt changes in the reuse pattern. WAei®a common tech-
nique in signal and image processing [Daubechies, 1998haws the change of fre-
guency over time. As a mutli-resolution analysis, the DWT lgsptwo functions to
data: the scale function and the wavelet function. The firgicths the signal by av-
eraging its values in a window. The second calculates theninatg of a range of

frequencies in the window. The window then shifts through whole signal. After
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finishing the calculations on the whole signal, it repeaéssame process at the next
level on the scaled results from the last level instead ofhenariginal signal. This
process may continue for many levels as a multi-resolutroegss. For each point on
each level, a scaling and a wavelet coefficient are calallaeng the variations of the

following basic formulas:

cj(k) =< f(z), 2772772 — k) >
w;(k) = < f(x), 279272 — k) >

where, < a,b > is the scaler product aof andb, f(x) is the input signal;j is the
analysis levely andy are the scaling and wavelet function respectively. Manigcgiht
wavelet families exist in the literature, suchHaar, DaubechiesandMexican-hat We
useDaubechies-6n our experiments. Other families we have tested produceidas
result. On high-resolution levels, the points with high ef@t coefficient values signal

abrupt changes; therefore they are likely phase changimgspo

The wavelet filtering takes the reuse-distance trace of dathsample as a signal,
then computes the level-1 coefficient for each access andvesrfrom the trace the
accesses with a low wavelet coefficient value. An accesspsdy if its coefficient
w > m + 39, wherem is the mean and is the standard deviation. The difference
between this coefficient and others is statistically sigaiit. We have experimented

with coefficients of the next four levels and found the leYaloefficient adequate.

Figure 4.2 shows the wavelet filtering for the access tragediHta sample iiviol-
Dyn, a molecular dynamics simulation program. The filteringoges accesses during
the gradual changes because they have low coefficients.thaité correctly removes
accesses that correspond to local peaks. The remainingémgisses indicate global

phase changes.
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Sherwood et al. used the Fourier transform to find perioditepas in execution
trace [Sherwood et al., 2001]. The Fourier transform shdwesrequencies appeared
during the whole signal. In comparison, wavelets givestitme-frequencyr the fre-
guencies appeared over time. Joseph et al. used waveletaliza the change of
processor voltage over time and to make on-line predictimisg an efficient Haar-
wavelet implementation [Joseph et al., 2004]. We use wess/slmilar to their off-line
analysis but at much finer granularity (because of the natusar problem). Instead of
filtering the access trace of all data, we analyze the sule-fra each data element. This
is critical because a gradual change in the subtrace maydmeasean abrupt change
in the whole trace and cause false positives in the wavekdysis. We will show an
example later in Figure 4.4 (b), where most abrupt changes sem the whole trace

are not phase changes.

After it filters the sub-trace of each data sample, the filggstep recompiles the
remaining accesses of all data samples in the order of logjca. The new trace is
called afiltered trace Since the remaining accesses of different data elemengs ma
signal the same phase boundary, we use optimal phaseqargito further remove

these redundant indicators.
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Figure 4.2: A wavelet transform example, where gradual gharre filtered out
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Figure 4.3: An example illustrating the optimal phase parting. Each number in the
sequence represents the reference to a memory locatiomtitdow,,’ represents the
weight of the edge from th&h number to thé&th. The solid lines show a path from the
beginning to the end of the sequence.

4.2.2.3 Optimal Phase Partitioning

At a phase boundary, many data change their access pat&mos.the wavelet fil-
tering removes reuses of the same data within a phase, tla@niaemis mainly accesses
to different data samples clustered at phase boundariesseTiwo properties suggest
two conditions for a good phase partition. First, a phasellshinclude accesses to as
many data samples as possible. This ensures that we do ifiotadit cut a phase into
smaller pieces. Second, a phase should not include mutquesses of the same data
sample, since data reuses indicate phase changes in tregftitece. The complication,
however, comes from the imperfect filtering by the wavelahsform. Not all reuses

represent a phase change.

We convert the filtered trace into a directed acyclic graplenereach node is an
access in the trace. Each node has a directed edge to alesiimg@odes as shown in
Figure 4.3. Each edge (from acces® b) has a weight defined as,* = ar + 1, where
1> a > 0, andr is the number of node recurrences betweamdb. For example, the
traceacee f ge fbd has two recurrences efand one recurrence gfbetween: andb, so

the edge weight between the two node3ds+ 1.
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Intuitively, the weight measures how fit the segment froto b is as a phase. The
two factors in the weight penalize two tendencies. The fashe inclusion of reuses,
and the second is the creation of new phases. For a sequentenwiry references,
the optimal case is a minimal number of phases with leasesumseach phase. Since
the trace is not perfect, the weight and the factarontrol the relative penalty for too
large or too small phases. dfis 1, we prohibit any reuses in a phase. We may have as
many phases as the length of the filtered trace. The result whe 1 is the same as
a = 1. If ais 0, we get one phase. In experiments, we found that the glaatgons
were similar wheny is between 0.2 and 0.8, suggesting that the noise in theefilter

trace was acceptable. We used- 0.5 in the evaluation.

Oncea is determined, shortest-path analysis on the directedhgiiags a phase
partition that minimizes the total penalty. It adds two n&ixda source node that has
directed edges flowing to all original nodes, and a sink nbde lhas directed edges
coming from all original nodes. Any directed path from thens® to the sink gives
a phase partition. The sum of the weights of the edges on tieipaalled thepath
weight showing the penalty of the phase partition. The best phadéipn gives the

least penalty, and it is given by the shortest path betweesdhrce and the sink.

Summary of off-line phase detectidhe program locality is a product of all ac-
cesses to all program data. The phase detection first pickgydrsamples in time and
space to capture the high-level pattern. Then it uses wavieleemove the temporal
redundancy and phase partitioning to remove the spatiandahcy. The next chal-
lenge is marking the phases in program code. The waveletridtéses accurate time
information because samples are considered a pair at atbmeg@sure the difference).
In addition, the locality may change through a transitiongekinstead of a transition
point. Hence the exact time of a phase change is difficult temrat We address this

problem in the next step.
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4.2.3 Phase Marker Selection

The instruction trace of an execution is recorded at theudaaity of basic blocks.
The result is a block trace, where each element is the lakeebafsic block. This step
finds the basic blocks in the code that uniquely mark detegtedes. Previous pro-
gram analysis considered only a subset of code locationgex@ample function and
loop boundaries [Hsu and Kremer, 2003; Huang et al., 2003jK\m et al., 2003].
Our analysis examines all instruction blocks, which is egleint to examining all pro-
gram instructions. This is especially important at the byrlevel, where the high level
program structure may be lost due to aggressive compilesfibamations such as pro-

cedure in-lining, software pipelining, loop fusion, andleacompression.

As explained earlier, phase detection finds the number adgehbut cannot locate
the precise time of phase transitions. The precision is endider of hundreds of
memory accesses while a typical basic block has fewer tham@mory references.
Moreover, the transition may be gradual, and it is impossibllocate a single point.
We solve this problem by using the frequency of the phasésadf the time of their

transition.

We define the frequency of a phase by the number of its exewuiiothe training
run. Given the frequency found by the last step, we want totifiea basic block that is
always executed at the beginning of a phase. We call itrtker blockfor this phase.
If the frequency of a phase j§ the marker block should appear no more thiaimes
in the block trace. The first step of the marker selectiorr§iltbe block trace and keeps
only blocks whose frequency is no more thanlf a loop is a phase, the filtering will
remove the occurrences of the loop body block and keep oelyhéader and the exit
blocks. If a set of mutual recursive functions forms a phése filtering will remove
the code of the functions and keep only the ones before aadtat root invocation.

After filtering, the remaining blocks are candidate markers
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After frequency-based filtering, the removed blocks leargd blank regions be-
tween the remaining blocks. If a blank region is larger thémrashold, it is considered
as a phase execution. The threshold is determined by thehldisgribution of the blank
regions, the frequency of phases, and the execution leBgtlee the training runs had
at least 3.5 million memory accesses, we simply used 10 #mousstructions as the
threshold. In other words, a phase execution must consuleasat).3% of the total ex-
ecution to be considered significant. We can use a smallestibtd to find sub-phases

after we find large phases.

Once the phase executions are identified, the analysisdgysshe block that comes
after a region as markers marking the boundary between th@lases. Two regions
are executions of the same phase if they follow the same clod&.bThe analysis
picks markers that mark most if not all executions of the pkas the training run.
We have considered several improvements that consideetiggh of the region, use
multiple markers for the same phase, and correlate markectss across multiple

runs. However, this basic scheme suffices for programs wedes

Requiring the marker frequency to be no more than the phagedney is necessary
but not sufficient for phase marking. A phase may be fragntelyanfrequently exe-
cuted code blocks. However, a false marker cannot divideaagmore tharf times.
In addition, the partial phases will be regrouped in the sép, phase-hierarchy con-

struction.

4.2.4 Marking Phase Hierarchy

Hierarchical construction Given the detected phases, we construct a phase hier-

archy using grammar compression. The purpose is to idecdifigposite phases and
increase the granularity of phase prediction. For exanfplethe Tomcatvprogram

showed in Figure 4.1, every five phase executions form a tiee that repeats as a
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composite phase. By constructing the phase hierarchy, wepfiades of the largest

granularity.

We use SEQUITUR, a linear-time and linear-space compresséthod developed
by Nevill-Manning and Witten [Nevill-Manning and Witten997]. It compresses a
string of symbols into a Context Free Grammar. To build thespltaerarchy, we have
developed a novel algorithm that extracts phase repetiticmom a compressed gram-
mar and represents them explicitly as a regular expres3iba.algorithm recursively
converts non-terminal symbols into regular expressiongnhembers previous results
so that it converts the same non-terminal symbol only oncenefge step occurs for a
non-terminal once its right-hand side is fully converteskoTadjacent regular expres-
sions are merged if they are equivalent (using for exam@etfuivalent test described

by Hopcroft and Ullman [Hopcroft and Ullman, 1979]).

SEQUITUR was used by Larus to find frequent code paths [Lat@89] and
by Chilimbi to find frequent data-access sequences [Chili2®)1]. Their methods
model the grammar as a DAG and finds frequent sub-sequenesgiven length. Our
method traverses the non-terminal symbols in the same,dodeinstead of finding

sub-sequences, it produces a regular expression.

Phase marker insertionThe last step uses binary rewriting to insert markers into

a program. The basic phases (the leaves of the phase higramle unique markers
in the program, so their prediction is trivial. To predice tomposite phases, we insert
a predictor into the program. Based on the phase hierarolyrédictor monitors the
program execution and makes predictions based on the erphase history. Since
the hierarchy is a regular expression, the predictor usesta iutomaton to recognize
the current phase in the phase hierarchy. In the programsstedt so far, this simple
method suffices. The cost of the markers and the predictegigible because they are
invoked once per phase execution, which consists of on geerallions of instructions

as shown in the evaluation.
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4.3 Evaluation

We conduct four experiments. We first measure the granylant accuracy of
phase prediction. We then use it in cache resizing and mereargpping. Finally, we
test it against manual phase marking. We compare with otfegligiion techniques in

the first two experiments.

Our test suite is given in Table 4.1. We pick programs fronfedént sets of com-
monly used benchmarks to get an interesting mix. They reptemmon computa-
tion tasks in signal processing, combinatorial optim@atistructured and unstructured
mesh and N-body simulations, a compiler, and a databdsEis a basic implementa-
tion from a textbook. The next six programs are from SPECethre floating-point and
three are integer programs. Three are from SPEC95 suiterameSPEC2K, and two
(with small variation) are from both. Originally from the CIKDS group at University
of Maryland,MolDyn andMeshare two dynamic programs whose data access pattern
depends on program inputs and changes during executionefizds 1994]. They are
commonly studied in dynamic program optimization [Ding atehnedy, 1999a; Han
and Tseng, 2000a; Mellor-Crummey et al., 2001; Strout e2@03]. The floating-point
programs from SPEC are written in Fortran, and the integegnams are in C. Of the
two dynamic programsviolDynis in Fortran, andMeshis in C. We note that the choice
of source-level languages does not matter because we aralgzransform programs

at the binary level.

For programs from SPEC, we use tlestor thetrain input for phase detection and
theref input for phase prediction. For the predictionMésh we used the same mesh
as that in the training run but with sorted edges. For alliotinegrams, the prediction

is tested on executions hundreds times longer than thosemupbdase detection.

We use ATOM to instrument programs to collect the data anluoson trace on

a Digital Alpha machine [Srivastava and Eustace, 1994]. pAtigrams are compiled
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Table 4.1: Benchmarks for locality phase analysis

| Benchmark| Description | Source |
FFT fast Fourier transformation textbook
Applu solving five coupled nonlinear PDE|sSpec2KFp
Compress | common UNIX compression utility | Spec95Int
Gcec GNU C compiler 2.5.3 Spec95int
Tomcatv vectorized mesh generation Spec95Fp
Swim finite difference approximations for| Spec95Fp

shallow water equation

Vortex an object-oriented database Spec95int
Mesh dynamic mesh structure simulation] CHAOS
MolDyn molecular dynamics simulation CHAOS

by the Alpha compiler using “-O5” flag. After phase analysig again use ATOM to

insert markers into programs.

4.3.1 Phase Prediction

We present results for all programs except@urcandVortex which we discuss at
the end of this section. We first measure the phase lengthremdlidok at the phase

locality in detail.

Table 4.2 shows two sets of results. The upper half showsdbteracy and cov-
erage of strict phase prediction, where we require thatghabkavior repeats exactly
including its length. Except fdvlolDyn, the accuracy is perfect in all programs, that is,
the number of the executed instructions is predicted exatthe beginning of a phase
execution We measure the coverage by the fraction of the executios $jpent in the
predicted phases. The high accuracy requirement hurtsageewhich is over 90% for
four programs but only 46% fdfromcatvand 13% foMolDyn. If we relax the accuracy
requirement, then the coverage increases to 99% for fivegmogyand 98% and 93%
for the other two, as shown in the lower half of the table. Tbeuaacy drops to 90%

in Swimand 13% inMolDyn. MolDyn has a large number of uneven phases when it
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Table 4.2: Accuracy and coverage of phase prediction

Benchmarks Strict accuracy Relaxed accuracy
Accuracy (%)| Coverage (%) Accuracy (%)| Coverage (%
FFT 100 96.41 99.72 97.76
Applu 100 98.89 99.96 99.70
Compress || 100 92.39 100 93.28
Tomcatv 100 45.63 99.9 99.76
Swim 100 72.75 90.16 99.78
Mesh 100 93.68 100 99.58
MolDyn 96.47 13.49 13.27 99.49
Avgerage 99.50 73.32 86.14 98.48

finds neighbors for each particle. In all programs, the plpasdiction can attain either

perfect accuracy, full coverage, or both.

The granularity of the phase hierarchy is shown in Table A8 Eable 4.4 by the
average size of the smallest (leaf) phases and the largegiasite phases. The left
half shows the result of the detection run, and the right sladfws the prediction run.
The last row shows the average across all programs. With xbepgon of Mesh
which has two same-length inputs, the prediction run isdatbgan the detection run
by, on average, 100 times in execution length and 400 timéseirphase frequency.
The average size of the leaf phase ranges from two hundreddhd to five million
instructions in the detection run and from one million tohgigundred million in the
prediction run. The largest phase is, on average, 13 tineesitie of the leaf phase in

the detection run and 50 times in the prediction run.

The results show that the phase length is anything but umifdte prediction run

is over 1000 times longer than the detection runApplu and Compressand nearly

5000 times longer foMolDyn. The longer executions may have about 100 times more

phase execution§@mcatv, SwirrandApplu) and over 1000 times larger phase size (in

Compresks The phase size differs from phase to phase, program toarg@nd input



Table 4.3: Number and the size of phases in detection runs

Tests leaf exe. len.| avg. leaf avg. largest phasg
phases (M inst.) | size (M inst.)| size (M inst.)

FFT 14 23.8 2.5 11.6

Applu 645 254.3 0.394 3.29

Compress| 52 52.0 0.667 2.2

Tomcatv || 35 175.0 4.9 34.9

Swim 91 376.7 4.1 37.6

Mesh 4691 | 51519 |11 98.2

MolDyn | 59 11.9 0.202 3.97

Average | 798 863.66 | 1.98 27.39

Table 4.4: Number and the size of phases in prediction runs

Tests leaf exe. len. | avg. leaf avg. largest phasg
phases (Minst.) | size (Minst.)| size (M inst.)

FFT 122 5730.4 | 50.0 232.2

Applu 4437 | 335019.8| 75.5 644.8

Compressg| 52 62418.4 | 800.2 2712.0

Tomcatv || 5250 | 24923.2 | 4.7 33.23

Swim 8101 | 33334.9 | 4.1 37.03

Mesh 4691 | 51519 |11 98.2

MolDyn | 569 50988.1 | 89.6 1699.6

Average | 3317 | 73938.1 | 146.5 779.58
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to input, suggesting that a single interval or threshold ot work well for this set

of programs.

4.3.1.1 Comparison of Prediction Accuracy

Figure 4.4 shows the locality of two representative prografiomcatvandCompress—

in two columns of three graphs each. The upper graphs shophhse detection in

training runs. The other graphs show phase prediction iereete runs. The up-

per graphs show a fraction of the sampled trace with verticat marking the phase

boundaries found by variable-distance sampling, wavdtetifig, and optimal phase

partitioning. The lines fall exactly at the points wherewgiirchanges of reuse behav-
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ior happen, showing the effect of these techniques. Thegshaasve different lengths.
Some are too short in relative length and the two boundaeesrbe a single line in
the graph. The numbers next to the lines are the basic blosknlilere markers are
inserted. The same code block precedes and only precedsarttes|ocality phase,

showing the effect of marker selection.

