
Large-Scale Program Behavior Analysis
for Adaptation and Parallelization

by

Xipeng Shen

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Chen Ding

Department of Computer Science
The College

Arts and Sciences

University of Rochester
Rochester, New York

2006

To my dear wife, Xiaoyan, for giving me the greatest love and unconditional support.

iii

Curriculum Vitae

Xipeng Shen was born in Shandong, China on April 20th, 1977. Heattended the

North China University of Technology from 1994 to 1998 receiving a Bachelor of En-

gineering in Industry Automation in 1998 and joined the Chinese Academy of Sciences

after that. In 2001, he received his Master of Science in Pattern Recognition and Intel-

ligent Systems. He came to the University of Rochester in the Fall of 2001 and began

graduate studies in Computer Science. He pursued his research in programming sys-

tems under the direction of Professor Chen Ding. He received aMaster of Science

degree in Computer Science from the University of Rochester in2003.

iv

Acknowledgments

I have been very fortunate to have an advisor, Professor Chen Ding, who has pro-

vided me the independence to pursue my research interests and guided me through the

course of this dissertation. From him, I learned not only thesplendid attractions of

science, a rigorous attitude toward research, and intelligent ways to solve problems,

but also persistency in pursuing excellence, optimism whenfacing difficulties, and a

profound understanding of life. Without his unconditionalsupport and consistent in-

spirations, this thesis would not be possible.

I owe a particular debt to my committee. Sandhya Dwarkadas and Michael Scott

have always promptly replied to my requests and put the greatest effort to provide me

the excellent advice on my research, presentations and paper writings. Dana Ballard

gave me invaluable encouragement when I was facing the difficulty of choosing my

research area. Michael Huang offered insightful technicaldiscussions and suggestions.

Their supports helped to shape many aspects of this thesis.

In addition to my committee, Professor Kai Shen and Mitsunori Ogihara helped me

with intelligent discussions on research and generous mentoring on my career search. I

also thank Dr. Kevin Stoodley, Yaoqing Gao, and Roch Archambault for precious help

and collaborations in IBM Toronto Lab.

All the people in the Computer Science department made my graduate life more

enjoyable and helped me in various ways. In particular, I thank my collaborators, Yutao

Zhong, Chengliang Zhang, Ruke Huang, Jonathan Shaw, Kirk Kelsey and Tongxin Bai

for pleasant discussions.

v

I would express my special acknowledgment to my family. Mom and Dad gave me

their greatest love, hope and belief. I would, above all, thank most my wife Xiaoyan for

all she has brought me, the support, the love, and the best gift in the world—my dear

son Daniel.

This material is based upon work supported by the National Science Foundation

(Grants nos. CNS-0509270, CCR-0238176, CCR-0219848 and EIA-0080124) and the

Department of Energy (Contract No. DE-FG02-02ER25525). Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect the views of the funding organizations.

vi

Abstract

Motivated by the relentless quest for program performance and energy savings, pro-

gram execution environments (e.g. computer architecture and operating systems) are

becoming reconfigurable and adaptive. But most programs are not: despite dramatic

differences in inputs, machine configurations, and the workload of the underlying op-

erating systems, most programs always have the same code running with the same data

structure. The resulting mismatch between program and environment often leads to ex-

ecution slowdown and resource under-utilization. The problem is exacerbated as chip

multi-processors are becoming commonplace and most user programs are still sequen-

tial, increasingly composed with library code and running with interpreters and virtual

machines. The ultimate goal of my research is an intelligentprogramming system,

which injects into a program the ability to automatically adapt and evolve its code and

data and configure its running environment in order to achieve a better match between

the (improved) program, its input, and the environment.

Program adaptation is not possible without accurately forecasting a program’s be-

havior. However, traditional modular program design and analysis are ill-fitted for

finding large-scale composite patterns in increasingly complicated code, dynamically

allocated data, and multi-layered execution environments(e.g. interpreters, virtual ma-

chines, operating systems and computer architecture.) My research views a program as

a composition of large-scale behavior patterns, each of which may span a large num-

ber of loops and procedures statically and billions of instructions dynamically. I apply

statistical technology to automatically recognize the patterns, build models of program

vii

behavior, and exploit them in offline program transformation (e.g. array regrouping

based onlocality and reference affinity research) and online program adaptation (e.g.

behavior-oriented parallelizationbased onbehavior phases) to improve program per-

formance and reliability.