The middle two graphs show the locality of predicted pha3esvisualize the lo-
cality, we arbitrarily pick two different cache sizes—32l&Bd 256KB cache—and use
the two miss rates as coordinates. Each execution of a phasgass (X) on the graph.
Tomcatvhas 5251 executions of 7 locality phases: all five thousaoskers are mapped
to seven in the graph. Most crosses overlap perfectly. Thegprediction is correct in
all cases because the executions of the same phase mapsigteacsdss except for a
small difference in the second and third phase, where the&itple of executions have
slightly different locality. We label each phase by the ghHd3, the relative frequency,
and the range of phase length. The relative frequency isuh®ar of the executions
of a phase divided by the total number of phase executiorisl(f#2 Tomcaty. The last
two numbers give the number of instructions in the shortedtthe longest execution
of the phase, in the unit of millions of instruction€ompresss shown by the same
format. It has 52 executions of 4 locality phases: all 52 sessmap to four, showing
perfect prediction accuracy. The phase length ranges fr@rthdusand to 1.9 million
instructions in two programs. For each phase, the lengttigiren is accurate to at

least three significant digits.

The power of phase prediction is remarkable. For exampl€pmpresswhen the
first marker is executed for the second time, the program knibzat it will execute
1.410 million instructions before reaching the next marked that the locality is the
same for every execution. This accuracy confirms our assamitat locality phases

are marked by abrupt changes in data reuse.

Phase vs. intervalAn interval method divides the execution into fixed-size in-

tervals. The dots in the bottom graphs of Figure 4.4 showdhbality of ten million
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Figure 4.4: Prediction Accuracy f@iomcatvandCompressPart (a) and (b) show the
phase boundaries found by off-line phase detection. Paan@ (d) show the locality
of the phases found by run-time prediction. As a compariBant (e) and (f) show the
locality of ten million-instruction intervals and BBV (basdidock vector) clusters.
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instruction intervals. The 2493 dots fomcatvand 6242 dots irCompressdo not

suggest a regular pattern.

Both the phases and intervals are partitions of the same #xecequence—the
25 billion instructions inTomcatvand 62 billion inCompress Yet the graphs are a
striking contrast between the sharp focus of phase crossketha irregular spread of
interval dots—it indeed matters where and how to partitioremecution into phases.
Locality phases are selected at the right place with the tegtgth, while intervals are
a uniform cut. Compared to the phases, the intervals are tge ta capture the two
to four million-instruction phases ilomcatvand too small to find the over one billion-
instruction phases i@ompressWhile the program behavior is highly regular and fully
predictable for phases, it becomes mysteriously irreguiae the execution is cut into

intervals.

Phase vs. BBVThree major phase analysis techniques have been examihed [D
dapkar and Smith, 2003]—procedure-based [Huang et al3;20agKlis et al., 2003],
code working set [Dhodapkar and Smith, 2002], and basickolector (BBV) [Sher-
wood et al., 2003]. By testing the variation in IPC (instroatper cycle), it concluded
that BBV is the most accurate. We implemented BBV prediction abog to the algo-
rithm of Sherwood et al [Sherwood et al., 2003]. Our impletagan uses the same ten
million-instruction windows and the same threshold forstduing. We implemented
their Markov predictor but in this section we use only thestdning (perfect predic-
tion). It randomly projected the frequency of all code bleakto a 32-element vector

before clustering. Instead of using IPC, we use locality asnitric for evaluation.

BBV clusters the intervals based on their code signature aecuén frequency.
We show each BBV cluster by a bounding box labeled with theivel&equency. BBV
analysis produces more clusters than those shown. We ddvowtIsoxes for clusters
whose frequency is less than 2.1%, partly to make the gragitalde. We note that

the aggregated size of the small clusters is quite large 3dedomcatv In addition,
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we exclude the outliers, which are points that are farthesh fthe cluster centesg,

statistically speaking); otherwise the bounding boxedarger.

As shown by previous studies [Dhodapkar and Smith, 2003y@&a et al., 2003],
BBV groups intervals that have similar behavior. Tomcaty the largest cluster ac-
counts for 26% of the execution. The miss rate varies by leas ©.3% for the 256KB
cache and 0.5% for the 32KB cache. However, the similarityosguaranteed. In
the worst case ilCompressa cluster of over 23% execution has a miss rate ranging
from 2.5% to 5.5% for the 256KB cache and from 7% to 11% for tBKE cache.

In addition, different BBV clusters may partially interseddote that with fine-tuned
parameters we will see smaller clusters with lower varratitn fact, in the majority
of cases in these programs, BBV produces tight clusters. Hayeven in best cases,

BBV clusters do no have perfectly stacked points as localigspk do.

Table 4.5 shows the initial and normalized standard denatiThe locality is an
8-element vector that contains the miss rate for cache &iaes32KB to 256KB in
32KB increments. The standard deviation is calculated fa»@cutions of the same
phase and the intervals of each BBV cluster. Then the stand@aidtobn of all phases
or clusters are averaged (weighted by the phase or clugrtsi produce the number
for the program. The numbers of BBV clustering and predictsbrown by the last two
columns, are similarly small as reported by Sherwood etallHC [Sherwood et al.,
2003]. Still, the numbers for locality phases are much senatone to five orders of

magnitude smaller than that of BBV-based prediction.

So far we measure the cache miss rate through simulatiochvadaes not include
all factors on real machines such as that of the operatingrsy3NVe now examine the
L1 miss rate on an IBM Power 4 processor for the first two phas€sompresgthe
other two phases are too infrequent to be interesting).réigtb shows the measured
miss rate for each execution of the two phases. All but thé dixecution of Phase
1 have nearly identical miss rates on the 32KB 2-way dataecadlhe executions of

Phase 2 show more variation. The effect from the environnsanbre visible in Phase
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Table 4.5: Standard deviation of locality phases and BBV mhase

standard deviations
locality phases BBV BBV RLE Markov
prediction | clustering prediction
FFT 6.87E-8 0.00040 0.0061
Applu 5.06E-7 2.30E-5 0.00013
Compres§  3.14E-6 0.00021 0.00061
Tomcatv 4.53E-7 0.00028 0.0016
Swim 2.66E-8 5.59E-5 0.00018
Mesh 6.00E-6 0.00012 0.00063
MolDyn 7.60E-5 0.00040 0.00067
16
14r
127 0000000000000 0000000000
10¢
6,
4,
2,
o 1 1 1 1
0 5 10 15 20 25 30

Figure 4.5: The miss rates Gompresphases on IBM Power 4

2 likely because its executions are shorter and the missomaes than those of the first

phase.

The comparison with interval-based methods is partial bseave use only pro-
grams that are amenable to locality-phase prediction. Mimamic programs do not
have consistent locality. For them interval-based metloadsstill exploit run-time pat-
terns, while this scheme would not work because it assunag¢setth phase, once in

execution, maintains identical locality. Next are two segamples.
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Spec95/Vortex, test run, sampled 272 times

Spec95/Gcce, compiling ccep.i, sampled 331 times
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Figure 4.6: Sampled reuse distance trac&ot andVortex The exact phase length is
unpredictable in general.

4.3.1.2 Gcc and Vortex

The program&ccandVortexare different because their phase length is not consis-
tent even in the same execution.Geg, the phase length is determined by the function
being compiled. Figure 4.6 shows the distance-based sanagle. Unlike previous
trace graphs, it uses horizontal steps to link sample poiiite peaks in the upper
graph roughly correspond to the 100 functions in the 6388&4input file. The size and

location of the peaks are determined by the input and areamstant.

Vortexis an object-oriented database. The test run first consteudiatabase and
then performs a set of queries. The lower figure of Figure Hovs the sample trace. It
shows the transition from data insertion to query procgsditowever, in other inputs,
the construction and queries may come in any order. The &edcvior, likeGceg is

input dependent and not constant.

The next chapter discusses those programs in more detdifgaposes a technique

based on active profiling to effectively detect phases is¢hmrograms.
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4.3.2 Adaptive Cache Resizing

During an execution, cache resizing reduces the physiadiecaize without in-
creasing the miss rate [Balasubramonian et al., 2000b; Hetaalg, 2003]. Therefore,
it can reduce the access time and energy consumption of tihe edthout losing per-
formance. We use a simplified model where the cache congis#-byte blocks and
512 sets. It can change from direct mapped to 8-way set ats@giso the cache size
can change between 32KB and 256KB in 32KB units. In the adiaptave need to

predict the smallest cache size that yields the same missisahe 256KB cache.

As seen in the example dbmcaty program data behavior changes constantly. A
locality phase is a unit of repeating behavior rather thamigaf uniform behavior.
To capture the changing behavior inside a large phase, vigedivinto 10K intervals
(called phase intervals). The adaptation finds the besecsizh for each interval during
the first few executions and reuses them for later runs. Therse needs hardware

support but needs no more than that of interval-based casiwng.

Interval-based cache resizing divides an execution inefiength windows. The
basic scheme is to monitor some run-time behavior like brantss prediction rate
and instruction per cycle during the execution of an intefBalasubramonian et al.,
2000b]. If the difference between this and the last inteexaleeds a threshold, the
execution is considered as entering a brand new phase. Tieenscdoesn’t catego-
rize intervals into a number of phases, but only detects kdrghe current interval is
similar enough to the last one. If not, it immediately startsew exploration to find
the best cache size for the new phase, even if many similarvais have appeared
before the last interval. Note that it's possible for a nevag#hto be too short for the
exploration to finish. In that case, at the phase changentiwariplete exploration will
be discarded and a new one will start. Once an exploratiorptzies, the best cache

configuration for the current phase is determined. The systen keeps using this
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configuration for the later intervals until it detects arestphase change, which triggers

a new exploration.

We test the basic interval-based scheme using five diffenégrtval lengths: 10K,
1M, 10M, 40M, and 100M memory accesses. In the experimentasseme perfect
phase detection: there is a phase change if the best caehefglze current interval
differs from the last one. (We know the best cache size of @aelse or interval by
running it throughCheetah a cache simulator that measures the miss rate of all eight
cache sizes at the same time [Sugumar and Abraham, 1993.Jmpiementation is
idealistic because in reality the interval-based schemaellyscannot detect all phase
changes precisely, due to the imperfect correlation betwke monitored run-time
behavior and the optimal cache configurations. Moreoveridealistic version doesn’t
have detection latency: the earliest time to detect a neweirareality is after the
termination of the first interval in that phase when the infation of the hardware
events of the interval becomes available. The upshot isebaty interval uses its

optimal cache configuration except the exploration periodke idealistic scheme.

Some studies extend the basic interval-based scheme bigledng code informa-
tion such as code working set [Dhodapkar and Smith, 2002]kasic-block vector
(BBV) [Sherwood et al., 2003]. We test a BBV predictor using 10Mtiaction win-
dows, following the implementation of Sherwood et al [Shepd et al., 2003] and uses
a run-length encoding Markov predictor to predict the phdsetity of the next interval
(the best predictor reported in [Sherwood et al., 2003])ikdrthe basic interval-based
scheme, the BBV method categorizes past intervals into a nuailghases and as-
signs each phase an identity. At the beginning of an intetkial method predicts the
interval’s phase identity or assigns a new identity if timerval is very different from
any previous ones. In our experiment, the implemented sehsgralso idealistic: an
exploration is triggered only when a new phase identity 8gaeed or the current in-
terval has a different optimal cache configuration from the obtained from the last

exploration of its phase. In comparison, the basic intebesed scheme starts a new
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exploration at every point when the optimal configurationdyees different from the

last interval.

For run-time exploration, we count the minimal cost—eacpl@nation takes ex-
actly two trial runs, one at the full cache size and one at #@ié dache size. Then
we start using the best cache size determined by the orheleathe simulataChee-
tah. The results for interval and BBV methods are idealistic. Wthie result of the
locality-phase method is real; each phase uses the optashkcconfiguration of its
first instance for all its instances after the exploratiorique Because it is able to pre-
cisely predict the exact behavior repetition, the locgihase method can amortize the
exploration cost over many executions. With the right handsupport, it can gauge
the exact loss compared to the full size cache and guarariiearal on the absolute

performance loss.

Figure 4.7 shows the average cache size from locality-phas&val, and BBV
methods. The upper graph shows the results of adaptatibnwitniss-rate increase.
The results are normalized to the phase method. The largebecsize, 256KB, is
shown as the last bar in each group. Different intervals fifférént cache sizes, but
all reductions are less than 10%. The average is 6%. BBV givesistently good
reduction with a single interval size. The improvement imast 15% and on average
10%. In contrast, the phase adaptation reduces the caeheyshd% for most programs

and over 35% on average.

The lower graph in Figure 4.7 shows the results of adaptatitm a 5% bound
on the miss-rate increase. The effect of interval methodeyareatly. The 10M
interval was 20% better than the locality phase F&fT but a factor of three worse
for Tomcatvand Swim The 100M interval has the best average reduction of nearly
50%. BBV again shows consistently good reduction with a singerval size. On
average it is slightly better than the best interval methtde phase method reduces
the cache size more than other methods do for all progranepekar FFT. FFT has

varied behavior, which causes the low coverage and constgumt as large cache-
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size reduction by locality phase predictidviolDyn does not have identical locality, so
phase-based resizing causes a 0.6% increase in the nundaahef misses. Across all

programs, the average reduction using locality phaseseis@d2b.

Figure 4.8 shows cache miss rate increases due to the cashiege The upper
graph shows 0 to 1.2% increase with at most 0.2% on average.inthease mainly
comes from the indispensable explorations. The lower gogghonstrates less than

4.5% increase, satisfying the required 5% upper bound.

The effectiveness of locality phases is because of theurate phase boundaries
and the high consistency of phase behavior. Interval-baskedmes including BBV
method cannot work as well because the right phase bousdadg not match interval
boundaries. The large variance of BBV phase instances ydliest by Figure 4.4, incurs

much more explorations per phase than those per localityepha

Earlier studies used more accurate models of cache and redathe effect on
time and energy through cycle-accurate simulation. Sinoellating the full execu-
tion takes a long time, past studies either used a partied toa reduced the program
input size [Balasubramonian et al., 2000b; Huang et al., 088 choose to measure
the miss rate of full executions. While it does not give theetior energy, the miss
rate is accurate and reproducible by others without sigmifiefforts in calibration of

simulation parameters.

4.3.3 Phase-Based Memory Remapping

We use locality phases in run-time memory remapping. To sumlynamic data
remapping at the phase boundary, we assume that the masheogiipped with the
Impulsememory controller, developed by Carter and his colleaguédsnatersity of
Utah [Zhang et al., 2001; Zhang, 2000lmpulsereorganizes data without actually

copying them to CPU or in memory. For example, it may creatdunwae-major version
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and BBV methods. Upper graph: no increase in cache misses.rlgragh: at most
5% increase.

of a row-major array via remapping. A key requirement forlekmg Impulseis to

identify the time when remapping is profitable.

We consider affinity-based array remapping, where arragtstémd to be accessed
concurrently are interleaved by remapping [Zhong et alQ420 To demonstrate the
value of locality phase prediction, we evaluate the peréoroe benefits of redoing the

remapping for each phase rather than once for the whole gmoduring compilation.
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We apply affinity analysis for each phase and insert remgppaade at the location of
the phase marker. The following table shows the executioe th seconds on 2GHz

Intel Pentium IV machine with thgcccompiler usingO3.

Table 4.6: Performance improvement from phase-based asgapuping, excluding
the cost of run-time data reorganization

| Benchmark| Original | Phase (speedup)Global (speedup)
Mesh 4.29 4.17 (2.8%) 4.27 (0.4%)
Swim 52.84 | 34.08 (35.5%) | 38.52(27.1%)

For the two programs, we obtain speedups of 35.5% and 2.8%va@u to the
original program and 13% and 2.5% compared to the best statec layout [Zhong
et al., 2004], as shown in Table 4.6. In the absence dfrgrulseimplementation, we
program the remapping and calculate the running time exwuithe remapping cost.
Table 7.3 of Zhang’s dissertation shows the overhead ohgetip remappings for a
wide range of programs. The overhead includes setting ugoshaegion, creating
memory controller page table, data flushing, and possilie miavement. The largest
overhead shown is 1.6% of execution time for static indexore@mapping [Zhang,
2000].

For example for the 14 major arrays$wim whole-program analysis shows close
affinity between array andv, uoldandpold, andunewandpnew Phase-based analysis
shows affinity group §,v,g for the first phase, {,v,p,unew,vnew,pnéior the second
phase, and three other groups,yold,unew; { v,vold,vnew, and {p,pold,pnew, for
the third phase. Compared to whole-program reorganizaherphase-based optimiza-
tion reduces cache misses by one third (due to ay#&yr the first phase, by two thirds

for the second phase, and by half for the third phase.

Using the two example programs, we have shown that phasgpoedinds oppor-
tunities of dynamic data remapping. The additional issdedfmity analysis and code
transformation are discussed by Zhong et al [Zhong et adl4R('he exact interaction

with Impulselike tools is a subject of future study.
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4.3.4 Comparison with Manual Phase Marking

We hand-analyzed each program and inserted phase markarsidl markergs
based on our reading of the code and its documentation asawedsults frongprof
(to find important functions). We compare manual markindgwaiitomatic marking as
follows. As a program runs, all markers output the logicaki(the number of memory
accesses from the beginning). Given the set of logical tiimes manual markers and
the set from auto-markers, we measure the overlap betwedawthsets. Two logical
times are considered the same if they differ by no more th@wa#ich is 0.02% of the
average phase length. We use the recall and precision tainegaegir closeness. They
are defined by the formulas below. The recall shows the ptgerof the manually
marked times that are marked by auto-markers. The precssiows the percentage of

the automatically marked times that are marked manually.

|MNA|

Recall _ (4.1)
| M |
Precision = % (4.2)

where ) is the set of times from the manual markers, ahi the set of times from

auto-markers.