viii

Table of Contents

Curriculum Vitae iii

Acknowledgments iv

Abstract vi

List of Tables xiv

List of Figures xvi

1 Introduction 1

1.1 Program Behavior Model . 2

1.2 New Challenges to Programming Systems3

1.3 Behavior-Based Program Analysis . 5

1.4 Dissertation Organization .. 10

2 Data Locality 11

2.1 Introduction . 11

2.1.1 Basic Prediction Method . 13

2.1.2 Factors Affecting Prediction Accuracy 14

2.2 Terminology . 16

ix

2.3 Single-Model Multi-Input Prediction 17

2.4 Multi-Model Prediction . 19

2.5 Evaluation . 22

2.5.1 Experimental Setup . 22

2.5.2 Results on Large Inputs . 23

2.5.3 Results on Small Inputs . 26

2.5.4 Comparison . 27

2.6 Uses in Cache Performance Prediction 29

2.7 Related Work . 30

2.7.1 Other Research on Reuse Distance 30

2.7.2 Comparison with Program Analysis Techniques 32

2.8 Future Directions . 33

2.9 Summary . 34

3 Reference Affinity 36

3.1 Introduction . 37

3.2 Distance-based Affinity Analysis 39

3.2.1 Distance-Based Reference Affinity Model 39

3.2.2 k-Distance Affinity Analysis 40

3.3 Lightweight Frequency-Based Affinity Analysis 41

3.3.1 Frequency-Based Affinity Model 42

3.3.2 Lightweight Affinity Analysis Techniques 43

3.3.2.1 Unit of Program Analysis 43

3.3.2.2 Static Estimate of the Execution Frequency 44

3.3.2.3 Profiling-Based Frequency Analysis 46

x

3.3.2.4 Context-Sensitive Lightweight Affinity Analysis . .. 46

3.3.2.5 Implementation . 48

3.4 Affinity-Oriented Data Reorganization 50

3.4.1 Structure Splitting . 50

3.4.2 Array Regrouping . 52

3.5 Evaluation . 54

3.5.1 Affinity Groups . 55

3.5.2 Comparison with Distance-Based Affinity Analysis 56

3.5.3 Comparison with Lightweight Profiling 57

3.5.4 Performance Improvement from Array Regrouping 57

3.5.5 Choice of Affinity Threshold 58

3.6 Related Work . 60

3.6.1 Affinity Analysis . 60

3.6.2 Data Transformations . 61

3.7 Future Directions . 63

3.8 Summary . 64

4 Locality Phase Analysis through Wavelet Transform 65

4.1 Introduction . 66

4.2 Hierarchical Phase Analysis .69

4.2.1 Locality Analysis Using Reuse Distance69

4.2.2 Off-line Phase Detection . 71

4.2.2.1 Variable-Distance Sampling 71

4.2.2.2 Wavelet Filtering 72

4.2.2.3 Optimal Phase Partitioning 75

xi

4.2.3 Phase Marker Selection . 77

4.2.4 Marking Phase Hierarchy . 78

4.3 Evaluation . 80

4.3.1 Phase Prediction . 81

4.3.1.1 Comparison of Prediction Accuracy 83

4.3.1.2 Gcc and Vortex . 89

4.3.2 Adaptive Cache Resizing . 90

4.3.3 Phase-Based Memory Remapping 93

4.3.4 Comparison with Manual Phase Marking 97

4.4 Related Work . 99

4.5 Summary . 101

5 Behavior Phase Analysis through Active Profiling 103

5.1 Introduction . 103

5.2 Active Profiling and Phase Detection 107

5.2.1 Terminology . 107

5.2.2 Constructing Regular Inputs 108

5.2.3 Selecting Phase Markers . 109

5.3 Evaluation . 112

5.3.1 GCC . 114

5.3.2 Perl . 117

5.3.3 Comparison with Procedure and Interval Phase Analysis. . . . 118

5.4 Uses of Behavior Phases . 123

5.5 Related Work . 125

5.6 Future Directions . 126

5.7 Summary . 127

xii

6 Behavior-Oriented Parallelization 129

6.1 Introduction . 129

6.2 Speculative Co-processing . 133

6.2.1 Possibly Parallel Regions . 133

6.2.2 Correctness . 135

6.2.2.1 Three Types of Data Protection 135

6.2.2.2 Correctness of Speculative Co-processing 140

6.2.2.3 Novel Features . 144

6.2.3 Performance . 145

6.2.3.1 Parallel Ensemble 145

6.2.3.2 Understudy Process 147

6.2.3.3 Expecting the Unexpected 149

6.2.4 Programming with PPR . 150

6.2.4.1 Profiling Support 151

6.3 Evaluation . 154

6.3.1 Implementation . 154

6.3.2 Micro-benchmarks . 157

6.3.2.1 Reduction . 157

6.3.2.2 Graph Reachability 159

6.3.3 Application Benchmarks . 159

6.3.3.1 Gzip v1.2.4 by J. Gailly 159

6.3.3.2 Sleator-Temperley Link Parser v2.1 162

6.3.3.3 ATLAS by R. C. Whaley 163

6.4 Related Work . 165

xiii

6.5 Future Directions . 169

6.6 Summary . 170

7 Conclusions and Speculations 171

Bibliography 174

xiv

List of Tables

2.1 Benchmarks for locality prediction 23

2.2 Comparison of prediction accuracy by five methods 24

2.3 Accuracy forSP with small-size inputs 27

2.4 Features of various reuse distance prediction methods 28

3.1 Machine architectures for affinity study 55

3.2 Test programs in affinity experiments 55

3.3 Affinity groups . 56

3.4 Comparison of compiler andK-distance analysis onSwim95 57

3.5 Execution time (sec.) on IBM Power4+ 58

3.6 Execution time (sec.) on Intel Pentium IV 59

3.7 Gap between the top two clusters of affinity values 59

4.1 Benchmarks for locality phase analysis 81

4.2 Accuracy and coverage of phase prediction 82

4.3 Number and the size of phases in detection runs 83

4.4 Number and the size of phases in prediction runs 83

4.5 Standard deviation of locality phases and BBV phases 88

xv

4.6 Performance improvement from phase-based array regrouping, exclud-

ing the cost of run-time data reorganization 96

4.7 Overlap with manual phase markers98

5.1 Benchmarks for utility phase analysis 113

6.1 Three types of data protection .136

6.2 Co-processing actions for unexpected behavior 149

6.3 The size of different protection groups in the training run 161

xvi

List of Figures

1.1 The speedup curves of CPU and DRAM from 1980 to 2000 showed by

J. Hennessy and D. Goldberg. 6

2.1 The flow diagram of Ding and Zhong’s prediction method, which uses

only two training inputs. A RD-Histogram is a reuse-distancehis-

togram, and a RF-Histogram is a reference histogram. Sample size

is the estimated input data size by sampling. 15

2.2 Reuse-distance histogram ofSP with input of size283. (a) distance

histogram (b) reference histogram . 17

2.3 An example for multi-model reuse signature prediction.Figure (a) is

the reuse distance histogram of the execution on standard input s0. By

using regression technique on all training histograms, thestandard his-

togram is decomposed into two histograms—constant and linear his-

tograms in Figure (b) and (c). During the prediction process, the two

histograms become Figure (d) and (e) respectively according to the size

of the new input8 ∗ s0. The constant histogram remains unchanged,

and the distance of each data in a linear histogram increasesto 8 times

long. The X-axis is inlog scale, so each bar of linear pattern moves 3

ranges right-toward. The reuse distance histogram for the new input is

the combination of the new constant and linear histograms, showed in

Figure (f). 22

xvii

2.4 Locality prediction accuracy bar graph. 24

2.5 The reuse distance histogram curve ofSWIM 26

2.6 Reuse distance histogram example .29

3.1 Interprocedural reference affinity analysis 51

3.2 Structure splitting example in C .. 52

3.3 An example of array regrouping. Data with reference affinity are placed

together to improve cache utilization 53

4.1 The reuse-distance trace of Tomcatv 70

4.2 A wavelet transform example, where gradual changes are filtered out . . 74

4.3 An example illustrating the optimal phase partitioning. Each number in

the sequence represents the reference to a memory location.Notation

wk
i represents the weight of the edge from theith number to thekth.

The solid lines show a path from the beginning to the end of thesequence. 75

4.4 Prediction Accuracy forTomcatvandCompress. Part (a) and (b) show

the phase boundaries found by off-line phase detection. Part (c) and

(d) show the locality of the phases found by run-time prediction. As a

comparison, Part (e) and (f) show the locality of ten million-instruction

intervals and BBV (basic-block vector) clusters. 85

4.5 The miss rates ofCompressphases on IBM Power 4 88

4.6 Sampled reuse distance trace ofGccandVortex. The exact phase length

is unpredictable in general. 89

4.7 Average cache-size reduction by phase, interval, and BBV prediction

methods, assuming perfect phase-change detection and minimal-exploration

cost for interval and BBV methods. Upper graph: no increase in cache

misses. Lower graph: at most 5% increase. 94

xviii

4.8 Average cache miss rate increase due to the cache resizing by phase,

interval, and BBV prediction methods. Upper graph: the objective is

no increase in cache misses. Lower graph: the objective is atmost 5%

increase. 95

5.1 The curve of the minimal size of live data during the execution of GCC

on inputscilabwith a circle marking the beginning of the compilation

of a C function. Logical time is defined as the number of memory

accesses performed so far. 105

5.2 (a) IPC curve ofGCCon inputscilaband (b) an enlarged random part.

Compilation boundaries are shown as solid vertical lines. 105

5.3 IPC curve ofGCC on an artificial regular input, with top-level (solid

vertical lines) and inner-level (broken vertical lines) phase boundaries. . 108

5.4 Algorithm of phase marker selection and procedures for recurring-distance

filtering. 110

5.5 GCC inner-phase candidates with inner-phase boundaries. 112

5.6 IPC curves of GCC, Compress, Vortex, Li and Parser with phasemarkers116

5.7 Behavior consistency of four types of phases, calculatedas the coef-

ficient of variance among instances of each phase. For each program,

the range of CoV across all inner phases is shown by a floating bar

where the two end points are maximum and minimum and the circle is

the average. A lower CoV and a smaller range mean more consistent

behavior. Part (b) shows the CoV of IPC. 121

5.8 IPC and cache hit rate distribution graphs. 124

6.1 Possible loop parallelism .131

6.2 Possible function parallelism .. . 131

6.3 Examples of shared, checked, and private data 136

xix

6.4 The states of the sequential and parallel execution. Thesymbols are

defined in Section 6.2.2.2 . 141

6.5 The parallel ensemble includes the control, main, speculation, and un-

derstudy processes. Not all cases are shown. See Table 6.2 for actions

under other conditions. 146

6.6 Profiling analysis for finding the PPR 152

6.7 Co-processing performance for the reduction program 157

6.8 Co-processing performance for the reduction program 158

6.9 Co-processing performance for the reachability test 160

6.10 The effect of co-processing onGzipandParser 162

6.11 Co-processing performance with ATLAS 165

1

1 Introduction

The relentless quest for performance motivated the fast development of computers in

the past decades. Although processors have been following Moore’s Law and doubled

the speed every two years, users are demanding more: in physics, to study the slip con-

dition, it takes hundreds of days to simulate fluid in channels; for computer architecture

research, it takes about 60 hours to simulate one-minute program execution; for gen-

eral users, the amount of data in the world is doubling every three years [Chen et al.,

2005]. Despite the urgency for performance, power and heat constraints have stopped

the increase of CPU speed. Instead, computers are increasingly equipped with more

processors. How can a programming system further accelerate programs’ execution

and help users effectively utilize the extra computing resource?

This thesis presents a novel technique,behavior-based program analysis, to sys-

tematically characterize and predict large-scale programbehavior. Unlike previous

program analysis, we model program behavior as a composite effect from code, data,

input and running environment rather than study them separately. The analysis builds

a regression model to better predict whole-program locality across inputs. It develops

a lightweight approach to recognize data affinity groups andimproves program local-

ity. For run-time adaptation, we propose behavior phases tocapture large-scale dy-

namic behavior patterns. To ease the development of parallel programs, we construct

a behavior-oriented parallelization system to (semi-)automatically parallelize complex

2

programs. All the techniques are based on our distinguishing view of program behavior,

which leads to the definition of our program behavior model.

1.1 Program Behavior Model

Behaviorrefers to “the actions or reactions of an object or organism,usually in

relation to the environment ” (adapted from [Merriam-Webster, 1998].) In program

world an “object ” is a program, including its code and data organization (data struc-

ture and data layout in the memory); the “environment” is program inputs and running

context, including the situations of hardware, operating systems and virtual machines;

an “action” is a program operation (in different scales) andthe ensuing activities of

the computing system like instruction execution, memory accesses and disk operations.

Formally, we define program behavior as follows:

Program behavior refers to the operations of a program—code and data—

and the ensuing activities of the computing system on different scales in

relation to the input and running environment.

The definition implies thatprogram behavior is a composite multiscale effect from

program code, dynamic data, input, and running environment, as denoted by the fol-

lowing formula. In short, we call those factorsprogram behavior components.

behavior = code + dynamic data + input + environment + scale

Program behavior has different granularities. It could be as small as loading a single

data, or as large as the execution of the whole program. This thesis focuses on large-

scale behavior: the locality and reference affinity models characterize whole-program

behavior; phase analysis explores recurring and predictable program segments, which

often span millions or billions of dynamic instructions andare not constrained by either

program code structures or a fixed window size.