Table 4.7 shows a comparison with manually inserted markerdetection and
prediction runs. The columns for each run give the recallthegrecision. The recall
is over 95% in all cases except fdtolDyn in the detection run. The average recall
increases from 96% in the detection run to 99% in the preahctin because the phases
with a better recall occur more often in longer runs. Henle,auto-markers capture
the programmer’s understanding of the program because#iely nearly all manually

marked phase changing points.
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Table 4.7: Overlap with manual phase markers

Benchmark|| Detection Prediction
Recall| Prec. | Recall| Prec.
FFT 1 1 1 1
Applu 0.993 | 0.941| 0.999 | 0.948
Compress || 0.987 | 0.962| 0.987 | 0.962
Tomcatv 0.952 | 0.556| 1 0.571
Swim 1 0.341 1 0.333
Mesh 1 0.834 1 0.834
MolDyn 0.889 | 0.271| 0.987 | 0.267
Average 0.964 | 0.690| 0.986 | 0.692

The precision is over 95% féxppluandCompressshowing that automatic markers
are effectively the same as the manual markkislDyn has the lowest recall of 27%.
We checked the code and found the difference. When the prograanstructing the
neighbor list, the analysis marks the neighbor search fon particle as a phase while
the programmer marks the searches for all particles as a&plashis case, the anal-
ysis is correct. The neighbor search repeats for each [garfitiis also explains why
Moldyncannot be predicted with both high accuracy and high coeerafe neighbor
search has varying behavior since a particle may have aelitf@umber of neighbors.
The low recall in other programs has the same reason: thenatitbanalysis is more

thorough than the manual analysis.

Four of the test programs are the simulation of grid, meshNubddy systems in
time steps. Ding and Kennedy showed that they benefited fyorardic data packing,
which monitored the run-time access pattern and reorgdrifee data layout multiple
times during an execution [Ding and Kennedy, 1999a]. Tlehhique was automatic
except for a programmer-inserted directive, which mustdeeeted once in each time
step. This work was started in part to automatically indeetdirective. It has achieved
this goal: the largest composite phase in these four pragiarthe time step loop.
Therefore, the phase prediction should help to fully autendynamic data packing,

which is shown by several recent studies to improve perfagady integer factors for
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physical, engineering, and biological simulation and spanatrix solvers [Ding and
Kennedy, 1999a; Han and Tseng, 2000a; Mellor-Crummey e2@0D]; Strout et al.,
2003].

SummaryFor programs with consistent phase behavior, the new megived ac-
curate locality prediction and consequently yields sigaifit benefits for cache resizing
and memory remapping. It is more effective at finding longureng phases than pre-
vious methods based on program code, execution intertaais dombination, and even
manual analysis. For programs with varying phase behateprofiling step can often
reveal the inconsistency. Then the method avoids behavealigtion of inconsistent
phases through a flag (as shown by the experiments reporféable 4.2). Using a
small input in a profiling run is enough for locality phase giotion. Therefore, the
technique can handle large programs and long executiomgrégrams such aSCC
andVortex where little consistency exists during the same executianlocality anal-
ysis can still recognize phase boundaries but cannot yee mpddictions. Predictions
based on statistics may be helpful for these programs, wiictains to be our future
work. In addition, the current analysis considers only teraplocality. The future

work will consider spatial locality in conjunction with teyaral locality.

4.4 Related Work

This work is a unique combination of program code and datéyaisa It builds on

past work in these two areas and complements interval-brasétbds.

Locality phasesEarly phase analysis, owing to its root in virtual-memorynage-
ment, was intertwined with locality analysis. In 1976, Batsmd Madison defined a
phase as a period of execution accessing a subset of progtaifBatson and Madison,
1976]. They showed experimentally that a set of Algol-60gpamns spent 90% time in
major phases. However, they did not predict locality phakater studies used time or

reuse distance as well as predictors such as Markov modetgptove virtual memory
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management. Recently, Ding and Zhong found predictablenpattn the overall local-
ity but did not consider the phase behavior [Ding and Zho0§32. We are not aware

of any trace-based technique that identifies static phaseg locality analysis.

Program phasesAllen and Cocke pioneered interval analysis to convert @ogr
control flow into a hierarchy of regions [Allen and Cocke, 1Pp7Bor scientific pro-
grams, most computation and data access are in loop nestsniar of studies showed
that the inter-procedural array-section analysis acelyaimmarizes the program data
behavior. The work by Hsu and Kremer used program regionsritral processor volt-
ages to save energy. Their region may span loops and fusa@rmhis guaranteed to be
an atomic unit of execution under all program inputs [Hsu ldreimer, 2003]. For gen-
eral purpose programs, Balasubramonian et al. [Balasubiamenal., 2000b], Huang
et al. [Huang et al., 2003], and Magklis et al. [Magklis et aD03] selected as phases
procedures whose number of instructions exceeds a thceshal profiling run. The
three studies found the best voltage for program regions tairsing input and then
tested the program on another input. They observed thatreiff inputs did not affect
the voltage setting. The first two studies also measuredribegg saving of phase-
based cache resizing [Balasubramonian et al., 2000b; Huaalg, 003]. A recent
work by Lau et al. considers loops, procedures, and cali aggossible phase markers
if the variance of their behavior is lower than a relativeesirold [Lau et al., 2006].
In comparison, the new technique does not rely on staticrarogstructure. It uses
trace-based locality analysis to find the phase boundam@ish may occur anywhere

and not just at region, loop or procedure boundaries.

Interval phasesinterval methods divide an execution into fixed-size windpalas-
sify past intervals using machine or code-based metricspegdict future intervals us-
ing last value, Markov, or table-driven predictors [Dhokiapand Smith, 2002, 2003;
Duesterwald et al., 2003; Sherwood et al., 2003]. The past uged intervals of length
from 100 thousand [Balasubramonian et al., 2000b] to 10 enilinstructions [Sher-

wood et al., 2003] and executions from 10 milliseconds to d€bads [Duesterwald
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et al., 2003]. Nagpurkar et al. proposed a framework fornrenphase detection and
explored the parameter space [Nagpurkar et al., 2006]rviatprediction works well
if the interval length does not matter, for example, whenyatetion consists of long
steady phases. Otherwise it is difficult to find the best waklength for a given pro-
gram on a given input. The experimental data in this pape~rshe inherent limitation
of intervals for programs with constantly changing datadvedr. Balasubramonian et
al. searches for the best interval size at run time [Balasabnéan et al., 2003]. Their
method doubles the interval length until the behavior iblstaLet NV be the execution
length, this new scheme searcl@8ogN) choices in the space df candidates. In
this work, we locate phases and determine their exact lsrtgtbugh off-line locality
analysis. We show that important classes of programs hav&stent phase behavior
and the high accuracy and large granularity of phase prediellow adaptation with
a tight worst-performance guarantee. However, not all pnog are amenable to the
off-line analysis. Interval-based methods do not havelitmigation and can exploit the

general class of run-time patterns.

4.5 Summary

This chapter presents a general method for predicting toieial memory phases
in programs with input-dependent but consistent phasevimhaBased on profiling
runs, it predicts program executions hundreds of timeslaagd predicts the length
and locality with near perfect accuracy. When used for cadagtation, it reduces the
cache size by 40% without increasing the number of cacheesii$®hen used for mem-
ory remapping, it improves program performance by up to 38%.more effective at
identifying long, recurring phases than previous methadsed on program code, exe-
cution intervals, and manual analysis. It recognizes @ogrwith inconsistent phase

behavior and avoids false predictions. These results stitjogt locality phase predic-
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tion should benefit modern adaptation techniques for irstnggperformance, reducing

energy, and other improvements to the computer systemrdesig

Scientifically speaking, this work is another attempt to ensthnd the dichotomy
between program code and data access and to bridge thedibsiween off-line anal-
ysis and on-line prediction. The result embodies and estémel decades-old idea that

locality could be part of the missing link.

However, the method is not universal. It relies on the ragrdaetitions of pro-
gram phase behavior. Some applications, such as compildrigsigrpretors and server
programs, have strongly input-dependent behavior. An i@t of a compiler, for
instance, may compile hundreds of different functions we#ich compilation showing
different behavior. The complexity and irregularity posspecial challenge to phase
analysis. The next chapter presents an approach to coha¢rthallenge into an op-
portunity to detect phases in those programs and effegthvehefit dynamic memory

management.
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5 Behavior Phase Analysis through

Active Profiling

Utility programs, which perform similar and largely indeywent operations on a se-
guence of inputs, include such common applications as demspiinterpreters, and
document parsers; databases; and compression and entoaligThe repetitive be-

havior of these programs, while often clear to users, has ti#cult to capture auto-

matically. This chapter presents an active profiling teghaiin which controlled inputs
to utility programs are used to expose execution phaseglvere then marked, auto-
matically, through binary instrumentation, enabling usgxploit phase transitions in
production runs with arbitrary inputs. Experiments withefprograms from the SPEC
benchmark suites show that phase behavior is surprisimgljigiable in many (though
not all) cases. This predictability can in turn be used fdimozed memory manage-

ment leading to significant performance improvement.

5.1 Introduction

Complex program analysis has evolved from the static arsadfsiource or machine
code to include the dynamic analysis of behavior acrossxaltwions of a program.

We are particularly interested in patterns of memory refeeebehavior, because we
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can use these patterns to improve cache performance, rétkiogerhead of garbage

collection, or assist memory leak detection.

A principal problem for behavior analysis is dependencerogiam input. Outside
the realm of scientific computing, changes in behavior ieduay different inputs can
easily hide those aspects of behavior that are uniform adéngits, and might prof-
itably be exploited. Programming environment tools, seamplications, user inter-
faces, databases, and interpreters, for example, use déydata and control structures
that make it difficult or impossible for current static argfy/to predict run-time be-
havior, or for profile-based analysis to predict behaviomputs that differ from those

used in training runs.

At the same time, many of these programs have repetitivegsghtast users under-
stand well at an abstract, intuitive level, even if they hagger seen the source code.
A C compiler, SPEC CPU2000 GCC for example, has a phase in whadhripiles a
single input function [Henning, 2000]. It runs this funetithrough the traditional tasks
of parsing and semantic analysis, data flow analysis, exgaibcation, and instruction

scheduling, and then repeats for the following function.

Most of the applications mentioned above, as well as comsmesand transcod-
ing filters, have repeatingehavior phasesand often subphases as well. We refer to
such programs astilities. They have the common feature that they accept, or can be
configured to accept, a sequence of requests, each of whictbdsssed more-or-less
independently of the others. Program behavior differs mbt across different inputs
but also across different parts of the same input, makingficult for traditional analy-
sis techniques to find the phase structure embodied in thee ¢todnany cases, a phase

may span many functions and loops, and different phases haag the same code.

Figure 5.1 illustrates the opportunities behavior phasesige for memory man-
agement. Though the volume of live data in the compiler mayedrg large while
compiling an individual, it always drops to a relatively loxalue at function compi-

lation boundaries. The strong correlation between phaseésremory usage cycles
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suggests that the phase boundaries are desirable poirgsl&int memory, measure
space consumption to predict memory usage trends, andfglaggect lifetimes to

assist in memory leak detection.

Figure 5.1, however, also illustrates the challenges iaadety phases. Phases dif-
fer greatly in both length and memory usage. Other metricgvssimilar variation.
Figure 5.2(a), for example, plots IPC (instruction per eydbr the same program run
(with physical time on the: axis). The strong dependence of curve shape on the func-
tion being compiled makes it difficult for traditional analy techniques to find the
phase structure embodied in the code. A zoomed view of thedtigure 5.2(b)) sug-
gests that something predictable is going on: IPC in eadhnes has two high peaks
in the middle and a declining tail. But the width and heightledge features differs so
much that previous signal-processing based phase analgsise locality phase analy-
sis in Chapter 4, cannot reliably identify the pattern [Shiesl.e 2004b]. Furthermore,
the phases of GCC and other utility programs typically spanyranction calls and

loops, precluding any straightforward form of proceduréop based phase detection.

In this paper we introducactive profiling which addresses the phase detection

problem by exploiting the following observation:

If we control the input to a utility program, we can often ferit to dis-
play an artificially regular pattern of behavior that exgote relationship

between phases and fragments of machine code.

Active profiling uses a sequence of identical requests todgadbehavior that is both
representative of normal usage and sufficiently regulateatify outermost phases (de-
fined in Section 5.2.1). It then uses different real requestapture inner phases and
to verify the representativeness of the constructed inpyirograms with a deep phase
hierarchy, the analysis can be repeated to find even lower péases. We can also de-
sign inputs to target specific aspects of program behawoexXample, the compilation

of loops.
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Utility programs are the ideal target for this study becatlsy are widely used
and commercially important, and because users naturathgrstand the relationship
between inputs and top-level phases. Our technique, whitllly automated, works
on programs in binary form. No knowledge of loop or functitrusture is required, so
a user can apply it to legacy code. Because users controlldatiea of regular inputs,
active profiling can also be used to build specialized vessiof utility programs for
different purposes, breaking away from the traditionaledmnary-fits-all” program

model.

We evaluate our techniques on five utility programs from tiRES benchmark
suites. For each we compare the phases identified by actfiémy with phases based
on static program structure (functions and loop nests) andine-time execution inter-
vals. Finally, we demonstrate the use of phase informabandnitor memory usage,

improve the performance of garbage collection, and detechony leaks.

5.2 Active Profiling and Phase Detection

5.2.1 Terminology

Program phases have a hierarchical structure. For utititgnams, we define an
outermost phasas the processing of a request, such as the compilation afctidn
in a C compiler, the compression of a file in a file compressod, the execution of
a query on a database. Amer phasas a computation stage in the processing of a
request. Compilation, for example, typically proceeds tigtoparsing and semantic
analysis, data flow analysis, register allocation, anduiesibn scheduling. Aphase
markeris a basic block that is always executed near the beginninigabfphase, and

never otherwise.
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5.2.2 Constructing Regular Inputs

In utility programs, phases have variable length and behaag shown in Fig-
ure 5.2. We can force regularity, however, by issuing a secgief identical requests—
in GCC, by compiling a sequence of identical functions, as shiowrigure 5.3. Solid
and broken vertical lines indicate outermost and inner @lwgindaries, identified by
our analysis. The fact that behavior repeats a predetedmamber of times (the num-

ber of input repetitions) is critical to the analysis.

A utility program provides an interface through which to realequests. A re-
guest consists of data and requested operations. Thesiceeran be viewed as a mini-
language. It can be as simple as a stream of bytes and a smddenoef command-line
arguments, as, for example, in a file compression programantalso be as compli-
cated as a full-fledged programming language, as for exanmpéeJava interpreter or

a simulator used for computer design.

To produce a sequence of repeating requests, we can ofteapest a request if the
service is stateless—that is, the processing of a requestrdt change the internals of
the server program. File compression, for example, is umifpapplied to every input

file; the compression applied to later files is unaffectedheyaarlier ones. Care must
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be taken, however, when the service stores information talequests. A compiler
generally requires that all input functions in a file havequa names, so we replicate
the same function but give each a different name. A datalies®es state as a result of
insertions and deletions, so we balance insertions antlaledeor use inputs containing

only lookups.

The appropriate selection of regular inputs is importartitamdy to capture typical
program behavior, but also to target analysis at subcommpsre a program. For
example, inGCC, if we are especially interested in the compilation of lgope can
construct a regular input with repeated functions that heothing but a sequence of
identical loops. Phase detection can then identify therimiases devoted to loop
compilation. By constructing special inputs, not only do welate the behavior of a
sub-component of a service, we can also link the behavidraa@ontent of a request.

We will discuss the use of targeted analysis féteal interpreter in Section 5.3.2.

5.2.3 Selecting Phase Markers

Active profiling finds phase markers in three steps. The fiegt searches for reg-
ularity in the basic-block trace induced by a regular inghis indicates outermost
phases. The second and third steps use real inputs to checkrisistency and to

identify inner phases.

Using a binary instrumentation tool, we modify the applcatto generate a dy-
namic trace of basic blocks. Given a regular input containfrrequests, the trace
should containf nearly identical subsequences. The phase markers mustbetea

f times each, with even intervening spaces.

We first purify the block trace by selecting basic blocks &t executed times.
Not all such blocks represent actual phase boundaries. ékbimay happen to be

executedf times during initialization, finalization, memory allogat, or garbage col-
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Data Structure

innerMarkers : the set of inner phase markers

outer M arker . the outermost phase marker

traceR . the basic block trace recorded in the regular training run
tracel : the basic block trace recorded in the normal (irregular) training run
RQSTR : the number of requests in the regular input

RQSTI : the number of requests in the normal input

setB . the set of all basic blocks in the program

setB1, setB2, set B3 . three initialy empty sets

b; . abasic block irset B

timeR(b;, j) . the instructions executed so far whigns accessed for thgh time
Vi =< V', Vi2,...,Vi¥ > : the recurring distance vector of basic bldgkn trace R, where

Vil = timeR(b;, j + 1) — timeR(b;, 7)
Algorithm
step1l)  Select basic blocks that app®42ST R times intrace R and put them intaet B1.
step 2a) FromsetB1, select basic blocks whose recurring distance pattern is similar to
the majority and put them inteet B2.
step 2b) Fromset B2, select basic blocks that appda®) ST I times intracel and
put them intoset B3.
step3) Fronset B3, select basic blocks that are followed by a long computatiamdne R
before reaching any block iset B3
and put those blocks intwner Markers; outer M arker is the block
in inner M arkers that first appears itraceR.

Procedure Step2a() Procedure IsOutlier(z, S)
/I M and D are two initially empty arrays  // S is a container of values
for everyb; in setB1 { m = GetMean();
V; = GetRecurDistanceéy, traceR); d = GetStandardDeviatioA(;
m; = GetMeany); if (|Jz — m| > 3 % d) return true;
d; = GetStandardDeviatioy); return false;
M.Insert(n;); End

D.Insert(;);}
if  (NsOutlier(m;,M) &&
lIsOutlier(d;,D)){
set B2.AddMemberg;);}
End

Figure 5.4: Algorithm of phase marker selection and prooesitor recurring-distance
filtering.
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lection. We therefore measure the mean and standard deviatidistance between

occurrences, and discard blocks whose values are outieesHigure 5.4).

The remaining code blocks all hayeevenly spaced occurrences, but still some
may not be phase markers. @CC, for example, the regular input may contain a
single branch statement. Code to parse a branch may thus@muoeiper request with
this input, but not with other inputs. In step two we check thlee a block occurs
consistently in other inputs. We use a real input contaigifigon-identical) requests.
We measure the execution frequency of the candidate blotk&eep only those that
are executed times. Usually one real input is enough to remove all falsgtpes, but

this step can be repeated an arbitrary number of times teaserconfidence.