3

There are three reasons for focusing on large-scale behavior. First, it has more

significant influence on the whole-program execution than fine-grain behavior. Sec-

ond, it is not as sensitive to the randomness of the running environment as small-scale

behavior, thus more regularity and better predicability. Last but not least, large gran-

ularity allows more sophisticated dynamic optimizations thanks to better tolerance of

overhead.

1.2 New Challenges to Programming Systems

The mismatch among program behavior components, such as a memory layout with

temporally close data being spatially far or a parallelizable application sequentially run-

ning on a parallel machine, usually causes program slowdownbut computing resource

under-utilized. It is the task of programming systems to “understand” a program, cap-

turing behavior patterns and modeling the relations among behavior components, and

then transform the program for a better match.

Prior programming systems fall into four categories, systems relying onstatic anal-

ysis, offline profiling, run-time analysis, or hybrid approaches. Static program analysis

focuses on program code and has no knowledge of program input, running environment

and thus run-time behavior. The analysis is therefore conservative, capturing only some

static properties [Allen and Kennedy, 2001; Cooper and Torczon, 2004]. Techniques

of offline profiling run a program with some training input andanalyze that partic-

ular run to optimize the program (e.g. [Thabit, 1981]). Manykinds of behavior are

input-sensitive, making the patterns learned from the training run unfit for other runs.

Run-time analysis, conducted during a program’s execution,is able to measure the

most accurate run-time behavior, but cannot afford intensive analysis and large-scale

transformations. There are some hybrid systems (e.g. [Grant et al., 1999a; Voss and

Eigenmann, 2001]), using compiler or offline-profiling analysis to pre-plan for more

4

efficient run-time optimizations. But due to the lack of large-scale behavior models,

those techniques are limited in granularity and effectiveness.

The recent hardware and software trends exasperate the difficulties. In 1965, Intel

co-founder Gordon Moore made the prediction, popularly known as Moore’s Law, that

the number of transistors on a chip doubles about every two years. Processor manu-

factures have been following Moore’s law and keeping silicon integration in the last

decades. However, the power leakage becomes a serious problem as gate oxide layers

are becoming only several atoms thick. The power consumption and heat problem make

higher frequency very difficult, forcing processor manufactures to change their direc-

tion from increasing clock frequency to increasing concurrency. Technology trends

also show that global on-chip wire delays are growing significantly, eventually increas-

ing cross-chip communication latencies to tens of cycles and rendering the expected

chip area reachable in a single cycle to be less than 1% in a 35nm technology [Keckler

et al., 2003]. In the future, computers will therefore be equipped with more cores per

chip rather than faster processors. The different intra- and intel-chip wire delays re-

quire different granularities of concurrency, which raises the urgency for programming

systems to better understand programs and capture behaviorpatterns (e.g. locality and

concurrency) of different scales.

Another trend in hardware is more flexibility. To save energy, the voltage is be-

coming scalable [Burd and Brodersen, 1995] and cache systems are becoming recon-

figurable [Balasubramonian et al., 2000b]. Guiding those reconfigurations is critical

to effectively exploit the flexibility, which again relies on the accurate prediction of

program large-scale behavior.

On the other hand, modern software is becoming more difficultto analyze. Pro-

grams are becoming more complex and increasingly composed of codes from libraries

and third parties; programmers are embracing high-level object-oriented languages

such as Java and C# due to their software engineering benefits.These programs use

small methods, dynamic class binding, heavy memory allocation, short-lived objects,

5

and pointer data structures, and thus obscure parallelism,locality, and control flow, in

direct conflict with hardware trends [McKinley, 2004]. Furthermore, those programs

run on a multi-layered environment composed of interpreters, virtual machines, oper-

ating systems and hardware.

The opposite trends of software and hardware implies increasing urgencies and

challenges for programming systems to better match behavior components.

This thesis presents behavior-based program analysis to systematically model and

predict the effects of various components on program large-scale behavior. It demon-

strates the effectiveness in program adaptation and automatic parallelization.

1.3 Behavior-Based Program Analysis

Behavior-based program analysis focuses on dynamic composite behavior and builds

statistical models to link large-scale program behavior with its code, data organization,

input and execution environment. It bridges static analysis, profiling-based analysis

and runtime analysis, providing a new way to capture large-scale program dynamic

behavior patterns. My research focuses on program memory behavior because of the

widening speedup gap between CPU and DRAM as shown in Figure 1.1[Hennessy

and Patterson, 2003]. The gap results in a severe performance bottleneck in modern

computers. This thesis starts from the exploration of program average behavior to dy-

namic behavior, spanning offline program optimizations as well as runtime adaptation

and automatic parallelization.

Data Locality

Locality or data reuse determines the effectiveness of caching, an important factor

on system performance, cost, and energy usage, especially as new cache designs are

adding more levels and dynamic reconfiguration. My researchstarts from modeling the

connection between program input andwhole-program locality, defined as the distribu-

tion of data reuse distance in a program execution. The thesis presents a mixture model

6

Figure 1.1: The speedup curves of CPU and DRAM from 1980 to 2000 showed by J.
Hennessy and D. Goldberg.

with regression analysis to predict whole-program locality for all inputs. The new ap-

proach is distinguished from previous work in two aspects. First, the model relaxes the

“pure model per group” assumption by allowing mixed data reuse patterns. That makes

small inputs enough for locality analysis and consequentlyreduces the majority of the

training overhead. Second, regression analysis improves locality prediction accuracy

by taking advantage of more than two training inputs. Compared to previous methods,

the new locality prediction reduces about half of the prediction error, removes 95% of

space cost, and uses much smaller inputs and faster data collection [Shen et al., 2003].

The locality analysis has been used to generate a parameterized model of program cache

behavior. Given a cache size and associativity, the model predicts the miss rate for an

arbitrary data input. It also identifies critical data inputsizes where cache behavior ex-

hibits marked changes. Experiments show this technique is within 2% of the hit rates

for set associative caches on a set of floating-point and integer programs using array-

and pointer-based data structures [Zhong et al., To appear]. (The miss rate error can be

larger especially for low miss rates.) The model enables better understanding of pro-

gram cache behavior, helps machine and benchmark design, and assists reconfigurable

memory systems.

7

Reference Affinity

While the memory of most machines is organized as a hierarchy,program data are

laid out in a uniform address space. Data reorganization is critical for improving cache

spatial locality and thus memory bandwidth. Array regrouping, for example, combines

arrays that are often accessed together into a structure array so that a single cache load

operation can load the elements from multiple arrays residing on the same cache line

after regrouping. We have proposedreference affinity, the first trace-based model of

hierarchical data locality, and a distance-based affinity analysis, which finds array and

structure field organization (among an exponential number of choices) that is consis-

tently better than the layout given by the programmer, compiler, or statistical cluster-

ing [Zhong et al., 2004]. To make the affinity model practicalfor general-purpose com-

pilers, this thesis proposes a lightweight affinity model based on static interprocedure

analysis. The prototype has been implemented in the IBM C/C++ and FORTRAN pro-

duction compiler. Both techniques lead to significant performance improvements, up to

96% (on average 30%) speedup of a set of SPEC 2000 floating-point benchmarks [Shen

et al., 2005].

The second part of the thesis focuses on dynamic memory behavior patterns for

online program adaptation and parallelization.

Behavior Phases

While whole-program models give the average behavior, our research in program

phases goes one step further to model and predict dynamic behavior changes at run

time. We use multiple training runs to statistically identify large-scale behavior pat-

terns, which we callbehavior phases, and exploits phases to guide online program

adaptation to improve cache performance, better memory management, and increase

parallelism.

Many programs, e.g. scientific simulation programs, have long continuous phases

of execution that have dynamic but predictable locality. Tosupport phased-based mem-

ory adaptation (e.g. reorganizing data for different phases), this thesis presents a novel

8

technique which applies signal processing technique, wavelet transform, to identify

phases from billions of data accesses. Frequency-based phase marking is then used to

insert code markers that mark phases in all executions of theprogram. Phase hierarchy

construction identifies the structure of all phases throughgrammar compression. With

phase markers inserted, the run-time system uses the first few executions of a phase

to predict all its later executions. The technique shows effectiveness in guiding cache

resizing in reconfigurable systems, where the cache size canbe adjusted for energy and

performance, and memory remapping, where data can be reorganized at phase bound-

aries [Shen et al., 2004b,c].

Outside the realm of scientific computing, many programs, such as programming

tools, server applications, databases, and interpreters,produce (nearly) identical service

to a sequence of requests. Those programs typically use dynamic data and control struc-

tures and reveal different behavior for different requests, which can easily hide those

aspects of behavior that are uniform across inputs and make it difficult or impossible for

current analysis to predict run-time behavior. We call those programsutility programs.