Having identified blocks that appear always to occur exaatlige per outermost
phase, we consider the possibility that these may actuahk interesting pointsithin
an outermost phase. Compilation, for example, typicallypeals through parsing and
semantic analysis, data flow analysis, register allocatmwl instruction scheduling.

We call thesenner phasesEach is likely to begin with one of the identified blocks.

In step three we select inner phases of a non-trivial lengthpack one block for
each phase boundary. Figure 5.5 shows a trace@C€ on regular input. Each circle
on the graph represents an instance of a candidate innee phaker. The Xx-axis
represents logical time (number of memory accesses); #rasyshows the identifier
(serial number) of the executed block. We calculate thecklgime between every
two consecutive circles: the horizontal gaps in Figure %:B0m these we select the
gaps whose width is more than 3 standard deviations larger tthe mean. We then
designate the basic block that precedes each such gap toibeeasphase boundary

marker. The first such marker doubles as the marker for thermaist phase.

The phases of a utility program may also nest. For exampaehdlay of a function
in the input to a compiler may contain nested statements Hiptedevels. This nesting
may give rise to deeply nested phases, which our frameworkea&xtended to identify,

using a sequence of identical sub-structures in the inpuhd case of the compiler, we
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Figure 5.5:GCCinner-phase candidates with inner-phase boundaries.

can construct a function with a sequence of identical loapestents, and then mark
the portions of each inner phase (compilation stage) deuotendividual loops, using
the same process that we used to identify outermost phasks original step of the

analysis.

5.3 Evaluation

We test six programs, shown in Table 5.1, from the SPEC95 alC3R bench-
mark suites: a file compression utility, a compiler, two ipteters, a natural language
parser, and an object-oriented database. Three othey ptiigrams—two more com-
pression utilities—exist in these two suites. We have noexperimented with them
because they do not contribute a new application type. Atlgeograms are written in

C. Phase analysis is applied to the binary code.

We construct regular inputs as follows. Fe€Cwe use a file containing 4 identical
functions, each with the same long sequence of loopsCeanpresswhich is written
to compress and decompresses the same input 25 times, weguaoie that is 1% of

the size of the reference input in the benchmark suite. lFowe provide 6 identical
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Table 5.1: Benchmarks for utility phase analysis

Benchmark| Description Source

Compress | UNIX compression utility] SPEC95Int
GCC GNU C compiler 2.5.3 | SPEC2KInt
LI Xlisp interpreter SPEC95Int
Parser natural language parser | SPEC2KiInt
Vortex object oriented database| SPEC2KiInt
Perl Perl interpreter SPEC2KInt

expressions, each of which contains 34945 identical spiessions. FoParserwe
provide 6 copies of the sentence “John is more likely thatdieé than it is that Fred
died.” (That admittedly nonsensical sentence is drawn fteenreference input, and
not surprisingly takes an unusually long time to parse.) fHgeilar input foVortexis
a database and three iterations of lookups. Since the ispari of the program, we
modify the code so that it performs only lookups but neitimsertions nor deletions in

each iteration.

We use ATOM [Srivastava and Eustace, 1994] to instrumergraras for the phase
analysis on a decade-old Digital Alpha machine, but meaptwgram behavior on
a modern IBM POWER4 machine through its Due to the lack of a bimewyriting
tool on the IBM machine, we insert phase markers into the Alpinary, manually
identify their location, insert the same markers at the e@level, and then compile
and run the marked program on the IBM platform. hardware perdoce monitoring
facilities. POWER4 machines have a set of hardware countéishware automatically
read every 10ms. The AIX 5.1 operating system provides arprogning interface
library called PMAPI to access those counters. By instrumgrihe program with the
library function calls, one can determine the set of the Wwaré events specified by
the user at the instrumentation point. The instrumentasalso set to automatically
generate an interrupt every 10ms so that the hardware asumte read at the 10ms

granularity. Not all hardware events can be measured samedtusly. We collect cache
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miss rates and IPCs (in a single run) at the boundaries of amoghases and, within

phases, at 10ms intervals.

The phase detection technique finds phases for all 6 bengbn@&€Cis the most
complex program and shows the most interesting behaRethas more than one type
of phase. We describe these in the next two subsectionshan@inaining programs

in the third subsection.

5.3.1 GCC

GCC comprises 120 files and 222182 lines of C code. The phasetideteech-
nique successfully finds the outermost phase, which begamsampilation of an in-
put function. We also find 8 inner phases. Though the anatgsisnever considers
the source, we can, out of curiosity, map the automaticakbgited markers back to
the source code, where we discover that the 8 markers sephiferent compilation

stages.

The first marker is at the end of function “loop_optimize”,ialhperforms loop op-
timization on the current function. The second marker ifigrhiddle point of function
“rest_of _compilation”, where the second pass of commonesydression elimination
completes. The third and fourth markers are both in functida_analysis”, which
determines the set of live registers at the start of eaclt idsck and propagates the
life information inside the basic block. The two markers separated by an analysis
pass, which examines each basic block, deletes dead gjerssates auto-increment
addressing, and records the frequency at which a registiefised, used, and rede-
fined. The fifth marker is in function “schedule_insns”, wihigchedules instructions
block by block. The sixth marker is at the end of function ‘lgad alloc”, which allo-
cates pseudo-registers. The seventh marker is in the saroioiu as the fifth marker,
“schedule_insns”. However, the two markers are in diffebeanches, and each invoca-

tion triggers one sub-phase but not the other. The two salsgshare executed through
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two calls to this function (only two calls per compilation @ffunction), separated by
the sixth marker in “global_alloc” among other functionlsall he last marker is in the
middle of function “dbr_schedule”, which places instroct into delay slots. These
automatically detected markers separate the compilatior8i major stages. Given the
complexity of the code, manual phase marking would be exhewiifficult for some-

one who does not know the program well. Even for an expe@Qc, it might not be

easy to identify sub-phases that occupy large portionseoéxecution time, of roughly

equal magnitude.

GCC behavior varies with its input. Regularity emerges, howewdren we cut
the execution into phases. Figure 5.6(a) shows the same asr¥igure 5.2(b) with
markings for outermost (solid) and inner (broken) phasesh Batermost and inner
phases show similar signal curves across phase instandesIPC curves of GCC
on other inputs have a related shape, shown in Figure 5@lb)This shows that
GCCdisplays a recurring execution pattern—the same complepdation stages are
performed on each function in each input file. The outermbsisp and inner phase
markers accurately capture the variation and repetitigra@gram behavior, even when
the shape of the curve is not exactly identical from functwifunction or from input
to input. Note that while we have used IPC to illustrate bararepetition, the phase

marking itself is performed off-line and requires no orelinstrumentation.

The lower four graphs in Figure 5.6 show the IPC curve€ompressVortex LI,
andParser. We will discuss them in Section 5.3.3 when comparing bedrgvhases

from active profiling with other types of phases.

Figure 5.8(a) shows a distribution graph of IPC and cachealtéts for phase in-
stances o65CC. Instances of different sub-phases are represented leyatitfsymbols.
GCChas 57 instances of the outermost phase in that ref inpubh iBatance is divided
into 8 inner phases. We have a total of 456 points in Figuréak.8The 456 points
cluster into 5 rough groups. The top group is the cluster @fsph3. It corresponds

to the highest peak in the IPC curve, and is separated frorothies phase instances.
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The cluster of phase 4 overlaps with the top of the clusterhafsp 6, but separates
from its major body. Phase 4 corresponds to the highlandanR curve, and phase
5 corresponds to the second highest peak with some low ti@ngiarts. The cluster
of phase 8 corresponds to a short segment in IPC curve withR@wand high cache
hit rate. It separates from the other clusters well. The neimg large cluster contains
the instances of phases 1, 2, 5 and 7. These four phasespandes the 4 lowest IPC
segments. They are close to each other but still separatdynféisase 2 has the highest
cluster, phase 7 the lowest, with phase 1 in the middle. Phhas the rightmost cluster
with highest cache hit rate. Most of the 8 groups are veryt tidcept for the values
from phase 2. Even for this group, most points have almossdnee IPC, and cache

hit rates that vary by less than 0.2.

5.3.2 Perl

Though our active analysis tool is usually employed in ayfalitomated form (the
user provides a regular input and a few real inputs, and thlectones back with an in-
strumented binary), we can invoke the sub-tasks indivigualexplore specific aspects

of an application.

As an example, consider theerl interpreter. The installed version in our system
directory has 27 thousand basic blocks and has been strgfjadidlebugging informa-
tion. Perlinterprets one program at a time, so it does nat batermost phases as other
programs do. In hopes of exploring how the interpreter gsese function calls, how-
ever, we created a regular 30-line input containing 10 idahtalls. Given this input,
the regularity checking tool (step 1 of Section 5.2.3) idfesd 296 candidate marker
blocks. We then created a 10-line irregular program coimtgitiree calls to two differ-
ent functions. The consistency checking tool (step 2) sylesetly found that 78 of the
296 candidates appeared consistently. Choosing one of bihades at random (num-

ber 5410, specifically), we tested a third input, writtengoursively sum the numbers
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from 1 to 10 in 11 calls. Block 5410 was executed exactly 11 $imkhis experience
illustrates the power of active profiling to identify higéviel patterns in low-level code,

even when subsumed within extraneous computation.

5.3.3 Comparison with Procedure and Interval Phase Analysis

In this section, we compare the ability of different anadytsichniques—active pro-
filing, procedure analysis, and interval analysis—to idgmnihases with similar be-
havior. In Section 5.4 we will consider how to use these phaseptimize memory
management. Different metrics—and thus different analtesthniques—may be ap-
propriate for other forms of optimization (e.g., fine-graining of dynamically config-

urable processors).

Program phase analysis takes a loop, subroutine, or otlter stuctures as a
phase [Balasubramonian et al., 2000b; Georges et al., 20@&hdet al., 2003; Lau
et al., 2004; Liu and Huang, 2004; Magklis et al., 2003]. Hus texperiment, we
mainly consider procedure phases and follow the schema dpyeHuang et al., who
picked subroutines by two thresholds,.;,,. andd,,.;, [Huang et al., 2003]. Assume
the execution length i&V. Their scheme picks a subroutipdf the cumulative time
spent inp (including its callees) is no less thap.;,,:I" and the average time per invo-
cation no less tha#fi,,.;,T". In other words, the subroutine is significant and does not
incur an excessive overhead. Huang et al. used 5%,fgy,; and 10K instructions
for 6,,..x 1. Georges et al. made the threshold selection adaptive loaselividual
programs, the tolerable overhead, and the need of a userg&eet al., 2004]. They
studied the behavior variation of the procedure phasesdet af Java programs. Lau et
al. considered loops and call sites in addition to subrestand selected phases whose
behavior variation is relatively low [Lau et al., 2004]. Inig experiment, we use the
fixed thresholds from Huang et al. The extension by Lau et aly raduce the behavior

variation seen by in our experiments.
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Profile-based phase analysis depends on the choice of theagranput. In our
test set, the number of outermost phase instances range3frgmeries invVortex to
850 sentences iRarser The threshold,,,;, would need to less than 0.13%. Many
procedures may qualify under a sm@},.;,, making it difficult to find the procedure
for the outermost phase, if such procedure exists. In anhdithe behavior of phase
instances of a utility program may differ significantly. Fexample inLi, the IPC
of the outermost phase has an unpredictable pattern, sestanty-based selection
may find only the whole program as a phase. Indeed, the erecsgpieed may vary
greatly inLi as the interpreter processes different Lisp expressiosswéwill show
later, such phase is still valuable for memory managemesause each phase instance,
regardless of its IPC or cache miss rate variation, reptesememory usage cycle.
Active profiling, as guided by a user, does not depend on tme gampirical thresholds.
It considers all program instructions as possible phasademies not just procedures
and other code regions. In addition, active profiling useshmamaller inputs. For

example, the regular input arsercontains only 6 sentences.

Interval analysis divides an execution into fixed-size wind, classifies past in-
tervals using machine or code-based metrics, and pretietslass of future intervals
using last value, Markov, or table-driven predictors [Balasmonian et al., 2000b;
Dhodapkar and Smith, 2002; Duesterwald et al., 2003; Shmived al., 2003]. Most
though not all past studies use a fixed interval length foexalcutions of all programs,
for example, 10 million or 100 million instructions. For mases of comparison, we
select the interval length for each program in our experisea that the total number
of intervals equals the number of inner behavior phase nestidentified by active
profiling. Space limitations do not permit us to considerpassible prediction and
clustering methods. We calculate the upper bound of alliplessethods using this
interval length by applying optimal partitioning (appromated byt means in practice)

on the intervals of an execution. We further assume pertectigtion at run-time—we
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assume knowledge of the number of clusters, the behavidthencluster membership

of each interval before execution.

Though phases are not in general expected to have unifoemaitbehavior, dif-
ferent instances of the same phase should have sisnvi&agebehavior. In our exper-
iments we consider cache hit rate and IPC as measures ofibe@uantitatively, we
compute thecoefficient of variation (Covamong phase instances, which is the stan-
dard deviation divided by the mean. The CoV is the expectddrdifice between the
prediction (the average) and the actual value of each plasenormal distribution, a
standard deviation af means that 68% of the values fall in the rarge— d, m + d]
and 95% fall in the rangen — 2d, m + 2d]. The results from our hardware counters are
not accurate for execution lengths shorter than 10ms, saxaladed phase instances

whose lengths are shorter than 10ms.

Figure 5.7(a) shows the CoVs of cache hit rates. Each progsashawn by a
group of floating bars. Each bar shows the CoV of a phase asatysthod. When a
program has multiple inner phases, the two end points of alzaw the maximum and
minimum and the circle shows the average. The four bars in gamip show the CoVs
of behavior phases, procedure phases, intervals with teclng (all intervals belong
to the same group), and intervals witkmeans clustering (the best possible prediction

given the number of clusters).

Unlike the other methods, the results for procedure phasestaained via sim-
ulation. Since some of the procedures are library routimesyould require binary
instrumentation to obtain equivalent results from haréw@unters. We use simula-

tion because we lack an appropriate tool for the IBM machine.

GCC has 8 behavior sub-phases. The CoV is between 0.13% and 12Pthen
average is 4.5%. The CoV for procedure phases ranges from tb.32% with an
average of 4%. When cutting the execution into the same nupoflfeted length in-
tervals as the number of inner phase instances, the CoV is 1Y8ken the intervals

are clustered into 8 groups, the CoV ranges from 1% to 22% wittvarage of 2.7%.
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minimum and the circle is the average. A lower CoV and a smedlege mean more
consistent behavior. Part (b) shows the CoV of IPC.

The average CoV for procedure phases and interval phasewses tban that of the

behavior phases. However, the procedure phases do nottbeventire execution, and
the interval results assume perfect clustering and piiedictn addition, the behavior

phase that has the highest consistency (0.13% CoV) is theubfthase, which repre-
sents 8% of the program execution. The boundaries of thigphale are not procedure
boundaries. The phase length varies rather than stayirgiamn As a result, neither
procedure nor interval analysis, under however ideal oistances, could identify and

predict this behavior.

Compresdhas two sub-phases. The cache hit rate is always 88% fonpestaof
the first sub-phase and 90% for those of the second sub-plesate the fact that the
instances have different lengths, as shown in Figure 5.6{bg relative length ratio
is constant. In each outermost phase, the first sub-phase &i¢6 of the time and
the second takes the remaining 12%. The CoVs of the two subephare 0.15% and
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0.21%, barely visible in Figure 5.7 (a). When divided intotalusters, the smallest
and average CoV from interval phases is 0.7% and 0.9%. Thiggmoshows the value
of variable-length phases: even the ideal clustering ofifieagth intervals cannot be

as accurate.

Vortexhas less behavior variation than the previous two prograrhe. best case
procedure and interval phase results are 0.3% CoV, bettethlegd.7% minimum CoV
of behavior phases. The highest CoV, 8.9%, occurs in a proegihase. For predicting
the cache hit rate, the behavior phase information is ngtaritical. A carefully picked
interval length may capture a similar stable behavior. Harebehavior phases still

have the advantage of not needing to pick an interval length.

LI shows very few performance changes, as seen in Figure 5BXggpt for pro-
cedure phases, all methods have a CoV of less than 1%. Thepvocstdure, however,
shows an 11% CoWarseris similar. The CoV is below 2% except for procedure
phases, which have a CoV of 3% on average and 26% in the worst Tae two pro-
grams show that the behavior variation for a procedure cdarge even for a program
with relatively constant overall behavior. The result®akow the difficulty of setting
thresholds in procedure and interval phase analysis. A Cd¥woiay be too large for

LI but too small for programs such @CC.

The CoVs of the programs’ IPC are shown in Figure 5.7(b). Weatantlude the
procedure-based method for IPC since it is based on siranlatid therefore could not
be directly compared to the real measurement of IPCs in thes tithee cases. Between
the behavior and interval phases, the qualitative restdtshee same for IPC as for the
cache hit rate. On average across all programs, the CoV is thB®ehavior phases

and 7.1% for intervals with optimal clustering and predinoti

The five programs show a range of behavidompresss at one extreme, with be-
havior that is highly varied but consistent within sub-preagl is at the other extreme,
with behavior that is mostly constant and that does not chaegween phases. Graphi-

cally, the two graphs in Figure 5.8 plot the cache hit ratel&@&lon a two-dimensional
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plot. Each phase instance is a point. In the first graptClmmpressthe points are in
two tight clusters. In the second graph tdr the points spread within an range. The
behavior variation of the other three programs is betweesetltwo extremes. Note that
the interval phases do not produce highly clustered pomig &igure 5.8(a). These

points have variable lengths, which currently can only beked by behavior phases.

Recently, Georges et al. [Georges et al., 2004] and Lau et.ali gt al., 2004]

improved procedure phase analysis by picking proceduresevbehavior variation

is below a threshold. Their method can avoid procedures avitigh CoV. The best
possible result is shown by the lower bound CoV in Figure 5.@weler, procedure
phases, especially those with consistent behavior, magowar the entire execution.
Setting the threshold for each program is not trivial. Pdutre phases cannot capture
behavior phases that do not start or end on procedure or loapdaries, for example,

the 4th sub-phase @CCas discussed above. Finally, memory phases are valuable for
garbage collection (as we show next), even though theiamtgts have highly varied

CPU or cache behavior.

5.4 Uses of Behavior Phases

Behavior phases allow a programmer to improve the performafcommonly
used programs on conventional hardware. Program dynartacatlacation sites can
be classified into "phase local" and "global" according to tkmd period of their
allocated data. It in turn helps the detection of memoryded#khere are objects from
"phase local" sites that are not released after a phase oestdre allocation could be
memory leak. We also applied phase information to prevemtiemory management:
Garbage collection is invoked at phase boundaries onlyptacéard memory bound
is reached in a phase. The experiment on prodgcaishows 44% speedup compared

to the original program [Ding et al., 2005]. For Java progsathe phase information
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enables program-level memory control: We use an adaptivense to explore at phase

boundaries to find the good heap size [Zhang et al., 2006].

5.5 Related Work

Early phase analysis was aimed at virtual memory manageanewas intertwined
with locality analysis. In 1976, Batson and Madison definetiase as a period of ex-
ecution accessing a subset of program data [Batson and Madi8d6]. Later studies
used time or reuse distance as well as predictors such asoMarkdels to improve
virtual memory management. Recently, Shen et al. used restsace to model pro-
gram behavior as a signal, applied wavelet filtering, andketarecurring phases in
programs [Shen et al., 2004b]. For this technique to worl,piftograms must exhibit
repeating behavior. By using active profiling, we are ableatget utility programs,
whose locality and phase length are typically input-dependand therefore not regu-

lar or uniform.

Balasubramonian et al. [Balasubramonian et al., 2000b], gleaal. [Huang et al.,
2003; Liu and Huang, 2004], and Magklis et al. [Magklis et @003] selected as
program phases procedures, loops, and code blocks whodgenwoimnstructions ex-
ceeds a given threshold during execution. For Java progréesrges et al. selected
as phases those procedures that display low variance initeedime or cache miss
rate [Georges et al., 2004]. Lau et al. considered loops;guhares, and call sites as
possible phase markers if the variance of their behaviawelt than a relative thresh-
old [Lau et al., 2004]. Itis not easy to determine the expstee or behavior variance
for phases of a utility program when one has no control oweirtphut. For example, in-
stances of the compilation phase may have very differerdgian length and memory

usage.

Allen and Cocke pioneered interval analysis to model a pragaa a hierarchy of

regions [Allen and Cocke, 1976]. Hsu and Kremer used progegions to control
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processor voltages to save energy. Their regions may spgs land functions and
are guaranteed to be an atomic unit of execution under afjram inputs [Hsu and
Kremer, 2003].

In comparison to program phases, active profiling does ryptore the static pro-
gram structure. It considers all program statements aslpegthase boundaries. We
found that inGCC, some sub-phase boundaries were methods called insideamehb
of a conditional statement. In addition, active profiliniege on a user to target specific
behavior rather than on empirical thresholds that may nede tuned for each target

machine or class of input.

Interval methods divide an execution into fixed-size windpglassify past intervals
using machine or code-based metrics, and predict the bahafvfuture intervals us-
ing last value, Markov, or table-driven predictors (e.Balpsubramonian et al., 2000b;
Dhodapkar and Smith, 2002; Duesterwald et al., 2003; Sheavet al., 2003]). Bal-
asubramonian et al [Balasubramonian et al., 2003] dynalyiadjust the size of the
interval based on behavior predictability/sensitivitywver, since the intervals don’t
match phase boundaries, the result may be an averaging afiibetacross several
phases. Duesterwald et al. gave a classification of thessrsash[Duesterwald et al.,
2003]. Nagpurkar et al. proposed a framework for online plaetection and explored
the parameter space [Nagpurkar et al., 2006]. A fixed intenzy not match the phase
length in all programs under all inputs. Our technique finaisable-length phases in
utility programs. It targets program level transformai@uch as memory management
and parallelization, so it is designed for different pugmthan interval phase analysis

is.

5.6 Future Directions

Locality phases and behavior phases can successfullyt@etépredict large-scale

phase behavior without any application-dependent thidsktowever, both techniques
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require one or more profiling runs with complicated analyasnl either of them is only
applicable to a class of programs. Those limitations mayoberdble to the uses on
some important applications. But for general users, it isrdefe to have a universal

approach with lightweight analysis but without the limiteis of current approaches.

The second extension exists in the connection betweenagrogoncurrency and
phases. Computers are increasingly equipped with mukitlgarallelism: instruction-
level, thread-level on a single chip, thread-level acrdsps; and parallelism across
machines. Even on the same level, the granularity could adoy. A critical problem
of exploiting the parallelism is to recognize and predie toncurrency granularity in
each phase of a program. TRIPS system [Burger et al., 2004xé&mple, is a research
architecture having more than 32 computing units on a sitiigleThe TRIPS compiler
sends executable code to the hardware in blocks of up to K2&iations. The pro-
cessor executes a block all at once, as if it were a singlauictsin, greatly decreasing
the overhead associated with instruction handling anddsdimgy. Instructions inside a
block execute in a "data flow" fashion, meaning that eachuottin executes as soon
as its inputs arrive, rather than in some sequence imposéukbgompiler or the pro-
grammer. Phase analysis could be extended to predict teédéconcurrency and
guide the parallel execution. Another example is conteriware and resource-aware
automatic parallelization. With the knowledge of the comiten and available resource
in the future, the programming system can dynamically dethe number of threads

and the granularity.

5.7 Summary

The chapter has presented active profiling for phase asalysitility programs,
such as compilers, interpreters, compression and enctaldgy databases, and docu-
ment parsers. By reliably marking large-scale program hasgive profiling enables

the implementation of promising new program improvemectiggues, including pre-
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ventive garbage collection (resulting in improved perfanoe relative to standard re-

active collection), memory-usage monitoring, and memeakIidetection.

Using deliberately regular inputs, active profiling exposap-level phases, which
are then marked via binary instrumentation and verified widgular inputs. The tech-
nique requires no access to source code, no special hardwgpert, no user knowl-
edge of internal application structure, and no user integiga beyond the selection
of inputs. The entire process is fully automated, from thipsiag of profiling runs,
through the collection and analysis of the resulting diatisto the instrumentation of
the program binary to mark application phases and perfoerg#rbage collection or

memory monitoring.

Beyond the realm of memory management, we have used actifiengrto specu-
latively execute the phases of utility programs in paraibtaining nontrivial speedups

from legacy code, which is described in the next chapter.
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6 Behavior-Oriented Parallelization

Many programs exhibit some high-level parallelism but maylve parallelizable be-
cause of the program’s size and complexity. In additioniy tharallelism may be dy-
namic and available with certain inputs only. In this paperpvesent the design and
implementation ospeculative co-processinghich uses an extra processor to specu-
latively execute likely parallel regions of code. We showattthis speculation improves
performance when the parallelism exists. When there is naillphsm, the program
still runs correctly and completes as quickly as the unmedi§equential version. We
show our software-based implementation of speculativerosessing successfully par-
allelizes two large open-source applications and a sfiefibrary and improves their
performance by up to 86% on a dual-processor PC. The resutisrdrate the im-
portance of the three novel features of speculative coga®ing: language support for
specifying possible (rather than definitive) program bérastrong isolation to en-
sure correctness, and using redundant computation to hedeverhead of run-time

monitoring and correctness checking.

6.1 Introduction

Most existing programs are written for a sequential machyee they often have

parallelism that a user understands at the high level, ssich aompression tool that
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processes data buffer by buffer and filel by file, an Englisisgraparsing sentence
by sentence, and a compiler compiling function by functi@mpecifying exact paral-
lelism is difficult, however, because thousands of linesoofecmay be executed at each

processing step. Moreover, this parallelism is often dyinand input dependent.

As modern PCs and workstations are increasingly equippddmititiple proces-
sors, it becomes possible and desirable for commonly uggdtyesoftware to make
use of more than one processor. The problem differs fronitivadl parallel process-
ing because the target application is large, the paratteslikely but not guaranteed,
and there are often extra processors and memory space that atherwise be idle
if not used. In this work we presespeculative co-processingvhich uses an extra
processor and additional memory to speculatively exedkedylparallel code regions

simultaneously and thereby improve performance over sggli@rograms.

In general, speculation-based parallelization techriqueeed to solve three prob-
lems: selecting what to speculate, checking for correstnasd recovering from in-
correct speculation. We discuss each one in turn. For sodtwaplementations, the
granularity of speculation needs to be large to amortizectst of parallel execution
on modern processors, which are optimized for uninterdypsequential execution.
Existing programs are often highly optimized for sequém@cution and contain im-
plicit dependences from error handling, buffer reuse, arstiien memory management.
Although a user can often identify large possibly parakeks in a program, the pro-
grammer may not know whether dependences exist betweenl&isdone the source

of the dependence.

Speculative co-processing gives a programmer the abditgdicatepossibly par-
allel regions (PPR)n a program by marking the beginning and end of the regioh wit
matching markersBeginPPR(pAnd EndPPR(p) Figure 6.1 shows an example of the
marking of possible loop parallelism, where the loadinghaf tasks is sequential but
the processing of each task is possibly parallel. Figuresbd®vs the marking of pos-

sible function parallelism, where the two calls to a functare possibly parallel. The
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while (1) {
get_work(); BeginPPR(1);
work(x);
BeginPPR(1); EndPPR(1);
stepl();
step2(); BeginPPR(2);
EndPPR(1); work(y);
EndPPR(2);
}
Figure 6.1: Possible loop parallelism Figure 6.2: Possible function paral-
lelism

semantics of the PPR markers is thdtenBeginPPR(p)s executed, it imdvisableto
start a (speculative) parallel execution fraemdPPR(p) The markers indicate that the
parallelism is likely but not definite, so the parallel exéoa may have to be canceled
and their effect reverted. Such markers may also be inséntegrofiling analysis,

which can identify frequent but not all possible behavioagfrogram.

The second problem of speculation is checking for corrastnehich entails find-
ing a proof that no dependence in the sequential executiooleted in the reordered
execution. In co-processing, we call the non-speculatormputationmain and the
speculative onespec Existing methods of speculation can be differentiated @y h
the two groups communicate. The first, used by most methodpexfulation as well
as supporting transactional memory (see Section 6.4), & wh callweak isolation
where updates from non-speculative computation becomediately visible to spec-
ulative computations. As we explain in Section 6.2.2, teguires fine-grained com-
munication costly to support in software and vulnerableubtie concurrency errors.
Co-processing usestrong isolationwhere the updates afainare made available only
at the end. While strong isolation does not support impligieppned computation (for
which a user can specify explicitly using PPR directivetsgniables efficient specula-
tion and rollback, its value based (in addition to dependdrased) checking allows
certain types of parallel execution in the presence flow déeeces, and it allows the

program to make use of unmodified hardware and compilersatbe¢ designed and
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optimized for sequential execution. On top of the strongtyafet, we include simple

improvements to allow early termination gfhecas soon a conflict is detected.

The last major problem of speculation is safe recovery wipat@ations fail. In
real applications, the speculative work may execute loxg/ehighly optimized code
and perform billions of operations on millions of bytes. laynmisbehave in arbi-
trary ways if it is started on an incorrect state. Unlike megsting methods that use
threads, co-processing uses Unix processesionandspec so the entire speculative
computation can be terminated without any side effect omth&’s memory or pro-
cessor state. Memory copy-on-write has the effect of ineral check pointing and
on-demand privatization. The cost of process creation @amdibation is moderated by
the other two features of co-processing: the large graityiarPPR amortizes the cost,

and strong isolation removes the need of most inter-prac@ssnunication.

One unique problem of strong isolation is that the succespeadis not known until
both mainandspecfinish. We present a novel solution, which uses redundanpcem
tation through a third process we call thederstudyto provide an important perfor-
mance guaranteehe speculation result is used only when it is correct and when t
overheads of speculation—starting, checking, committidg not outweigh the benefit
of the speculationThis guarantee is achieved through a coordinated enserhthilese

processes, which we describe in detail in Section 6.2.3.

Co-processing differs from traditional parallel procegsbecause its goal is not
scalable parallel performance but using extra processorsnall-scale performance
improvement with minimal programming effort by the user.asarallel programming
system, it requires little or no manual changes to the sagi@nogram and no parallel
programming or debugging. Furthermore, the system redbelsauses for the spec-
ulation failure, so a programmer can incrementally remadelén dependences. The
programmer can also specialize a program for parallel gicg on frequent rather
than all inputs. This ease of programming is key to the sdélabf a different sort—

co-processing for large, existing software.
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Co-processing has several limitations. Speculation camaadle general forms of
I/O or other operations with unrecoverable side effectse Garrent implementation
allows limited dynamic allocation within the parallel regiand uses only one extra
processor for co-processing. The software implementasidrest for loosely coupled
coarse-grain parallelism but not efficient enough for mamgafine-grained computa-

tions on multiple processors.

6.2 Speculative Co-processing

6.2.1 Possibly Parallel Regions

The PPR markers are written BsginPPR(p)and EndPPR(p) wherep is a unique
identifier. While multipleBeginPPR(pnay exist in the codesndPPR(pinust be unique
for the same identifier. At a beginning marker, co-procesinks a process that jumps
to the matching end marker and starts speculative execilngva. The matching mark-
ers can only be inserted into the same function. The exa&t seguence in C language

is as follows.

e BeginPPR(p)if (BeginPPR(p)==1) goto EndPPR_p;

e EndPPR(p) EndPPR(p); EndPPR_p:;

As PPR markers suggest possible behavior, there is no gearan the order of
their execution. A beginning marker may not be followed lsynitatching end marker,
or an end marker may occur before any beginning marker. Coepsing constructs
a sequence of zero or more non-overlapping PPR instances &tire. At any point
t, the next PPR instance starts from the first beginning margerationBeginPPR(p)
aftert and ends at the first end marker operatimaPPR(p)after theBeginPPR(p) For

example, assume there exist two PPR regions in the gagledq, and let their markers
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be py, pe, @, andg.. If the execution, from the stast, produces the following trace

(marked with their order in the superscript)

Sy dC DL Pe 43 Py 4L
Co-processing identifies two PPR instances: one from thebféginning markep; to
its first matching eng? and the other from the next beginning marigto its matching
endq’. The remaining parts of the trace, fronto p; and fromp? to ¢}, are executed
sequentially. The second PPR instance will be run spewgalgtand for the result to be
correct, the parallel execution and the would-be sequestecution must both reach

EndPPR(q)which is unique in the code.

PPR markers can be used to bracket a region of the loop bodylittate that the
regions can be run in parallel (while the code outside reggequential), as shown
in Figure 6.1 (a). This is an instance of pipelined parateli Many loops have a
sequential part either due to its function, for example,réaling of a task queue, or
due to its implementation, for example, the increment ofaploounter. PPR allows
a programmer or a profiler (Section 6.2.4) to mark the likedydaries between the
sequential and parallel regions of a loop. The system autoatlg communicates data
and detects dependence violations at run-time. PPR mar&kei@so be used to indicate

that two or more regions of code are likely parallel, as inuFeg6.2 (b).

The scope of PPR regions is dynamic and flat. This is in cantoasiost paral-
lel constructs, which have static and hierarchical scof@sprocessing uses dynamic
scopes to support high-level, coarse-grain tasks with aptete correctness guaran-
tee. Coarse-grain tasks often execute thousands of linexlef communicate through
dynamic data structures, and have dynamic dependencesoardaal control flows.
Co-processing tolerates incorrect marking of parallelismanfamiliar code. The PPR

markers can be inserted anywhere in a program and execusey iorder at run-time.
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Next, we describe how to ensure correctness automaticatlg the PPR regions are

marked.

6.2.2 Correctness

Co-processing guarantees that the same result is producedths sequential
execution. To guarantee correctness, it divides the runtliata of a program into
three disjoint groups: shared, checked, and private. Momadlly, we sayData =
(Dshareds Deneckeds Dprivate)r WNer€ Dgpared, Deneckeds @Nd Dpyivare fOrm a partition of
all data. This section first describes these three typestafgtatection with a running
example in Figure 6.3 and a summary in Table 6.1. Then is & pfamrrectness as a

global property of the localized checks. Last is a comparisith existing methods.

For the following discussion we consider two Unix processtg main process
that executes theurrent PPRinstance, and thepeculation procesthat executes the
next PPRinstance and the code in between. The cases for > 1) speculation
processes can be proved inductively by validating the ctress for thé: — 1 case and
then treat theith process as the speculation and the earlier computatitimeasain

process.

6.2.2.1 Three Types of Data Protection

Page-based protection of shared data All heap data by default are sharedBa-
ginPPRby default. Co-processing preserves all run-time depersdeon shared data
at a page-level granularity. An example is the variaflered in Figure 6.3. It holds
the root of a tree that each PPR instance may use and modife-Resed protection
allows concurrent executions as long as the nodes on the pageedo not cause a
dependence violation. Many programs initialize and gromedarge dictionary data

structures. The shared-data protection allows non-ctinfli@access by both PPRs.
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shared = ReadTree();
while (...) {
BeginPPR(1)
if (...)
private = Copy(checked++)
Insert(shared, new Node(private))
if ('error) Reset(checked)

EndPPR(1)

}...

Figure 6.3: Examples of shared, checked, and private data

Table 6.1: Three types of data protection

type shared data checked data (likely) private data
Dshared Dchecked Dprivate
protection || Not written bymain| Value atBeginPPR no read before
and read bypec is the same as 1st write inspec
atEndPPRn main | Concurrent read/write
Concurrent read/write allowed
allowed
granularity page/element element element
needed compiler, profiler compiler, profiler compiler (run-time)
support run-time run-time
target datal| global vars, heap global vars stack, global vars

By using Unix processes, co-processing eliminates all ant-output dependences
through the replication of the address space. It detectsdipendences at run-time
and at page granularity using OS-based protectionBe§inPPR the program places
shared data on a set of memory pages, turns off write pewnigsr the current PPR
and read/write permission for the next PPR, and install®ouiged page-fault handlers
that open the permission for read or write upon the first readrite access. At the
same time, the handler records which page has what type e$saty which process.