The repetitive behavior of utility programs, while often clear to users, has been diffi-

cult to capture automatically. This thesis proposes anactive profilingtechnique, which

exploits controlled inputs to trigger regular behavior andthen recognizes and inserts

common phase markers through profiling runs on normal inputs. Because users control

the selection of regular inputs, active profiling can also beused to build specialized

versions of utility programs for different purposes, breaking away from the traditional

“one-binary-fits-all” program model. Experiments with fiveutilities from SPEC bench-

mark suites show that phase behavior is surprisingly predictable in many (though not

all) cases. This predictability can in turn be used for better memory management in-

cluding preventive garbage collection (to invoke garbage collection at phase boundaries

which usually correspond to memory-usage boundaries), memory-usage monitoring (to

better predict memory usage trend through monitoring at phase boundaries), and mem-

ory leak detection (to detect potential memory leaks by identifying phase-local objects),

9

leading in several cases to multi-fold improvements in performance [Shen et al., 2004a;

Ding et al., 2005; Zhang et al., 2006].

Behavior-Oriented Parallelization

Adaptive profiling also suggests the possibility of automatic coarse-grain paral-

lelization, a special kind of program adaptation. Many programs have high-level paral-

lelism that users understand well at the behavioral level. Examples include a file com-

pressor compressing a set of files, a natural language parserparsing many sentences,

and other utility programs. These programs are widely used and important to parallelize

as desktop and workstations are increasingly equipped withchip multi-processors.

High-level parallelization of utility programs is difficult for traditional compiler

analysis as the large parallelization region may span many functions with complicated

control-flow and dynamic data accesses. Furthermore, the parallelism is often dynamic

and input dependent: depending on the input, there may be full, partial, or no paral-

lelism in an execution.

This thesis presents behavior-oriented parallelization (BOP), which is adaptive to

program inputs and run-time behavior, but relies on no special hardware. It has three

components. The first is training-based behavior analysis,which identifies the recur-

ring phases in a utility program, measures the parallelism among phase instances, and

analyzes the control flow and data structures for possible parallelization. The second is

behavior speculation, which transforms the program so it speculatively executes later

phase instances, checks the correctness, jumps forward if speculation succeeds, but

cancels the effects if speculation fails. Finally, while training-based analysis identifies

likely behavior, a behavior support system ensures correctand efficient execution for all

behavior. Experiments on two commonly used open-source applications demonstrate

as much as 78% speedup on a dual-CPU machine [Shen and Ding, 2005].

10

1.4 Dissertation Organization

The dissertation is organized as follows. Chapter 2 focuses on whole-program local-

ity prediction. It presents a regression model to predict whole-program locality across

inputs. Chapter 3 discusses the reference affinity model and proposes a lightweight

affinity analysis to determine data affinity groups and improve program locality. Both

chapters are devoted to the average behavior of a whole program. Chapter 4 starts the

study of program behavior phases by presenting a wavelet transform based analysis to

detect and predict large-scale program phase behavior. Chapter 5 extends the phase

analysis to input-sensitive utility programs through active profiling. Chapter 6 focuses

on a framework to (semi-)automatically parallelize complex integer programs through

the support of a modified C compiler, offline profiling, and a runtime system. Chapter 7

summarizes the contributions and discusses possible extensions.

11

2 Data Locality

Locality is critical for amortizing the memory bottleneck due to the increasing CPU-

memory speed gap. As a locality metric, the distance of data reuses has been used

in designing compiler, architecture, and file systems. Datareuse behavior is input-

sensitive: two executions with different input often have significantly different data

reuse patterns. To better understand locality across program inputs, Ding and Zhong

proposed a method to build linear model using two training runs, which for the first

time enables the prediction of reuse distance histograms ofthe execution on an arbitrary

input [Ding and Zhong, 2003]. This chapter discusses the technique and presents a set

of new methods with two extensions. First is the regression analysis on more than

two training inputs. Second is a multi-model technique to reduce prediction errors due

to small training inputs or coarse-grain data collection. The new locality prediction

improves accuracy for 50%, removes 95% of space cost, and uses much smaller inputs

and thus much faster data collection in model training.

2.1 Introduction

Caching is widely used in many computer programs and systems,and cache per-

formance increasingly determines system speed, cost, and energy usage. The effect of

caching is determined by the locality of the memory access ofa program. As new cache

12

designs are adding more cache levels and dynamic reconfiguration schemes, cache per-

formance increasingly depends on the ability to predict program locality.

Many programs have predictable data-access patterns. Somepatterns change from

one input to another, for example, a finite-element analysisfor different size terrains and

a Fourier transformation for different length signals. Some patterns are constant, for

example, a chess program looking ahead a finite number of moves and a compression

tool operating over a constant-size window.

The past work provides mainly three ways of locality analysis: by a compiler, which

analyzes loop nests but is not as effective for dynamic control flow and data indirec-

tion; by a profiler, which analyzes a program for select inputs but does not predict its

behavior change in other inputs; or by run-time analysis, which cannot afford to ana-

lyze every access to every data. The inquiry continues for a prediction scheme that is

efficient, accurate, and applicable to general-purpose programs.

Ding and Zhong [Ding and Zhong, 2003] presents a method for locality prediction

across program inputs, using a concept called thereuse distance. In a sequential ex-

ecution, thereuse distanceof a data access is the number ofdistinct data elements

accessed between this and the previous access of the same data. It is the same asLRU

stack distanceproposed by Mattson et al. [Mattson et al., 1970].

Ding and Zhong describe three properties of the reuse distance that are critical for

predicting program locality across different executions of a program. First, the reuse

distance is at most a linear function of the program data size. The search space is much

smaller for pattern recognition and prediction. Second, the reuse distance reveals in-

variance in program behavior. Most control flow perturbs only short access sequences

but not the cumulative distance over a large amount of data. Long reuse distances

suggest important data and signal major phases of a program.Finally, reuse distance

allows direct comparison of data behavior in different program runs. Different exe-

cutions of a program may allocate different data or allocatethe same data at different

locations. They may go through different paths. Distance-based correlation does not

13

require two executions to have the same data or to execute thesame functions. There-

fore, it can identify consistent patterns in the presence ofdynamic data allocation and

input-dependent control flows [Ding and Zhong, 2003].

Ding and Zhong show that the histogram of reuse distance, also calledreuse signa-

ture, of many programs has a consistent pattern across differentinputs. The pattern is

a parameterized formula that for a given program input, it predicts the reuse signature

for the corresponding execution.

However, their pattern analysis has two limitations. First, it uses only two training

runs and therefore may be misled by noises from specific executions. Second, the

accuracy is limited by the precision of data collection. Accurate prediction requires

large size program inputs and fine-grained reuse distance histograms. The space and

time cost of the analysis is consequently high, which makes the analysis slower and

prohibits simultaneous analysis of different patterns, for example, patterns of individual

data elements.

This chapter presents a new set of techniques that overcome these limitations in two

ways. First, we use regression to extract signature patterns from more than two training

runs. Second, we employ multi-models.

2.1.1 Basic Prediction Method

This section describes the basic locality prediction approach and the main factors

affecting the prediction accuracy.

Given an input to a program, we measure the locality of the execution by the his-

togram of the distance of all data reuses also calledreuse distance histogramor reuse

signature(see Section 2.2 for formal definitions). The prediction method by Ding and

Zhong uses a training step to construct a pattern by running two different inputs of a

program. Lets andŝ be the sizes of the two input data. For each of the reuse distance

histogram, the analysis forms 1000 groups by assigning 0.1%of all memory accesses

14

to each group, starting from the shortest reuse distance to the largest. We denote the

two sets of 1000 groups as〈g1, g2, · · · , g1000〉 and 〈ĝ1, ĝ2, · · · , ĝ1000〉 and denote the

average reuse distances ofgi and ĝi by rdi and r̂di respectively (i = 1, 2, · · · , 1000.)

Based onrdi andr̂di, the analysis classifies groupi as a constant, linear, or sub-linear

pattern. Groupi has a constant pattern if its average reuse distance stays the same in

the two runs, i.e.rdi = r̂di. Groupi has a linear pattern if the average distance changes

linearly with the change in program input size, i.e.rdi

r̂di

= c + k s
ŝ
, wherec andk are

both constant parameters. Ding and Zhong measured the size of input data through

distance-based sampling [Ding and Zhong, 2003]. We use the same sampling method

in this work.

After the training step, the reuse signature for another input can be predicted by

calculating the new distance for each group according to itspattern. Interested reader

can find a more detail discussion of this process in Ding and Zhong’s paper [Ding and

Zhong, 2003]. Figure 2.1 shows the flow diagram of their prediction method. We will

explain the different types of histograms in Section 2.2.

Note that not all programs have a consistent pattern, and notall patterns are pre-

dictable. However, Ding and Zhong showed that their method can find predictable pat-

terns in a wide range of large, complex programs. The goal of this work is to improve

the analysis accuracy and efficiency for programs that have apredictable pattern.