The speculation fails if and only if a page is written by therent PPR and accessed
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by the next PPR. All other access patterns are permitted Hfutggon succeeds, the

modified pages are merged into a single address space bedaggecution continues.

Page level protection leads to false alerts. We can allevia problem by us-
ing profiling analysis to identify the global variables anghdmic allocation sites that
cause false alerts and then use compiler and run-time sujgpaltocate them on dif-
ferent pages. In the current implementation, we allocatd egobal variable on its
own page(s). The shared data is never mixed with checked @waiepdata on the
same page, although at run time newly allocated heap datarisage at first and then

converted to shared data&idPPR as we will explain later.

Selective value-based checking Access-based checking is sufficient, but not neces-
sary, for correctness. Consider the variathecked in Figure 6.3. If the first con-
ditional is frequently true then both the current and nexRR#Il modify and read
checked. These accesses will then lead to a flow dependence betwedtPiRs. On
the other hand, if the error condition is typically falseeniithe value ofhecked is reset
and will be the same at ea&eginPPR We refer to this situation assdlent dependence
because the value from preceding writes is killed by thetregeration, and the flow

dependence has no consequence and can be ignored, as wioprléy shortly after.

Most silent dependences come from explicit reinitialiaati For example, the Gecce
compiler uses a variable to record the loop-level of theanircode being compiled.
The value returns to zero after compiling a function. We sifsgsthese variables as
checked datawhich tend to take the same valueBaginPPRand EndPPR in other
words, the current PPR execution has no visible effect ondhiable, as far as the next

PPR instance is concerned.

There is often no guarantee that the value of a variable & t®sEndPPR For
example in Figure 6.3, if there is an error then there may beakflow dependence

between the two PPR instances. In additiolccked may be aliased and modified
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after the reset, and the reset may assign different valugiffetent times. Hence run-

time checking is necessary.

Co-processing allocates checked variables in a region, sreakepy of their value
at theBeginPPRof main, and checks their value at tiEmdPPRof main In the current
implementation, checked data must be global variable$iespgize is statically known.
Checked data are found through profiling analysis (descnbex in Section 6.2.4),
which identifies variables whose value is likely to be constt the PPR boundaries.
Even if a checked variable does not return to its initial eailn every PPR instance,
co-processing still benefits if the value remains constanjust two consecutive PPR

instances only.

Private data The third group, private data, is those that are known notaitse a
conflict. In Figure 6.3, iprivateis always initialized before it is used, the access in the

current PPR cannot affect the result of the next PPR, so thendieimce can be ignored.

Private data come from three sources. The first is the progtaok, which in-
cludes local variables that are either read-only in the PP&veays initialized before
use. Intra-procedure data flow analysis is adequate for programs. When the two
conditions cannot be guaranteed by compiler analysis,¥amgle, due to unknown
control flow or the address of a local variable escaping inégarogram heap, we rede-
fine the local variable to be a global variable and classiégishared data. This solution
does not work if the local variable is inside a recursive tiorg in which case we sim-
ply disable co-processing. This restriction applies oalgrocedures that appear on the
call chain up tBeginPPR Taking the address of local variables for recursive fuomgi

called from a PPR is permitted.

The second source is global variables and arrays that asyslnitialized before
the use in the PPR. The standard technique to detect thieipiotedural kill analy-
sis [Allen and Kennedy, 2001]. In many programs, the inetion routines are often

called immediately afteBeginPPR However, a compiler may not always ascertain all
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cases of initialization. Our solution is for the system tocawatically place each data
element onto a separate page and treats it as shared ufitistaecess. For aggregated
data, the compiler automatically inserts calls after thigaiization assignment or loop
to classify the data as private at run time. Any access bygdbetgation process before
the initialization aborts the speculation. Additionallye allow the user to specify the
list of variables that are known to be written before read BRPThese variables are

protected until the first write. We call this groligely private data

The third type of private data is newly allocated data in a RidRance. Before
BeginPPRthe control process reserves a region of memory for theudgtgan process.
Speculation would abort if it allocates more than the céapafithe region. The main
process does not allocate to the region, sBralPPR its newly allocated data can be
merged with the data from the speculation process. For grogrthat use garbage
collection, we control the allocation in the same way butgéhe garbage collection
until afterEndPPR If any GC happens in the middle, it will cause the specutetidofail

because of the many changes it makes to the shared data.

6.2.2.1.1 Synopsis The three data protection schemes are summarized and com-
pared in Table 6.1. We make a few observations. First, theyesthe following
property: The meta-data ohain and specis collected in isolation. Full correctness

is checked after both processes finish. The strong isolatiesins thathe correctness

of the system does not depend on communication during tlalglagxecution. The
shared data — whose protection is access based — and chet&edwhose protection

is value based — have a significant overlap, which are thetdatare either read only

or untouched bymain andspec We classify them as checked if their size is small;
otherwise, they are shared. A problem is when differentspafra structure or an array
require different protection schemes. Structure sp@ittimhen possible, may alleviate

the problem. Section 6.2.3 describes how we hide most of tbegtion overhead.
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Section 6.2.4 describes how we classify all program datathese three groups. Sec-

tion 6.3.1 describes the compiler support for data placémen

6.2.2.2 Correctness of Speculative Co-processing

It is sufficient to prove the correctness of a single instanicparallel execution

betweemainandspec We first define an abstract model of an execution.

memory V,: a set of variablesV,; is the complete set (memory).

memory state Si,: the content off” at timet¢. For ease of reading we usé (rather

than Sy, ) for the sub-state df;, att.

instruction r,: an instruction of the program. Here we consider the markéta/o
PPRs,p andq, whose markers arg,, p., ¢», andg.. The two can be the same

region.

execution state (r,, Si,): a point in execution where the current instruction jsand

the memory isS%,.

execution (r1, Sth) =% (ry, S%,): a continuous execution by procgsfrom instruc-

Q.

tion r; and memory stat§'}, to the next occurrence of with an ending state of
S

a

If a parallel execution passes the three data protectioenseb described before, all

program variables in our abstract model can be partitiontedthe following categories:

e V,,;: variables whose first access fyec is a write.w f stands for write first.
® Veue main: Variables accessed only byain.

o Vs spec: Variables accessed only byec.
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(main) (spec)
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: >|
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: (P S™ :
(O 59 < (G, S5
(a) sequential execution (b) parallel execution

Figure 6.4: The states of the sequential and parallel execufhe symbols are defined
in Section 6.2.2.2

e V... the remaining variableghk stands for checked.

Vall - wa - ‘/excl_main - ‘/ewcl_spec

Examining Table 6.1, we see that,;,.. contains data that are either accessed by only
one processWci main @NdVeza spec), Written before read ispec(V,,;), read only in
both processedf,,), or not accessed by either (). D, ... CONtains data either in
Vs OF Vorke Deneckea 1S @ subset o,,. In addition, the following two conditions are

met upon a successful check.

1. main reaches the end PPR markerafter leaving the beginning markgy, and

spec, after leavingp,., encounterg, and theny,.

2. the state of/,; is identical at the beginning and the enddin, that is,S%i! =

main
chk *

To compare the result of the parallel execution with thathef $equential one, we
examine their states, including the beginning, middle, emdi of the sequential execu-
tion, S at p,, S™¢ at p,, andS*°? at ¢.; the start and end ahain, S™* at p, and
Smain gt p.; and those ofpeg S™* at p, and.S*P at ¢.. These states are illustrated in

Figure 6.4.
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Let the final state of the parallel execution$ig ! atq,. SPe el js a combination
of S™ein and.S*P=¢ upon successful speculation. In particular,

parallel __ gspec main
S - Sall—e:ncl_main + excl_main

In words, the final state is the result of speculation plustiodified data irain

We now quickly specify the instruction model and then movehi main proof.
We define each operation by its inputs and outputs. All inputs occur before anything
is output. The inputs are a set of read variabis;). The outputs include a set of

modified variable$V (r;) and the next instruction to execute, .

Theorem 1 (Correctness).If specreaches the end marker of the second PPR instance
g., and the protection in Table 6.1 passes, the sequentialéoacwould also reach

q.. Furthermore, the ending state of the sequential execusi@hentical to that of the
parallel execution ¢ = Srerallel " assuming that both start with the same staté:?

at py.

spec

Proof Consider the speculative executigp,, S™") = (q., S*7*), which speculates
on the sequential executiofy., S™¢) = (¢., 5°*?). Note that both start at the end
PPR marker. We denote the correct sequential executipn as -, - - - and the spec-
ulative execution ag., ], 75, ---. We prove by contradiction that every operatign
in the speculative execution must be “identical’tan the sequential execution in the
sense that, andr; are the same instruction, they input from and output to timeesa

variables with the same values, and they move next to the setnactionr, ;.

Assume the two sequences are not identical and; Ibe thefirst instruction that

produces a different value thap, either by modifying a different variable, the same

1An operation is an instance of a program instruction. Forsinaplicity of the presentation, we
overload the symbaot, as both the static instruction and the dynamic instance. alléhe former an
instructionand the latter anperation For example, we can have only one instructigribut any number
of operations-,..
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variable with a different value, or moving to a differenttingtion. Since; andr; are

the same instruction, the difference in output must be daedifference in the input.

Suppose; andr; read a variable but see different valuesandv’. Letr, andr] be

the previous write operations that producandv’. r/, can happen either ispec before
r; or in main as the last write te. We show neither of the two cases is possible. First,
if v/ happens irspec, then it must produce the same outputaas per our assumption
thatr; is the first to deviate. Second, is part ofmain and produces a value not visible
to spec. Consider how can be accessed. Sinaé (s the last write soy is read before
being modified inspec, it does not belong t&, s or Veyer main. Neither is it inVe,o spec
since it is modified inmain. The only case left is for to belong toV,,;. Since

rmain. — vt the last write inmain “restores” the value of to the beginning state
wherespec starts and consequently cannot catfda specto see a different value ag
does in the sequential run. Therefer@ndr; cannot have different inputs and produce

different outputs, and the speculative and sequentialutiets must be identical.

We now show thas?e !¢l js correct orSPerallel — §sea_ Sincespec reads and writes
correctvaluesV,, s, Veza_spec, @nd the accessed partlgf,, are correctV, o maqin IS also
correct because of the copying of the their values at the abtime. The remaining
part of ;. is not accessed by.ain or spec and still holds the same value 88, It

follows that the two stateSreraliel and,S*e? are identical. |

The style of the previous proof is patterned after the prédi®@ Fundamental The-
orem of Dependence [Allen and Kennedy, 2001]. The conafugites out a common
concern with value-based checking, where the value flow thpgiduce a dependence
before the last write. In co-processing, the three checkolgemes work together to

ensure no such case is possible.
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6.2.2.3 Novel Features

Most existing speculation methods use what we term as weédtisn because the
program data or the system meta data are concurrently actbgsparallel threads.
In addition, the correctness checking happens while spgonlcontinues. Weak iso-
lation allows more dynamic parallelism at the risk of racaditons in the system
and the user program. The problem is complicated by memargistency problems
due to the reordering of memory operations due to the comgild the hardware and
by the value-based checking in aggressive speculationosupphreads lack a well-
defined memory model [Boehm, 2005]. Specific solutions areldped for the ABA
problem in DSTM [Herlihy et al., 2003], for re-checking valprediction results in
hardware [Martin et al., 2001], and for avoiding race cands in software speculation

(that does not use value-based checking) [Cintra and LI2U85].

In co-processing, data are logically replicated, and tluatgs of data and meta-data
by mainandspecare completely separated from each other. The concludimgatoess
check is conclusive, as shown by Theorem 1. Consequentlyonoucrency error
may arise during the parallel execution and the correctolessk. The compiler and
hardware are free to reorder program operations as usuale\8thong isolation does
not support dynamic parallelism as efficiently as weak ismha its simplicity suits co-
processing, which uses extra processors to improve ovdasiest sequential time on

computations that may be parallelizable.

Most previous techniques monitor data at the granularigriay elements, objects,
and cache blocks; co-processing uses pages for heap datéeamehts for global data.
It uses Unix’s forking mechanism and paging support. Ivatlononitoring ofall global
and heap data, reduces the monitoring cost to one or two padjs per page of data,
and needs only a negligible amount of shadow data relativbecsize of program
data. The copy-on-write mechanism creates copies for neddifata (for eliminating

non-flow dependences and for possible rollbacks) on demaddnathe background.
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Paging has two downsides. The first is the cost of setting upigeions and handling
page faults, though this will be amortized if PPR instancesage. The second is false
sharing, which can be alleviated by data placement, as wesisvhen describing the

implementation.

Value-based checking is different from value-specific agitacompilation (for ex-
ample in DyC [Grant et al., 1999b]), which finds values th&t esnstant for a region
of the code rather than values that are the same at specifitsggian execution (and
can change arbitrarily between these points). It is diffefeom asilent write which
writes the same value as the previous write to the varialié feom hardware-based
value prediction, where individual values are checked f@re load [Martin et al.,
2001]. Our software checking happens once per PPR for algdebaf data, and the

correctness is independent of the memory consistency nobtlee hardware.

6.2.3 Performance

The parallel ensemble of processes hides most protectiermead off thecritical
path, which we define as the worst-performance execution whéspatulation fails

and the program runs sequentially.

6.2.3.1 Parallel Ensemble

We consider the case of using only one speculation procesfprocessing. It
needs four Unix processes. Each holds a logically sepaogie af the program’s ad-
dress space and communicates through explicit commuaiicafit any given time at
most two processes are active. In gendrglrocess speculation requires- 1 proces-

sors (andc + 2 processes).

The program starts as tleentrol process. When reachimgginPPR control creates
mainandspec The former executes the current PPR instance, while ther [aimps

to the end marker and speculatively executes the next PR&hoes(see Section 6.2.1
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Figure 6.5: The parallel ensemble includes the control,nmspeculation, and un-
derstudy processes. Not all cases are shown. See TablerGg2tions under other
conditions.

for the definition of a PPR instance). Wharainreaches the end PPR marker, it im-
mediately starts thanderstudyprocess, which re-executes the next PPR instance (not
speculatively). Depending on whether speculation susckefbreunderstudyinishes,
eitherunderstudyor specbecomesontrol, and is ready to start the next cycle of spec-
ulation. The diagram in Figure 6.5 shows the parallel ensemiye first discuss the

overhead in the first three processes and then turn theiatt¢atthe understudy pro-

cess.

For shared datd,y,,,..q, mainturns off write permission aBeginPPRwhile spec
turns off readandwrite permission. They install a customized page-faultdiean The
handler serves two purposes. First, the handler enablgmtieto be read from at the
time of the first read, and to be written at the first write. S$etdhe handler records
in an access map which page has what type of access by whicagstoWhen both
processes finish, the two access maps are compared to chiexkldov dependence.

Upon commit,maincopies all modified pages &pec

Checked datd.,..r.q are protected in three steps. Firspectake a snapshot of

D peerea- Secondmaintakes another snapshot when reachiingPPRand compares
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it with the first one. In our implementation, the size of chetklata is bounded and
determined through profiling analysis, and the compileugsothe checked data into
a contiguous memory region for fast copying and comparigomratime. Finally,

likely private data are read and write protectegpecwhen it starts. The permission

is opened either by a page fault or by a run-time call aftedtita is initialized.

Data copying takes time and may hurt locality. However, theality in the same
PPR instance is preserved. The footprint of co-processitayger than the sequential
run because of the replication of modified data. However,réael-only data is not
copied and consequently will be shared by all four processasain memory and in
shared level two or three cache (that is physically index&d)a result, the footprint is

likely much smaller than running two copies of the program.

6.2.3.2 Understudy Process

As discussed in Section 6.2.2.3, co-processing cannafycefdeculation results
until both main andspecfinish because of their strong isolation. For shared data, fo
example, a conflict may occur with the last writenrain or the last read ispec For
large and complex programs, incorrect speculations magugeln an unpredictable
manner: it may follow an incorrect path, execute a diffef@RR instance, exit, loop

infinitely, or cause a segmentation fault.

Instead of waiting fosspe¢ main startsunderstudymmediately upon finishing the
current PPR instance and begins a two-way race betwederstudyand spec As
shown in Figure 6.5, ispecreachesEndPPRand finishes checking and committing
changes before the understudy readhetPPR speckills the understudy and becomes
the nextcontrol. However, if speculation misbehaves or takes too long torothe

understudy will reaclEndPPRfirst, abortspe¢ and continue as the nesontrol.

The two-way race is a team race. Team understudy, which atdodescontrol

andmain represents the worst-case performance or the critichl piaall speculation
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fails, the three processes sequentially execute the progrhe overhead on the critical
path includes only the forking ohainandunderstudyand the page-based write mon-
itoring by main The run-time cost is one page fault per page of shared dad#iet

by main There is no overhead associated witiderstudy All other overheads, fork-
ing and monitoringspe¢ taking and comparing snapshots, checking and committing
speculation results, are off the critical pattis a result, when the granularity of the
PPR is large enough, the worst-case execution time of coepsing should be almost
identical to that of the unmodified sequential execution ti@nother hand, whenever a
speculation process succeeds, it means a faster finishiibamderstudy and therefore

a performance improvement over the sequential execution.

The performance benefit ainderstudycomes at the cost of potentially redundant
computation. However, the incurred cost is at most runnaaipepeculatively executed
PPR instance for the second time, regardless of how many&hices are speculated

at a time.

With understudythe worst-case parallel running time is equal to the basese-
guential time. One may argue that this can be easily done minyimg the sequential
version side by side in a sequential-parallel race. Theiadffce is that co-processing is
arelay racefor every two PPR instances. At the whole-program level ggquential-
parallel collaboration rather than competition becausewmner of each relay joins
together to make the co-processing time. Each time coun&nvgpeculation runs
faster, and no penalty when it runs slower. In addition, cmepssing allows read-
only data shared in cache and memory, while multiple segplenns do not. Finally,
running two instances of a program is not always possibla fatility program, since
the communication with the outside world often cannot beamad In co-processing,

unrecoverable I/O and system calls can and should be platsidie the parallel region.
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Table 6.2: Co-processing actions for unexpected behavior
| behavior | prog. exit or error] unexpected PPR markefs

control exit continue
main exit continue
spec abort speculation continue
understudy, exit continue

6.2.3.3 Expecting the Unexpected

The control flow in Figure 6.5 shows the expected behaviornndue execution
of PPR runs fronBeginPPRto EndPPR In general, the execution may reach an exit
(normal or abnormal) or an unexpected PPR marker. If theeatfPPR instance is
started withBeginPPR(p) the expected marker BndPPR(p) Other markers such as
BeginPPR(p)and markers of a different PPR, are unexpected. UnexpecteaVioe
does not mean incorrect behavior. A program may execute P&Rens in any order.
Table 6.2 shows the actions foontrol, main, spe¢ andunderstudyhen encountering

an exit, error, or unexpected PPR markers.

The abort byspecin Table 6.2 is conservative. For example, speculation noay c
rectly hit a normal exit, so an alternative scheme may déiayabort and salvage the
work if it turns out correct. We favor the conservative desigr performance. Al-
though it may recompute useful work, the checking and compst cannot delay the

critical path.

The speculation process may also allocate an excessiverarabmemory and
attempt permanent changes through 1/0 and other OS or useadtions. The latter
cases are solved by aborting the speculation upon file regsiem calls, and memory
allocation over a threshold. The file output is buffered ameither written out or
discarded at the commit point. Additional engineering agpp®rt regular file 1/0. The

current implementation supports stdout and stderr for ggimg (and other) purposes.
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6.2.4 Programming with PPR

We use offline profiling to find the possible parallel regioR®Rs). It identifies
the high-level phase structure of a program [Shen et al4&08nd uses dependence
profiling to find the phase with the largest portion of rundimstructions that can be
executed in parallel as the PPR. At the same time, programadatalassified into
shared, checked and private categories based on theiribehlathe profiling run. For

lack of space, we will leave the detailed description to erlegchnical report.

Co-processing can also be added by a programmer. The progngrmterface has
three parts. The first is the computation interface by whigiragrammer specifies
PPRs using the two markers. The second is the data interfateefprogrammer to
help the system classify all data as shared, checked, caterivStatic variables are
classified by the compiler analysis. Global and heap vargahite considered shared by
default. The data interface allows a user to specify a ligflobal and static variables
that are write first (privatizable) in each PPR instance. ddwa interface supports the
specification of checked data indirectly because a progrmnean identify the value of

the checked variable and insert assignment explicitly@PRR boundary.

The write-first list opens the possibility of incorrect pégbexecution when a vari-
able is incorrectly classified as write first. For scalar alles the system can treat
them as likely private data and check for unexpected act¢ess ime. For aggregated
data, the system cannot easily check. The programmer skestithe system by re-
initializing write-first variables aBeginPPR(possibly with random values to increase
the chance of catching an error ) and executing the programesgially. If the out-
put is not expected, the programmer can find the problem bygigbg the sequential
code. In general, the programmer should ensure that the-finst list is correct for all
inputs. For any specific input, if the sequential progransraorrectly, co-processing

is guaranteed to return the same result.
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The third component of the interface is the run-time feellliacthe user. When
speculation fails, the system outputs the cause of therégiin particular, the memory
page that receives conflicting accesses. In our curreneimghtation, global variables
are placed on separate memory pages by the compiler. As ki, thgusystem can
output the exact name of the global variable when it causesnflict. A user can
then examine the code and remove the conflict by making thahtarprivatizable or

moving the dependence out of the parallel region.

Three features of the API are especially useful for workinthwarge, unfamiliar
code. First, the user does not write a parallel program aadrmeeeds parallel debug-
ging. Second, the user parallelizes a program step by stbjgdsn dependences are
discovered and removed one by one. Finally, the user catigiea@ a program for a
subset of inputs rather than all inputs. The program canmrypaiallel even if it has an

unknown number of latent dependences.

6.2.4.1 Profiling Support

A possible parallel region (PPR3 the largest region of a program that is likely
parallel. Obviously the region should be selected cangtollavoid including irrevo-
cable operations. A more difficult challenge is to seleckalyi parallel region. In the
processing loop of a large utility program, every statentiesit executes once and only
once in an iteration is a possible place for inserting regmarkers. The purpose of
parallelism analysis is to consider all candidates andcsée best region. For this
paper we do not consider multiple PPRs in the same loop orahésteursive) PPRs,

although we believe that both can be used in co-processitigadditional finesse.

We assume that the processing loop is known. One semi-atitoteehnique is
active training, which first uses a sequence of identicaliests to expose high-level
phase structure and then uses real inputs to capture comubgphaises [Shen et al.,
2004a]. Active profiling does not require a user to know amgtabout the program

code. Alternatively, a user can manually identify the maiocessing loop and then
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Figure 6.6: Profiling analysis for finding the PPR

invoke the analysis to find common sub-steps. The result &t @fsphase markers
that are always executed in the same order in every procestp in all training runs.

Note that the marker locations may spread throughout a anegExcept in the simplest
programs, the marker locations do not reside in the sameifumand are not executed

in the order of their appearance in the source code.

Givenn marker locations, each loop is broken imtprimitive regions. Dependence
profiling records the dependences between any two primmgtigi®ns and aggregates the
results from all training runs. If we view each primitive reg as a single statement,
we can borrow the nomenclature of loop dependence [Allerkamhedy, 2001]. The
dependence between any two regions can be either loop indepeor loop carried.
Loop carried dependences may have a constant or a varigbd@de. \We consider only

flow dependences.

There are(g) = @ candidate PPR regions, each sections the processing loop
into three parts with two regions (we call control) on eite&te. Figure 6.6 shows an
execution view, where each section is continuous and appearder. While twelve
types of cross-section dependence may happen in a threerseop, the figure shows
only common types for simplicity. Three types that wouldtphbit parallelization are
shown with dotted edges, while loop-carried dependeneemarked with a bar. The
parallelism of a candidate region is then measured by thgiéecy of instances where

the three dotted types are absent and by the number of renutistructions in these
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instances. The best candidate is the one that gives thestgygdion of run-time in-

structions that can be executed in parallel.

Currently we use brute force and test all regions. Alteredfiwe can use a graph
model, where each primitive region is a node. The worst casgtexity is the same

since the number of edges may®én?).

In the example in Figure 6.3, a marker may be inserted befagy ¢op-level state-
ment in the while loop. Consider the assignmentZoét the beginning of the loop.
Assuming no other assignment 8f then BeginPPR would be placed either before or
after the assignment. The analysis picks the earlier spmuUse the size of PPR is
larger. Once PPR is determined, the analysis classifiesgdabhl variable as shared,

checked, or private data.

The classification depends on the choice of PPR. In the exaipdeprivate when
BeginPPR proceeds the assignment but it would be checked ihBB& followed the
assignment. While profiling analysis is sufficient to deterenihe first two groups,
compiler analysis, as described in Section 6.2.2, is netatdtie third group, for ex-
ample, ensurind’ is always initialized before used. Besides those, the pngféinal-
ysis finds the variables that are never read before beingewrin all PPR instances
through the profiling run. The run-time system doesn’t n@aadonitor those variables
except ensuring their write-first property by closing threld and write permissions at
EndPPR of the speculative process and opening the permissibe first write opera-

tion. Any unpermitted operation causes the speculatiooga®to abort.

Profiling analysis has long been used to measure the beledviomplex programs.
Many studies have examined the potential of parallelism landlity. Coarse-grain
parallelism analysis has three unique features. The filstrge granularity. A PPR
may span many loops and functions in thousands of lines oé.cduch code may
be used in both the sequential and parallel parts. The sdsamdss-input behavior.
The set of markers are valid across all training runs, so #énallelism results are also

correlated across all runs. Last is the integration withalvedr protection. The usage
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pattern is used to classify data into different protectioougs. As a result, the system
exploits parallelism when the behavior is expected butrtswe sequential execution

with little additional overhead when the behavior is unetpd.

In addition to profiling and compiler analysis, co-procagsuses the run-time
bookkeeping to report the cause whenever a speculatian faiparticular, it places all
global variables on a separate page, so it can pinpoint thet eariable. As we will
discuss later, this feature is especially useful for theumbadaptation of a program for
co-processing. The run-time feedback leads a user dirtecthe few key variables and

routines amidst a sea of other code and data not relevanatsegrain parallelism.

Co-processing depends on the granularity of PPRs. In adddiofi-line profiling,
on-line analysis can be used to disable speculation if arprogloes not show large,
parallel regions or if data protection requires excessuearimead (for the speculation
process). The run-time system monitors the granularithelast PPRs possibly using
hardware counters and the success rate of speculatior) edncthen be easily disabled
by changing a flag. The remaining program is then executedéyontrol process

without interruption.

6.3 Evaluation

6.3.1 Implementation

We have implemented the compiler support in Gece 4.0.1, itiquaar, in the in-
termediate language, GIMPLE (based on static-single aswgt [Cytron et al., 1991]
similar to SIMPLE form [Hendren et al., 1992]), so the tramsfation is applied after
high-level program optimization passes but before mactauke generation. The main
transformation is converting global variables to use dyicatiocation, so the run-time
support can place them for appropriate protection. The denmgdlocates a pointer for

each global (and file and function static) variable, insartsnitialization function in
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each file that allocates heap memory for variables (andrsgigial values) defined in
the file, and redirects all accesses through the globalgoiatl initialization functions
are called at the beginning of the main function. As we wit &&ter, the indirection
causes only marginal slowdown because most global-variattesses have been re-
moved or converted to (virtual) register access after tHdFLIE passes. Source-level

indirection would be much more costly.

For parallelism analysis we also implemented an instruarewhich collects com-
plete data and instruction access traces for use by the ioelanalyzer. It provides
unique identifiers for instructions, data accesses, andaneand register variables, so
the behavior analyzer can trace all data dependences amdyqessible phase mark-
ers. We have implemented similar systems using two binatyumentors, which do
not require program source but offer no easy way of relogagiobal data, tracking

register dependences, or finding the cause of conflicts aoilnee level.

For data protection, we have not implemented the compilalyars for local vari-
ables. Instead the system privatizes all stack data. Ghoihheap variables are pro-
tected. Each global variable is allocated on a separate(®agehich reduces false

sharing at a bounded space cost.

The run-time system is implemented as a statically linkbdaty. Shared mem-
ory is used for storing snapshots, access maps, and forrgpdgta at a commit. Five
types of signals are used for process coordination, whictiow®t elaborate for lack of
space, except for four points. First, there is no busy waitiom locks or semaphores.
Second, only two signals, SIGSEGV and SIGUSRL1 (for procemdy)e may happen
on the critical path. In addition, the design guaranteewdod progress, which means
no deadlocks or starvation provided that the OS does notgenily stall any process.
Finally, it was tricky to design and debug the concurrenteayswith four types of pro-
cesses and 15 customized signal handlers. To improve afficighe implementation

uses shared meta-data to pass information.
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Experimental Setup

In our initial design, the program process and any othergs®dlid not stay alive
longer than two PPRs (for one moment we thought we had an itdeespbeedup).
Currently each program starts with a timing process, whianédiately forks the first
control process and waits until a valid exit is reached. Wenoa collect user and
system time for all processes, so we use wall-clock time eftithing process, which
includes OS overheads in process scheduling. We use thé&shwaler three runs on

an unloaded system.

For each program we measure four variations. The time of tingodlified original
program is labeledriginal. The time of the sequential version before PPR insertion is
labeledsequential It differs from the original program in that all global vables have
been changed to dynamic allocation (and separately platédferent memory pages
at run time). For a program with manually inserted PPRs, tiggnal version may be
transformed by unrolling the processing loop (to increasegranularity). The sequen-
tial version includes the effect of all manual changes ekfmthe PPR markers. The
third is the worst-case time of co-processing, labelpdc fail We artificially induce
conflicts so speculation always fails. It gives the time @& thitical path. Last is the
co-processingime, which measures the improvement from the dynamic dagon.

We use GNU Gcc 4.0.1 with “-O3” flag for all programs.

The test machine has two Intel Xeon 2 GHz processors with 31PKache, 2GB
Memory, and hyperthreading. The relative effect of co-pesing is similar with and
without hyperthreading. We report the running time with égtpreading turned on,
which sometimes makes a program marginally faster. We alsted a dual-processor
Intel 1.27 GHz Pentium Il workstation. Since co-procegsimainly reduces CPU time,
the effect is more dramatic on the slower machine (up to 4@esl than the 2GHz

Xeon). We do not report Pentium Il results for lack of spabewever, we note that
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co-processing would be more effective on multi-core chippke cores are made from

simpler and slower CPUs.

6.3.2 Micro-benchmarks

We wrote two small programs and manually inserted PPR matkeexamine the
cost and benefit of co-processing over controlled paramételuding the size of data,
intensity of computation, and frequency of run-time comflicThe next section shows

the result on real programs, including the automatic insedf PPRs.

6.3.2.1 Reduction

The reduction program initializes an array ofintegers, performg& square-root
operations, and adds the results together. The parallsiovendds the numbers in
blocks, each block is a PPR. To get tgec failversion, all PPRs use the same sum
variable. The speculation always fails because of the @bnfln the co-processing

version, we use a partial sum for each block and add them atnithe

Improvement over data size

20
original ----=---
sequential -+
spec fail ——
15 L co-processing = i

wall-clock time (sec.)

20M 60M 100M 140M 180M

num. integers (2 sqrts per element)

Figure 6.7: Co-processing performance for the reductiognar
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Figure 6.7 shows the performance whemcreases from 20 million to 180 million
in 40 million increments. The computation intensityjs two square-roots per element,
and the speculation happens once (two blocks). In all vessithe time scales in a
straight line with the data size&Sequentials 2% to 3% slower thaoriginal possibly
due to the indirect access to the reduction variaBfgec failadds another 1.5% to 3%.
Since the overhead scales with the data size, most of it isdbeof the page fault
incurred by the main process for each page of shared daaprocessingmproves
the speed by 48%, 53%, 52%, and 55% for the four data sizestfrersmallest to the

largest (about one third reduction in running time).

Improvement over computation intensity Improvement over speculation frequency
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Figure 6.8: Co-processing performance for the reductiognar

Next we vary the computation intensity and the frequencypetslation. The left
half of Figure 6.8 shows the computation intengitfrom zero to four square-roots per
element. When there is no computation, the speed is boundtn @ffective memory
bandwidth, and co-processing is pure overhead. Compareddmal, sequentialis
3% slower,spec fail7%, andco-processing.6%. When there is much computation
(k = 4), sequentials 5% fasterspec fail4%, andco-processingg7%. The right half
of Figure 6.8 shows the effect of speculation granularity. 200 million numbers and
two square-roots per number, we reduce the block size teaserthe number of blocks
from 2 to 18 and hence the speculation attempts from 1 to Shiwsame amount of
computation Original andsequentiahave the same time in the figure because they do

not speculate. The slowdown frospec fail(worst-case time) ovesequentialncreases



159

from 1.4% to 8.7%, and the improvement from co-processirgyedeses from 55% to
44%. For this workload on average, each additional spaoualatids 1% time overhead

and loses 1% performance gain.

6.3.2.2 Graph Reachability

Our second benchmark is a computation of graph reachab#ity an undirected
graph, a typical reachability test performs depth-firstaean each node, marks reach-
able nodes, and skips the next one if it is marked. The amdypdrallelism available
is entirely input dependent: the test loop is fully parailehe graph has no edge, but
it is completely sequential if the entire graph is connectedr this test we use ran-
dom graphs with different average node degrees. We createosable environment
for co-processing—each node is 4KB in size, and a large abmfucomputation is
performed for each connected component. Figure 6.9 shavg#ults when a random
graph of 100 nodes has between 1 and 100 connected comporiémtssolid curve
shows the portion of nodes in the connected components foyrgppeculation. The
dotted curve shows the reduction in running time. The reshdtvs that co-processing
can exploit highly dynamic and input-dependent paraltelisith no explicit parallel
programming—no locks, semaphores, or barriers. A useesvatsequential program
and then inserts PPR. For co-processing to be profitable lemywee need large granu-

larity, which may exist in large programs.

6.3.3 Application Benchmarks
6.3.3.1 Gzipvl.2.4 by J. Gailly

As a compression tooGziptakes one or more files as input and compresses them
one by one using the Lempel-Ziv coding algorithm (LZ77). Megsion we use is
1.2.4 and comes from the SPEC 2000 benchmark suite. We disbeotfy “spec” so

the program behaves as a normal compressor rather than lanb@mcprogram (which
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Figure 6.9: Co-processing performance for the reachalbdgy

artificially lengthens the input by replication). The pragr has 8616 lines of C code.
BeginPPRand EndPPRare automatically inserted before reading a file and after th
output of the compressed file (for this one we allow file I/Ohe PPR). As shown in
Table 6.3, the analyzer identifies 33 variables and allonagites as shared data, 78
checked variables (many are not used during compressi8iikedy private variables.
Behavior analysis, in fact, detected flow dependences bata@®pressions because
the originalGzipreinitialized only part of the data structure before corspieg another
file. The values were used but seemed to have no effect. Wegetlahe code to

reinitialize these variables to 0. Compression returnstidairesults in all test inputs.

For each file,Gzip compresses one input buffer at a time and stores the results
until the output buffer is full. We manually placed PPR arduhe buffer loop and
specified the set of likely private variables through thegpam interface described in
Section 6.2.4. The program returned correct results budusgigon failed because of
conflicts caused by two variables, “unsigned short bi_bunfd &ant bi_valid”, as re-
ported by the run-time feedback. The two variables are usedly three functions in
a 205-line file. Inspecting code, we realized that the cosgiom produced bits, not

bytes, and the two variables stored the partial byte betweerpressing consecutive



161

Table 6.3: The size of different protection groups in thénirey run
| Data groups | Gzip | Parser]

shared | num. objs.| 33 35
data size(bytes)| 210K | 70K
accesses || 116M | 343M
checked| num. objs.| 78 117
data size(bytes)| 2003 | 5312
accesses || 46M | 336M
(likely) | num. objs.|| 33 16
private | size(bytes)| 119K | 6024
data accesses | 51M | 39M

buffers. The dependence was hidden below layers of coderandg104 global vari-
ables, but the run-time analyzer enabled us to quickly puwrtiine cause. We modified

the code to compress buffers in parallel and concatenat®thpressed bits afterwards.