2.1.2 Factors Affecting Prediction Accuracy

Three factors strongly affect the prediction accuracy: thenumber of training inputs,

the precision of data collection, and the complexity of patterns. The number of training

inputs needs to be at least two, although using more inputs may allow more precise

recognition of common patterns. The precision of data collection is determined by

the number of groups. Since each group is represented by its average reuse distance,

the more groups the analysis uses, the more precise the reusedistance information is.

15

Sample Size 1

Sample Size 2

RF−Histogram 1

RF−Histogram 2

 Patterns

New SampSize

New RD−Histogram

New RF−Histogram

RD−Histogram 1

RD−Histogram 2

Figure 2.1: The flow diagram of Ding and Zhong’s prediction method, which uses
only two training inputs. A RD-Histogram is a reuse-distancehistogram, and a RF-
Histogram is a reference histogram. Sample size is the estimated input data size by
sampling.

However, using more groups leads to slower pattern recognition and prediction since

the space and time costs are proportional to the number of groups. The third factor

is the complexity of patterns in each group. If we assume thatthe entire group has a

single pattern, the analysis is asingle-modelprediction. If we assume that the group

may consist of different subgroups that each may have a different pattern, the analysis

is amulti-modelprediction.

Single-model prediction has two limitations. First, the accuracy of the prediction

is strictly limited by the precision of data collection, i.e. the number of groups. A

large group tends to include subgroups with different patterns, which breaks the single-

model assumption and causes low prediction accuracy. Second, training runs need to

have a sufficient size so that the range of reuse distances in different patterns can be

16

well separated. The larger the input data size is, the more likely different patterns is

separated. If the distances of two patterns are similar, they fall into the same group, and

the prediction cannot tear them apart. Because of the need forlarge training inputs and

number of groups, single-model prediction usually incurs alarge time and space cost.

Multi-model prediction, however, may overcome these two limitations by allowing sub-

portions of a group to have a different pattern.

Our extension to their method has three contributions. The first is single-model pre-

diction using more than two training runs. The next is a set ofmulti-model prediction

methods using different types of reuse distance histograms. It reduces the space cost

from O(M) to O(logM), whereM is the size of program data. The last is a strategy

for choosing the appropriate histograms based on analytical and experimental results.

The rest of the chapter is organized as follows. Section 2.2 describes the types of

histograms used in our prediction. Section 2.3 and 2.4 describe the new regression-

based multi-model methods. Followed are the experiment results and discussions. Sec-

tion 2.7 discusses related work. Section 2.8 speculates thepossible extensions, and

Section 2.9 summarizes our findings.

2.2 Terminology

This section explains the two types of histograms and related terms used in later

discussions.

• A Reuse-distance Histogram (RD-Histogram): the X-axis is reuse-distance

ranges, and the Y-axis is the percentage of data accesses in each distance range.

The size of distance ranges can be in linear scale, e.g.[0, 1k), [1k, 2k),

[2k, 3k), · · · , or log scale, e.g.[0, 1k), [1k, 2k), [2k, 4k), [4k, 8k), · · · , or mixed

linear andlog scales. Figure 2.2(a) shows the reuse-distance histogram of SP in

log scale ranges.

17

0 5 10 15 20 25
0

10

20

30

40
R

ef
er

en
ce

 p
er

ce
nt

ag
e

Reuse−distance range in log scale

(a)

0 20 40 60 80 100
0

5

10

15

20

Reference partitions

lo
g(

av
er

ag
e

re
us

e−
di

st
an

ce
)

(b)

Figure 2.2: Reuse-distance histogram ofSPwith input of size283. (a) distance his-
togram (b) reference histogram

• A Reference Histogram (RF-Histogram): the X-axis is the groups of data ac-

cesses, sorted by the average reuse distance. The Y-axis is the average reuse

distance of each partition. Figure 2.2(b) is the reference histogram ofSP for a

partition of 100 groups. A reference histogram can be viewedas a special type

of reuse-distance histogram whose distance ranges have non-uniform lengths so

that each range holds the same number of program data accesses.

Reference histogram provides a trade-off between information loss and computa-

tion/space efficiency. For dense regions in the reuse distance histogram, where a large

portion of memory accesses have similar reuse distances, the reference histogram uses

short range to increase accuracy. For sparse regions in the reuse distance histogram, the

reference histogram uses large ranges to reduce the total number of ranges.

2.3 Single-Model Multi-Input Prediction

Using more than two training inputs may reduce two kinds of noises and thus im-

prove prediction accuracy. One kind of noise is brought by the reuse distance measure-

ment. Ding and Zhong used approximation to trade accuracy for efficiency [Ding and

18

Zhong, 2003]. The approximation brings errors to the reuse distance histogram. The

second kind of noise is the estimated data size from sampling. Although distance-based

sampling [Ding and Zhong, 2003] finds a size reflecting the size of a program input, the

sampled size is not always accurate. These noises reduce theaccuracy of the prediction.

According to the regression theory, more data can reduce theeffect of noises and

reveal a pattern closer to the real pattern [Rawlings, 1988].Accordingly, we apply a

regression method on more than two training inputs. The extension is straightforward.

For each input, we have an equation as follows.

di = ci + ei ∗ fi(s) (2.1)

wheredi is the average reuse distance ofith reference group when the input size iss, ci

andei are two parameters to be determined by the prediction method, andfi is one of

the following functions ofs:

0; s; s1/2; s1/3; s2/3

Given the histograms of two training runs, Ding and Zhong could solve a linear

equation, determine the two unknowns for each group, and calculate the reuse distance

histogram for a new input given its input size. Using two training inputs is sufficient

because there are only two unknowns in each model (Equation 2.1).

While the previous method has two equations, we have more thantwo equations

because of more training inputs. We useleast square regression[Rawlings, 1988] to

determine the best values for the two unknowns. We use 3 to 6 training inputs in our

experiment. Although more training data can lead to better results, they also lengthen

the profiling process. We will show that a small number of training inputs is sufficient

to gain high prediction accuracy.

19

2.4 Multi-Model Prediction

A multi-model method assumes that memory accesses in a groupcan have different

models. For example in a histogram, a bar (group) may containboth a constant model

and a linear model.

Figure 2.3 gives a graphical illustration of the multi-model prediction. We arbitrar-

ily pick one of the training inputs as thestandard input. In this example,s0 is the size

of the standard input (the other training inputs are not showed in the figure.) Its reuse

distance histogram, calledstandard histogram, has 12 groups, and each group consists

of two models—constant and linear models. Together, they form the histogram ofs0.

Using regression technique on all training histograms, thestandard histogram in Fig-

ure 2.3(a) is decomposed into constant and linear models in Figure 2.3(b) and (c). The

decomposition process is described below. For prediction,the two histograms become

Figure 2.3(d) and (e) respectively according to the size of the new input8∗s0. Constant

histogram keeps unchanged, and the distance of each data in linear histogram increases

to 8 times long. The X-axis is inlog scale, so each bar in linear histogram moves 3

ranges right-toward. The reuse distance histogram for the new input is the combination

of the new constant and linear histograms, see Figure 2.3(f).

Formally, the reuse distance function of a group is as follows.

hi(s) = ϕm1
(s, i) + ϕm2

(s, i) + · · · + ϕmj
(s, i) (2.2)

where,s is the size of input data,hi(s) is the Y-axis value of theith bar/group for input

of sizes, andϕm1
...ϕmj

are the functions corresponding to all possible models.

Eachhi(s) can be represented as a linear combination of all the possible models of

the standard histogram:

ϕm1
(s0, 1), ϕm1

(s0, 2), · · · , ϕm1
(s0, G), ϕm2

(s0, 1), ϕm2
(s0, 2), · · · , ϕm2

(s0, G),

· · · , ϕmj
(s0, 1), ϕmj

(s0, 2), · · · , ϕmj
(s0, G)

20

where,G is number of groups in standard histogram.

For example, a program has both constant and linear patterns. For easy description,

we assume the following ranges.

range 0: [0,1); range 1: [1,2); range 2: [2,4); range 3: [4,8), · · ·

For another input of sizes1 = 3 ∗ s0, we calculate the Y-axis value of range[4, 8)

as follows:

h3(s1) = ϕ0(s0, 3) + ϕ1(s0, r)

where,r is range[4
3
, 8

3
). This is because the constant model of range[4, 8) in the

standard histogram gives entire contribution, and the linear model ofh3(s1) comes from

the linear portions in range[4
3
, 8

3
) of standard histogram.ϕ1(s0, r) can be calculated as

follows:

ϕ1(s0, r) = ϕ1(s0, r1) + ϕ1(s0, r2)

where,r1 = [4
3
, 2) andr2 = [2, 8

3
).