Figure 6.10 shows the results of three sets of tests. Theifigimpressing 10
identical archive files, each a mix of text, Powerpoint anthby files. This is the best
case for co-processing, and the compression runs 78%.fdstersecond is the set of
five files in Spec2K ref input. Two files are compressed in palralvhich leads to a
lower 16% improvement due to the different length of PPRanses. With an even
length (when we replicate the five files), the improvemenobees 51%. The third
input is an 84MB Gcc tar file. The intra-file co-processingcapates on 30MB of

compression and improves the compression time by 34%.

Inter-file co-processing uses around 130KB additional nmgnmo all executions,
mostly for likely private data shown in Table 6.3. Intra-fe-processing uses 7.45MB
(1865 replicated pages) additional memory, mostlysppecto buffer the compressed
data for the input used. In addition, the program has 104ajiedriables, so the space
overhead for page allocation is at most 104 pages or a halasbgtp for the sequen-
tial execution. The space cost of their run-time repligati® already counted in the

numbers above (130KB and 7.45MB).
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Gzip v1.2.4 by J. Gailly
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Figure 6.10: The effect of co-processing@amipandParser

6.3.3.2 Sleator-Temperley Link Parser v2.1

According to the Spec2K web site, “The parser has a dictipohabout 60000
word forms. It has coverage of a wide variety of syntacticstarctions, including
many rare and idiomatic ones. ... It is able to handle unknesgabulary, and make
intelligent guesses from context about the syntactic categ of unknown words.” It

is not clear in the documentation or the 11,391 lines of ito@ecwhether the parsing
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of sentences can be done in parallel. In fact, they are noe d@pendence we found
during training comes from commands (mixed with sententtes) for example, turn

on or off the echo mode for printing parsed sentences.

The parallelism analyzer identifies the sentence-parsiag.| We manually strip-
mine the loop to create a larger PPR. The data are then cldss#im Table 6.3 auto-
matically. During the training run, 16 variables are alway#ten first by the specula-
tion process during training, 117 variables always haveséimee value at the two ends

of a PPR instance, and 35 variables are shared.

The lower graph of Figure 6.10 shows the performance on aut ivjith 600 sen-
tences. We tested different strip-mine sizes from 10 sesteto 100 sentences in each
group. The group size has mixed effects on program perfacmaforsequentiabnd
spec fail the largest group size gives the lowest overhead, 3.1% &8d @spectively.
Co-processing improves performance by 16%, 46%, 61%, andf@B&e four group
sizes. The best performance happens with the medium graap $hen the group
size is small, the relative overhead is high; when the graugis large, there are fewer
PPR instances and hence more likely uneven-size PPRs.\f-thallspace overhead of
co-processing is 123KB, 100KB of which is checked data. Tleesmwverhead does

not seem to change with the group size.

6.3.3.3 ATLAS by R. C. Whaley

The Automatically Tuned Linear Algebra Software (ATLAS)ase of the fastest
library implementations of linear algebra routines [Whaétyal., 2001]. It is used
widely by scientific programmers and included in larger eyst such as Maple, MAT-
LAB, and Mathematica. Using parameterized adaptation antea@ode adaptation, it
generates different source code depending on the typesainpsers of the input and
the machine environment such as the data type, matrix ssohecsize and length of
floating point pipelines. The version of ATLAS built for oueRium 4 machine con-

tains 2,905 source files with 1,991,508 lines of code anddg®(ect files. Compilation
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was done with the following parameters: Posix thread supgmabled, express setup
enabled, maximum cache size of 4096 KB, and Level 1 BLAS tunimapked. The
total time for compilation was 2 hours and 42 minutes. Thesttger version, release
3.7.11, of the code is used which gives access to the mostagdaurces, which run
faster in our experiment when compared to the stable verstease 3.6.0. On the test
machine, base ATLAS is an order of magnitude faster than déineenmplementation,
whose speed is about 400 MFLOPS. The multi-threaded ATLA®esowith the 3.7.11
distribution. It is implemented by hand and tuned to use ujpto threads on the test

machine.

In this experiment we compare two parallel implementatisquare matrix mul-
tiply: co-processed sequential ATLAS and threaded ATLAR:d-processing, the user
data is protected from conflicting accesses by the prograittamlibrary. The data
inside the library needs no protection since each PPR pacsss it as a sequential
program does. We compare five versions of square matrix phulibase atlasnitial-
izes two matrices and makes one call to sequential ATLiAfaded atlascalls the
parallel versionpase atlas + co-processingpmputes the result matrix in three steps:
the upper matrix and the lower matrix in two parallel regiamsl the middle section
at the end (to avoid false sharingfreaded atlas + co-processingalls threaded AT-
LAS inside the parallel regions, and finaltp-processing spec faihserts an artificial
conflict to cause co-processing to fail. For matriced/éfsize, the performance is mea-
sured by2 = N? divided by the total wall-clock running time. The resulte ahown in
Figure 6.11.

Co-processing runs slower théase atlafor NV less than 800 where the specu-
lation overheads outweigh the benefit of parallelism. Aftereaches 2800 (and the
time reaches 8.7 seconds), co-processing outperformsathaparallelized and tuned
ATLAS by 2% and the base ATLAS by as much as 86%. The combingut@oessing
and threaded ATLAS runs correctly but has a lower paralldigpmance. The version

spec failperforms significant slower tharase atlasvhen N is below 1400, showing
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ATLAS matrix multiply by R. C. Whaley

5000 f
4000 t
o 3000 r
-
2000 ¢/ 5
base (sequential) atlas —=—
threaded (parallel) atlas -+
1000 base atlas + coprocessing ——

threaded atlas + coprocessing =
__coprocessing spec fail ——o—-

o 1 1
600 1000 1400 1800 2200 2600 3000 3400
Matrix order

Figure 6.11: Co-processing performance with ATLAS

the effect of the speculation overhead when the running tsnumder 2 seconds. The
two versions then run neck and neck fSrup to 2000, after whiclspec failwins a
nose ahead. It seems that breaking the multiply into threeegi leads to faster se-
guential performance. The space overhead changes withghe iFor the largest run,
N = 36002, co-processing uses 45.2MB (11312 copied pages) additioaaory, for

mostly the half matrix being speculatively computed on.

An important observation is that the threaded ATLAS has$essoth performance
than the base ATLAS, indicating that parallel tuning is maifécult for a programmer
than sequential tuning. In contrast, the parallel perfaroeaof co-processing scales as
smoothly as the sequential ATLAS, showing the advantag®4gdrocessing based on

the fastest (and often the best tuned) sequential code.

6.4 Related Work

A complete system like ours is undoubtedly built on the idehsnany earlier

projects. For lack of space, we cite mostly software sohgibut similar ideas of
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speculation and data monitoring have been explored extysn hardware-based so-

lutions.

Parallel languages The separation of performance and correctness is a key idea e
bodied in High Performance Fortran, where a user can spdatfy distribution but let
the compiler parallelize the program [Forum, 1997; Allexl &&nnedy, 2001]. In co-
processing, a user specifies likely rather than definitelpasan. Pipelined parallelism
in loops can be specified by tldacrossconstruct, where specific data are posted
by the producer iteration and waited by the consumer i@mndiCytron, 1986; Allen
and Kennedy, 2001]. Most parallel languages have constfactspecifying parallel
statements. Well-known examples include the parallebregyin OpenMP [OpenMP],
transactions in transactional memory [Herlihy and Mos®319and future in Multi-
lisp [Halstead, 1985]. The future construct specifies thatresult of a computation
is not immediately needed until a later point, which can erned in pure functional
languages as in Multilisp [Halstead, 1985] or explicitly lked by a programmer as
the end of a transaction in transactional memory [Herlihy Bioss, 1993] or theync

point in Cilk [Frigo et al., 1998].

Like HPF and transactions, possibly parallel regions doguairantee parallelism.
PPR goes one step further because data sharing and syreti@mpoints are implicit.
The scope of a region is dynamic rather than static, so ivalkrbitrary control flow in,
out, and between parallel regions. On the other hand, palatiguages are often more
expressive and can specify nested parallelism([Friga €298; Moss, 2006] for exam-
ples) and exact data sharing, such as reduction and datangopyDpenMP [OpenMP]

and typed and programmable specification in Jade [Rinard ang L998].

Dynamic and speculative parallelization The concept of data dependence was de-
veloped for parallelization (vectorization) by Lamporttime Parallelizer system, by

Kuck and his colleagues in Paraphrase, and by Kennedy armdgsoith Parallel For-
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tran Converter (PFC) [Allen and Kennedy, 2001]. Control depecd was developed
by Ferrante et al [Cytron et al., 1991; Allen and Kennedy, 20@&katic dependence
checking can be overly conservative when two statementsnastly but not always
independent and when the independence is too difficult teeprespecially between
large code regions. Early dynamic checking techniquesldegd for array-based sci-
entific programs include the inspector-executor for dyrgmarrallelization [Saltz et al.,
1991] and the privatizingloall (PD) test for speculative parallelization [Rauchwerger
and Padua, 1995]. The PD test has two separate phases: #iegraddata access and
checking for dependence. Later techniques speculativelgtize shared arrays (to al-
low for non-flow dependences) and combine the marking andkihg phases [Gupta
and Nim, 1998; Dang et al., 2002; Cintra and Llanos, 2005]. fEBelnique of array
renaming is generalized in Array SSA [Knobe and Sarkar, 1988pection is used to

parallelize Java programs at run-time [Chan and Abdelrah@@0v].

These techniques are more scalable than co-processirentiyris. They address
issues of parallel reduction [Gupta and Nim, 1998; Rauchereagd Padua, 1995; Saltz
et al., 1991] and different strategies of loop schedulingh{@ and Llanos, 2005]. In

co-processing, a user can enable parallel reduction bycexqabding.

Hardware-based thread-level speculation is among thediesitomatically exploit
loop- and method-level parallelism in integer code. In meshniques, the states of
speculative threads are buffered and checked by monittheglata writes in earlier
threads either through special hardware additions to agemr [Sohi et al., 1995], bus
snooping [Chen and Olukotun, 2003], or an extended cache&ote protocol [Stef-
fan et al., 2005]. Since speculative states are buffereaidviare, the size of threads
is limited to no more than thousands of instructions. A réstidy classifies existing
loop-level techniques as control, data, or value speauatnd shows that the maximal
possible speedup is 12% on average for SPEC2Kint even withetmutation overhead

and unlimited computing resources [Kejariwal et al., 2008]e limited potential sug-
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gests that the programmer support like ours is needed fautdee system to fully

utilize multi-processor machines.

Speculative execution is closely related to methods of lomking concurrency
control. Run-time dependence checking is an efficient (btiheroessary) solution to
ensure serializability, which is NP-hard in the generakd&apadimitriou, 1979]. An
influential solution assigns a sequence number to eachatrtos and ensures the same
result as the serialized execution [Kung and Robinson, 198Hnsactional memory
was originally proposed as a hardware mechanism to suppobiocking synchroniza-
tion (by extending cache coherence protocols) [Herlihy lslods, 1993]. It is rapidly
gaining attention because of its potential to be a genedleasy to use solution for
concurrency [Grossman, 2006]. Various software impleat@nis rely on transactional
data structures and primitive atomic operations availablexisting hardware [Harris
and Fraser, 2003; Herlihy et al., 2003; Shavit and Touit®97] (see [Marathe and
Scott, 2004] for a survey). Many hardware-based TM systeans lalso been devel-

oped.

As discussed in more detail in Section 6.2.2.3, co-prongssidifferent from most
existing speculation techniques in three aspects: pagedbaonitoring, value-based
checking, and strong isolation. Value-based checkingvalloo-processing in the pres-
ence of flow dependences, so it improves the basic dependéecking as used by
existing software-based schemes [Chan and Abdelrahma#d, Z6tra and Llanos,
2005; Gupta and Nim, 1998; Knobe and Sarkar, 1998; RauchwargePadua, 1995;
Saltz et al., 1991]. Strong isolation protects correctrimgsopens the possibility of
speculation failure after the main process finishes. Therstddy process is a novel
solution to this problem. The understudy execution has nteption overhead except
for forking and copying modified pages, which is necessarytéocancellation when
speculation finishes early and correctly. Being able to ealkoa safe execution to im-

prove performance is an interesting feature of the system.
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Run-time data monitoring For large programs using complex data, per-access mon-
itoring causes slow-downs often in integer multiples, gwreed for data breakpoints
and on-the-fly data race detection, even after removing as/rohecks as possible
by advanced compiler analysis [Mellor-Crummey, 1992; Pérkand Keleher, 2000;
Wahbe et al., 1993]. Dynamic co-processing cannot possifityd such slowdown
and be practical. Page-based data monitoring was used jpoging distributed
shared memory [Li, 1986; Keleher et al., 1994] and then fonynather purposes.
Co-processing uses page-based monitoring for shared datd®precision for effi-
ciency (without compromising correctness). For likelyvpte data and for checked
data, it incurs only a constant cost per PPR. Most speculatiernead occurs on the
speculative path. Only one page fault per modified page igiad on the critical path.
No other software systems we know has as low an amortizedaostosely coupled

parallelism.

6.5 Future Directions

Behavior-Oriented Parallelization can be extended in thliszctions: efficiency,
scalability, and applicability. The current scheme hasmjploited compiler analysis
much. Potentially, a good dependence analysis should kdljgce both profiling and

run-time overhead.

For scalability, one possibility is to extend the co-prateg to multi-processing,
where more than one process could do speculative executraritaneouly. An im-
plementation difficulty is the increased potential raceditbons among the processes.
The second possibility is a distributed version of behawioented parallelization, a

scheme working on both SMP systems and clusters.

The current co-processing is designed and tested on yiritgrams with one PPR
only. The extension to a wider range of applications with@®PRs remains a future

research topic.
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6.6 Summary

The paper has presented the design and evaluation of cegsiag including the
PPR markers for specifying likely parallelism, strong &wn for protecting shared,
checked and likely private data, and the parallel ensendsléitiing the speculation
overhead and ensuring that the worse parallel performanas good as the best se-
guential performance. Our prototype includes a profileroadifired GNU C Compiler,
and a run-time system. On a dual-processor PC, co-procestsings expected proper-
ties when tested on micro-benchmarks and improves perfarenby 16% to 86% for

two large integer applications and a scientific library.

Co-processing provides a new programming system. Knownndigmees, such as
error handling and garbage collection, can stay in coderas &s they happen rarely.
Parallelization can be done in incremental steps by rengogd@pendences one by one
as detected by the run-time feedbacks. At no point does agmoger need parallel
debugging.

Not all programs have loosely-coupled coarse-grain persith, although many
utility programs do, at least for certain inputs. Proceased (behavior-level) paral-
lelism complements finer-grained parallelism such as tgeln fact, a PPR may con-
tain threaded code. Overall, these results show that coepsing offers cost-effective
way to make use of coarse grain parallelism and to improvédsé sequential imple-

mentation on existing parallel hardware with no explicitgdel programming.
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7 Conclusions and Speculations

My advisor, Professor Chen Ding, once asked the studentsomaiter class whether
computer science is science. Students immediately askéafdefinition of "science".

The definition Professor Ding offered is similar to the fallog!:

"Any system of knowledge that is concerned with the physicadldvand
its phenomena and that entails unbiased observations atehsgtic exper-
imentation. In general, a science involves a pursuit of Kedge covering

general truths or the operations of fundamental laws."

Well, that helped, but not ultimately: the students’ ansadiverged from uniform

uncertainty to polar opposites.

The arguments on the question are out of the scope of thisstHes one of its
ensuing questions is quite relevent: what is the relatiawéen computer programs
and the physical world? Within the last century, with no dptibe former has quickly
covered almost every aspect of the latter. Computer progheaws composed a hew
world—the program world, which models and interacts witéd ghysical world, and

shows interesting analogies with the latter.

IFrom Encyclopedia Britannica: http://www.britannicaito
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An N-body molecule system for example behaves differently different physical
environment. Physics research tries to discover the wyidgrlaws and predict the be-
havior of an arbitrary set of molecules in any environmenbgPam analysis, similarly,
tries to discover the general behavior patterns of a proguaaipredict its behavior for

an arbitrary input in any running environment.

In the physical world, an object has both intra- and inteoast The intra-actions of
the Earth form mountains; the interaction with the Sun ksing four seasons. A pro-
gram has intra-actions among its data, functions and coergenit also interacts with
other programs, sometimes being constructive as provmliogptaining extra function-

alities, sometimes being destructive as competing fottdéichresources.

Mother nature seeds the capability of learning, self-avmtuand adaptation into
every life, which is essential for the progress of the phglsicorld. In my opinion, the
program world needs such capability not less at all. A pnegrainning in a different
environment (machines, operating systems) with variopats) mechanically follows
the road map designed at its "birth" despite the actual emwemt, inputs and its run-
ning history: its one billion’th run on the same input is naydetter than its first run.

The program world needs intelligence.

Behavior-based program analysis is an exploration in th&iction. This thesis
describes three aspects: whole-program locality and tffamalysis, program phase
analysis, and behavior-oriented parallelization. Thd fie® start from cross-input
prediction of the average behavior of a whole program, amtehnekto the prediction of
large-scale dynamic behavior of program phases. Foregast future enables various
adaptations like data reorganization and cache resizingaBer-oriented paralleliza-
tion is a special kind of adaptation: a sequential prograedmi-)automatically given
the ability to utilize multi-processors when necessaryeséhtechniques reveal both
spatial and temporal large-scale program patterns, whiehat visible from individu-
ally analyzing program code, data, input, or running envinent, but indispensable to

creating an intelligent program world.
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This research has established a new basis for intelligeagramming systems,
which introduce into a program the ability to automaticadlyolve its code and data
and configure its running environment such that a betteioeid the program could

dynamically match the input, behavior and system condition
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