We assume the reuse distance has uniform distribution in each range. Thus,

ϕ1(s0, r1) = (2−4/3
2−1

)ϕ1(s0, 1) = 2
3
ϕ1(s0, 1)

ϕ1(s0, r2) = (8/3−2
4−2

)ϕ1(s0, 2) = 1
3
ϕ1(s0, 2)

Finally, we calculateh3(s1) as follows:

h3(s1) = ϕ0(s0, 3) + 2
3
ϕ1(s0, 1) + 1

3
ϕ1(s0, 2)

After we represent eachhi(s) of all training inputs in the above manner, we obtain an

equation group. The unknown variables are the models in the standard histogram. The

equations correspond to the groups in all training histograms. Regression techniques

can solve the equation group. This completes the decomposition process and also com-

pletes the construction of reuse distance predictor. During prediction process, for any

21

input, each of its reuse distance group can be calculated as alinear combination of

standard histogram models in the same manner as in decomposition process. Then, its

reuse distance histogram can be obtained by the combinationof all the groups.

One important assumption is that the percentage of memory accesses in each model

remains unchanged for different inputs. There is no guarantee that this is the case,

although Ding and Zhong showed that it is an acceptable assumption for a range of

programs including those used in this work.

A multi-model method does not depend on the type of histograms. It can use dis-

tance histograms withlog or linear size groups. It can also use reference histograms.

The equations are constructed and solved in the same manner.

We now describe three methods of multi-model prediction. They differ by the type

of reuse distance histograms. The first two methods use reusedistance histograms with

log andlog-linear scale ranges respectively. The first 13 ranges in thelog-linear scale

is in log scale (power-of-two) and the rest have length 2048. The purpose of thelog

part is to distinguish groups with short reuse distances. The space and time cost of

the second method isO(M), whereM is the size of program data in training runs.

The space and time cost of the first method isO(logM), which saves significant space

and time because it has much fewer equations and variables. However, the linear scale

has higher precision, which can produce better results especially when using small size

training runs.

The third multi-model method uses a reference histogram, for example, with 1000

groups. Unlike the first two methods, in this method, the number of equations and

variables is the same as the number of groups. We can choose anarbitrary number.

This provides freedom but also raises a problem: how to choose the best number of

groups. In fact, the last method represents as many methods as the maximal number

of groups, which isO(N), whereN is the number of memory accesses in the smallest

training run. We will see in the evaluation section that the prediction accuracy depends

heavily on the choice of groups.

22

Figure 2.3: An example for multi-model reuse signature prediction. Figure (a) is the
reuse distance histogram of the execution on standard inputs0. By using regression
technique on all training histograms, the standard histogram is decomposed into two
histograms—constant and linear histograms in Figure (b) and (c). During the prediction
process, the two histograms become Figure (d) and (e) respectively according to the size
of the new input8∗ s0. The constant histogram remains unchanged, and the distance of
each data in a linear histogram increases to 8 times long. TheX-axis is inlog scale, so
each bar of linear pattern moves 3 ranges right-toward. The reuse distance histogram
for the new input is the combination of the new constant and linear histograms, showed
in Figure (f).

2.5 Evaluation

2.5.1 Experimental Setup

We compare five prediction methods: the single-model two-input method given by

Ding and Zhong, the single-model multi-input regression described in Section 2.3, and

the three multi-model methods described in Section 2.4. Themulti-input methods use

23

Table 2.1: Benchmarks for locality prediction

Benchmark Description Suite

Applu solution of five coupled nonlinear PDE’s Spec2K
SP computational fluid dynamics (CFD) simulation NAS

FFT fast Fourier transformation
Tomcatv vectorized mesh generation Spec95

GCC based on the GNU C compiler version 2.5.3 Spec95
Swim finite difference approximations for shallow water equation Spec95

3 to 6 training inputs. We measure accuracy by comparing the predicted histogram

with the measured histogram for a test input. The definition of accuracy is the same

as Ding and Zhong’s [Ding and Zhong, 2003]. Letxi andyi be the size ofith groups

in the predicted and measured histograms. The cumulative difference,E, is the sum

of | yi − xi | for all i. The accuracyA is (1 − E/2), which intuitively is the overlap

between the two histograms.

Table 2.1 lists the names of six test programs, their descriptions, and the sources.

Table 2.2 and Figure 2.4 show the accuracy of the five approaches on six benchmarks

when training and testing inputs are large. In the table, “Max. Inputs Num.” is the

maximal number of inputs among all the five methods for each benchmark. In our

experiment, for each benchmark, the size of the biggest training input is the same for

all five methods. This is to make the comparison fair.

2.5.2 Results on Large Inputs

Using a large input has two benefits. First, different modelsstay separated from

each other. For example, suppose constant and linear modelsco-exist in a ranger

when the input size iss0. For a larger input whose size is1024 ∗ s0, the linear model

will move far out of ranger, but constant model remains unchanged. Thus, there will

not be an overlap of models. The separation of models is important for the two single-

model methods since they assume that only one model exists ineach range. The second

24

50

55

60

65

70

75

80

85

90

95

100

Applu SP FFT Tomcatv GCC SWIM Average

Benchmarks

A
c

c
u

ra
c

y
(%

)

SM-2

SM-m

MMLg

MMLn

MMRF

Figure 2.4: Locality prediction accuracy bar graph.

benefit is that the percentage of individual models is more likely to remain constant

when the input size is large. This is required by both single-model and multi-model

based methods.

Table 2.2: Comparison of prediction accuracy by five methods
Bench- Single Model Multi-model Max.
mark 2 inputs >2 inputs Log log-Linear Fixed Inputs

RF-Hist. RF-Hist. RD-Hist. RD-Hist. RF-Hist. Num.∗
Applu 70.49 97.40 93.65 93.90 90.83 6
SP 91.08 96.69 94.20 94.37 90.02 5
FFT 73.28 93.30 93.22 93.34 95.26 3
Tomcatv 92.32 94.38 94.70 96.69 88.89 5
GCC 98.50 97.95 98.83 98.91 93.34 4
SWIM 93.89 94.05 84.67 92.20 72.84 5
Average 86.59 95.63 93.21 94.90 88.53 4.7

The first column of Table 2.2 gives the results of Ding and Zhong’s method. Other

columns show the accuracy of the new methods. All methods arebased on histograms

given by the same reuse-distance analyzer and the input sizes given by the same distance-

25

based sampler. The numbers of the first column is slightly different from Ding and

Zhong’s paper [Ding and Zhong, 2003], because they used a different reuse-distance

analyzer than we do. Different analyzers lose precision in slightly different ways. The

sampled input size is also slightly different because of this. From Table 2.2, we make

the following observations:

• For most programs, all four new approaches produce better results than Ding

and Zhong’s method. Therefore, regression on multiple inputs indeed improves

prediction accuracy.

• Except forSWIM, multi-model logarithmic scale method is comparable to the

best predictors, although it uses 95% less storage space in most analysis. It is the

most efficient among all methods.

• The performance of multi-model log-linear scale method is slightly better than

multi-model logarithmic scale method for the first four benchmarks and much

better forSWIM. However, log-linear scale costs more than 20 times in spaceand

computations than logarithmic scale for most programs.

• The multi-model method based on reference histograms outperforms single-model

two-input method for two out of six programs. It gives the highest accuracy for

FFT . As we explained in Section 2.4, this approach is very flexible and its per-

formance depends heavily on the number of groups. In our experiment, we tried 7

different numbers of groups for each benchmark and presented the highest accu-

racy, but finding the maximal accuracy requires trying thousands of choices. The

result forFFT shows the potential of this method, but the overhead of finding

the best result is prohibitively high.

SWIMis a special program. The multi-model logarithmic scale haspoor result for

SWIM, but multi-model log-linear scale and single-model methods give very accurate

predictions. Figure 2.5 shows the reuse distance histogramof SWIM. Note it has a high

26

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

Reuse Distance Number in Linear Scale

R
ef

er
en

ce
 P

er
ce

nt
ag

e

Figure 2.5: The reuse distance histogram curve ofSWIM

peak in a very small reuse distance range. Multi-model logarithmic scale useslog scale

ranges. It assumes that the reuse distance is evenly distributed in each range, which

brings significant noise for the analysis ofSWIM. Log-linear scale methods alleviate

the problem because their histograms are much more precise.

2.5.3 Results on Small Inputs

As we explained at the beginning of Section 2.5.2, differentpatterns may overlap

with each other when the input size is small. In this case, single-model methods are

not expected to perform well, while multi-model methods should work as well as in

large input sizes. But these methods still require that the percentage of each model

keeps unchanged for different input for each reuse distancerange. Table 2.3 shows

the performance of the four methods on small size inputs ofSP benchmark (We do

not show the results of the multi-model method using reference histograms because

it is difficult to tune). The results show that multi-model log-linear scale method is

significantly more accurate than other methods. The good accuracy shows that the

percentage of each model remains unchanged even for small inputs. The performance

27

of multi-model logarithmic scale method is worse than the log-linear scale method

because of the low precision in logarithmic scale histograms. Although multi-model

log-linear scale method needs more computation and more space than the logarithmic

scale method, this cost is less an issue for small-size inputs.

Table 2.3: Accuracy forSP with small-size inputs
largest testing single-model single-model multi-model multi-model
training input 2 inputs >2 inputs log scale log-linear
input size size scale
83 103 79.61 79.61 85.92 89.5

123 79.72 75.93 79.35 82.84
143 69.62 71.12 74.12 85.14
283 64.38 68.03 76.46 80.3

103 123 91.25 87.09 84.58 90.44
143 81.91 83.20 78.52 87.23
163 77.28 77.64 76.01 84.61

163 283 75.93 74.11 77.86 83.50

2.5.4 Comparison

We compare the five methods in Table 2.4, which uses the following notations:

SM-2: Ding and Zhong’s original method

SM-m: Extended version of SM-2 on multiple inputs

MMLg: Multi-model log scale method

MMLn: Multi-model log-linear scale method

MMRF: Multi-model on reference histogram

A comparison of the four new approaches is as follows.

• SM-mandMMRF are based on reference histograms whileMMLg andMMLn

are based on reuse distance histograms. Thus,MMLg andMMLn do not need to

transform between the two histograms butSM-mandMMRF do.

28

Table 2.4: Features of various reuse distance prediction methods
Approach SM-2 SM-m MMLg MMLn MMRF
Input No. 2 >2 >2 >2 >2
Model No.
per Range 1 1 ≥1 ≥1 ≥1
Histogram Ref. Ref. Dist. Dist. Ref.
Granularity log-linear log-linear log log-linear log-linear

• MMLg saves 20 times in space and computation compared toSM-mandMMLn.

MMRF can also save cost because it can freely select the number of groups, but

it is hard to pick the right number.

• MMLg loses information because it assumes a uniform distribution in large ranges.

That hurts the prediction accuracy for programs likeSWIM , which has a high

peak in a very small range. In that case,SM-mandMMLn produce much better

results because they use shorter ranges.

• MMLn predicts with higher accuracy thanSM-mdoes if multiple models over-

lap. Overlapping often happens for inputs of small size, forwhichMMLg cannot

perform well because of its loss of information.

Summary The experiments show that regression on more than two training inputs

gives significant improvement compared to the method using two inputs. Single-model

multi-input, and multi-model logarithmic and log-linear scale methods produce compa-

rable results for most programs when the input size is large.Their overall performance

is the best among all five approaches. The multi-model methodusing reference his-

tograms method is flexible but hard to control. Multi-model log-linear scale method

can produce better results than multi-model logarithmic scale method. But the former

needs over 20 times of more space and time than the latter, andthe performance is not

significantly different in most programs when the input sizeis large. For input of small

size, the log-linear scale method is clearly the best among all methods.

29

2.6 Uses in Cache Performance Prediction

Prior work on cache characterization addresses how to quickly explore the planar

space delineated by the size and associativity. Locality prediction across inputs extends

the exploration along the program data set size dimension inan efficient manner [Zhong

et al., To appear, 2003a].

C Reuse distance (cache blocks)

5%P
er

ce
nt

 o
f r

ef
er

en
ce

s

10%

15%

20%

Figure 2.6: Reuse distance histogram example

Treating each distinct cache block as a basic data element, we use the regression

technique to build the cache reuse distance histogram model. For an arbitrary input,

the new cache reuse distance histogram can be predicted as illustrated by Figure 2.6.

The number of intervening cache blocks between two consecutive accesses to a cache

block, along with cache size, determines whether the secondaccess hits or misses in a

fully associative LRU cache. This is the basis for our prediction model. In Figure 2.6,

the fraction of references to the left of the markC will hit in a fully associative cache

having capacity ofC blocks or greater. For set associative caches, reuse distance is still

an important hint to cache behavior [Smith, 1978; Beyls and D’Hollander, 2001].

We use the cache simulatorCheetah[Sugumar and Abraham, 1991] included in

SimpleScalar 3.0 toolset [Burger and Austin, 1997] to collect cache miss statistics.

Cache configurations are fully associative cache, 1-, 2-, 4- and 8-ways, all having block

size of 32 bytes. Our experiments on 10 benchmarks (from SPEC95, SPEC2k, NAS,

and Olden suites) show that the prediction accuracy of cachehit rates is always higher

than 99% for fully associative caches, and better than 98% for caches of limited as-

30

sociativity for all but two programs, excluding compulsorymisses. In addition, the

predicted miss rate is either very close or proportional to the miss rate of direct-map or

set-associative cache.

2.7 Related Work

Locality prediction is one example to connect input with program behavior. Adap-

tive algorithms is another one. For example, we proposed an adaptive data partition

algorithm, which estimates input data distribution to improve load balance among pro-

cessors [Shen and Ding, 2004]. The details are out of the scope of this thesis. The

following discussions are focused on memory behavior analysis.

2.7.1 Other Research on Reuse Distance

This section discusses the related work in the the measurement and the use of reuse

distance.

Performance modelingReuse distance gives richer information about a program thana

cache miss rate does. At least four compiler groups have usedreuse distance for differ-

ent purposes: to study the limit of register reuse [Li et al.,1996] and cache reuse [Huang

and Shen, 1996; Ding, 2000; Zhong et al., 2002], and to evaluate the effect of program

transformations [Ding, 2000; Beyls and D’Hollander, 2001; Almasi et al., 2002; Zhong

et al., 2002]. For cache performance prediction, besides our group’s work, Marin and

Mellor-Crummey applied distance-based analysis to memory blocks and reported ac-

curate miss-rate prediction across different program inputs and cache sizes[Marin and

Mellor-Crummey, 2005, 2004]. Fang et al. [Fang et al., 2005, 2004] examined the reuse

pattern per instruction and predicted the miss rate of 90% ofinstructions with a 97%

accuracy. They used the prediction tool to identifycritical instructions that generate

the most cache misses and extended the distance model to memory disambiguation.

31

Program transformation Beyls and D’Hollander [Beyls and D’Hollander, 2002] is the

first to show real performance improvement using the reuse distance information. They

used reuse distance profiles to generate cache hints, which tell the hardware whether

and which level to place or replace a loaded memory block in cache. Their method im-

proved the performance of SPEC95 CFP benchmarks by an average 7% on an Itanium

processor. The next chapter of this thesis presents a technique to sub-divide the whole-

program distance pattern in the space of its data. The spatial analysis identifies locality

relations among program data. Programs often have a large number of homogeneous

data objects such as molecules in a simulated space or nodes in a search tree. Each

object has a set of attributes. In Fortran 77 programs, attributes of an object are stored

separately in arrays. In C programs, the attributes are stored together in a structure.

Neither scheme is sensitive to the access pattern of a program. A better way is to group

attributes based on the locality of their access. For arrays, the transformation is array re-

grouping. For structures, it is structure splitting. We grouped arrays and structure fields

that have a similar reuse signature. The new data layout consistently outperformed array

and structure layouts given by the programmer, compiler analysis, frequency profiling,

and statistical clustering on machines from all major vendors [Zhong et al., 2004].

Memory adaptation A recent trend in memory system design is adaptive caching

based on the usage pattern of a running program. Balasubramonian et al. [Balasub-

ramonian et al., 2000a] described a system that can dynamically change the size, asso-

ciativity, and the number of levels of on-chip cache to improve speed and save energy.

To enable phase-based adaptation, our recent work divides the distance pattern in time

to identify abrupt reuse-distance changes as phase boundaries. The new technique is

shown more effective at identifying long, recurring phasesthan previous methods based

on program code, execution intervals, and manual analysis [Shen et al., 2004b] (see

Chapter 4 for details). For FPGA-based systems, So et al. [So et al., 2002] showed that

a best design can be found by examining only 0.3% of design space with the help of

program information, including the balance between computation and memory transfer

32

as defined by Callahan et al [Callahan et al., 1988b]. So et al. used a compiler to adjust

program balance in loop nests and to enable software and hardware co-design. While

our analysis cannot change a program to have a particular balance (as techniques such

as unroll-and-jam do [Carr and Kennedy, 1994]), it can be usedto measure memory

balance and support hardware adaptation for programs that are not amenable to loop-

nest analysis.

File cachingFor software managed cache, Jiang and Zhang [Jiang and Zhang, 2002]

developed an efficient buffer cache replacement policy,LIRS, based on the assumption

that the reuse distance of cache blocks is stable over a certain time period. Zhou et

al. [Zhou et al., 2001] divided the second-level server cache into multiple buffers ded-

icated to blocks of different reuse intervals. The common approach is partition cache

space into multiple buffers, each holding data of differentreuse distances. Both studies

showed that reuse distance based management outperforms single LRU cache and other

frequency-based schemes. Our work will help in two ways. Thefirst is faster analysis,

which reduces the management cost for large buffers (such asserver cache), handles

larger traces, and provides faster run-time feedbacks. Thesecond is predication, which

gives not only the changing pattern but also a quantitative measure of the regularity

within and between different types of workloads.

2.7.2 Comparison with Program Analysis Techniques

Data reuse analysis can be performed mainly in three ways: bya compiler, by pro-

filing or by run-time sampling. Compiler analysis can model data reuse behavior for

basic blocks and loop nests. An important tool is dependenceanalysis. Allen and

Kennedy’s recent book [Allen and Kennedy, 2001] contains a comprehensive discus-

sion on this topic. Various types of array sections can measure data locality in loops

and procedures. Such analysis includes linearization for high-dimensional arrays by

Burke and Cytron [Burke and Cytron, 1986], linear inequalities for convex sections by

33

Triolet et al. [Triolet et al., 1986], regular sections by Callahan and Kennedy [Callahan

et al., 1988a], and reference list by Li et al. [Li et al., 1990]. Havlak and Kennedy

studied the effect of array section analysis on a wide range of programs [Havlak and

Kennedy, 1991]. Cascaval extended dependence analysis to estimate the distance of

data reuses [Cascaval, 2000]. Other locality analysis includes the unimodular matrix

model by Wolfe and Lam [Wolf and Lam, 1991], the memory order by McKinley et

al. [McKinley et al., 1996], and a number of recent studies based on more advanced

models.

Balasundaram et al. presented a performance estimator for parallel programs [Bal-

asundaram et al., 1991]. A set of kernel routines include primitive computations and

common communication patterns are used to train the estimator. While their method

trains for different machines, our scheme trains for different data inputs. Compiler

analysis is not always accurate for programs with input-dependent control flow and dy-

namic data indirection. Many types of profiling analysis have been used to study data

access patterns. However, most past work is limited to usinga single inputs or measur-

ing correlation among a few executions. The focus of this work is to predict changes

for new data inputs.

Run-time analysis often uses sampling to reduce the overhead. Ding and Kennedy

sampled program data [Ding and Kennedy, 1999a], while Arnold and Ryder sampled

program execution [Arnold and Ryder, 2001]. Run-time analysis can identify patterns

that are unique to a program input, while training-based prediction cannot. On the other

hand, profiling analysis can analyze all accesses to all data.

2.8 Future Directions

Although the models presented in this chapter reduce much prediction overhead, the

whole process is still hundreds of times slower than the original program’s execution.

34

The bottleneck is the measurement of reuse distance. It remains an open question to

improve the measurement efficiency.

Besides locality, some other kinds of behavior are input-sensitive also, such as run-

ning time, concurrency granularity, and energy consumption. The accurate estimation

of running time is important for task scheduling. Knowing the running time of each

task could help task assignment with better balance; Scheduling small tasks before

large ones could improve response time. It is also importantfor building a cost-benefit

model, and thus determining whether a dynamic optimizationis worthwhile.

Computers are providing multi-level concurrencies. Forecasting the parallelism

level of a program is critical for the intelligent utilization of the extra computing re-

source. For a phase with few concurrencies, it could be worthwhile to turn off some

processors for energy savings and turn them on before a highly parallel phase. That

requires the prediction of the concurrency in both short andlong term (e.g. in several

phases) because of the overhead to shut down and restart a processor.

At the end of the next chapter, we will discuss another futuredirection, extending

the locality analysis, together with reference affinity presented in the next chapter, to a

wider range of applications, including parallel programs and object-oriented programs

with garbage collections.

2.9 Summary

This chapter presents a novel technique based on regressionanalysis for locality

prediction across program inputs. Through the comparison with 4 approaches, we draw

the following conclusions.

1. Regression significantly improves the accuracy of reuse distance prediction, even

with only a few training inputs.

35

2. The multi-model method using logarithmic histograms cansave 95% space and

computations and still keep the best accuracy in most programs, although it is not

as consistent as those methods using log-linear histograms. It is a good choice

when efficiency is important.

3. The multi-model method using log-linear scale histograms is the best for small

input sizes, where different models tend to overlap each other. It is also efficient

because of the small input size.

4. The single-model multi-input method has the highest accuracy, but it cannot ac-

curately model small-size inputs. It is the best choice whenone can tolerate a

high profiling cost.

Reuse distance prediction allows locality analysis and optimizations to consider

program inputs other than profiled ones. The techniques discussed in this work may

also help to solve other prediction problems, such as running time and concurrency.

Reuse signature of the whole program reveals the big picture of the locality of the

execution. If we focus on a particular object such as an array, we could get per-object

reuse signature, which turns out to be critical for improving data locality as shown in

the next chapter.

36

3 Reference Affinity

While the memory of most machines is organized as a hierarchy,program data are laid

out in a uniform address space. This chapter defines a model ofreference affinity, which

measures how close a group of data are accessed together in a reference trace. Based

on the model, a profiling-based technique,k-distance analysis, is briefly described to

demonstrate the finding of the hierarchical data affinity. The technique, however, re-

quires detail instrumentation to obtain the reuse signature of a profiling run, the high

overhead impeding its adoption in a general compiler.

The main part of this chapter is devoted to alightweight affinity modelupon an in-

terprocedural analysis. The technique summarizes the access pattern of an array by a

frequency vector and then estimates the affinity of two arrays using their vector dis-

tance. Being context sensitive, the analysis tracks the exact array accesses. Using

static estimation, the analysis removes all profiling overhead. Implemented in the IBM

FORTRAN compiler to regroup arrays in scientific programs, the lightweight analysis

achieves similar results ask-distance analysis, and generates data layout consistently

outperforming the ones given by the programmer, compiler analysis, frequency profil-

ing and statistical clustering. It suggests the applicability of affinity analysis for general

compilers.

37

3.1 Introduction

All current PCs and workstations use cache blocks of at least 64 bytes, making the

utilization an important problem. If only one word is usefulin each cache block, a

cache miss will not serve as a prefetch for other useful data.Furthermore, the program

would waste up to 93% of memory transfer bandwidth and 93% of cache space, causing

even more memory access.

To improve cache utilization we need to group related data into the same cache

block. The question is how to define the relation. We believe that it should meet three

requirements. First, it should be solely based on how data are accessed. For example

in an access sequence “abab..ab”, a andb are related and should be put in the same

cache block, regardless how they are allocated and whether they are linked by pointers.

Second, the relation must give a unique partition of data. Consider for example the

access sequence “abab..ab...bcbc..bc”. Since dataa andc are not related,b cannot relate

to both of them because it cannot stay in two locations in memory. Finally, the relation

should be a scale. Different memory levels have blocks of increasing sizes, from a cache

block to a memory page. The grouping of “most related” data into the smallest block

should precede the grouping of “next related” data into larger blocks. In summary, the

relation should give a unique and hierarchical organization of all program data.

We define such a relation asreference affinity, which measures how close a group

of data are accessedtogetherin an execution. Unlike most other program analysis, we

measure the “togetherness” using thevolume distance, the number of distinct elements

accessed between two memory accesses, also calledLRU stack distance. Notice the

volume distance is an extension ofreuse distance; the latter is a distance between the

accesses to the same data but the former could be between the accesses to the differ-

ent data. As a notion of locality, volume distance is bounded, even for long-running

programs. The long volume distance often reveals long-range data access patterns that

may otherwise hide behind complex control flows, indirect data access, or variations in

38

coding and data allocation. We prove that the new definition gives a unique partition of

program data for each distancek. When we decrease the value ofk, the reference affin-

ity gives a hierarchical decomposition and finds data sub-groups with closer affinity,

much in the same way we sharpen the focus by reducing the radius of a circle.

Chapter 2 shows that thereuse signature, the histogram of reuse distance, has a

consistent pattern across all data inputs even for complex programs or regular programs

after complex compiler optimizations. This suggests that we can analyze the reference

affinity of the whole program by looking at its reuse signatures from training runs.

We presentk-distance analysis, which simplifies the requirements of reference affin-

ity into a set of necessary conditions about reuse signatures. The simplified conditions

can then be checked efficiently for large, complex programs.The parameterk has an in-

tuitive meaning—elements in the same group are almost always used within a distance

of k data elements. The analysis handles sequential programs with arbitrarily complex

control flows, indirect data access, and dynamic memory allocation. The analysis uses

multiple training runs to take into account the variation caused by program inputs.

Reuse-distance profiling, however, carries a high overhead.The slowdown is at

least 10 to 100 times. No production compiler is shipped withsuch a costly technique.

No one would before a careful examination whether such a highcost is justified.

To solve that problem, we present a lightweight technique,frequency-based affinity

analysis. It uses a frequency-based model to group arrays even if theyare not always

accessed together. It uses interprocedural program analysis to measure the access fre-

quency in the presence of array parameters and aliases. To collect the frequency within

a loop or a function, we study two methods. The first is symbolic analysis by a com-

piler. The second is lightweight profiling.

The rest of the chapter is organized as follows. Section 3.2 briefly presents the

distance-based affinity model and the analysis technique. (Chapter 5 and 6 of Zhong’s

thesis have the details [Zhong, 2005].) Section 3.3 describes the frequency-based affin-

ity mode and the analysis method. Section 3.4 introduces twodata reorganization tech-

39

niques. Secion 3.5 demonstrates the effectiveness of the affinity analysis in helping data

reorganization to improve locality and thus speed up programs. The chapter concludes

with the related work and future directions.

3.2 Distance-based Affinity Analysis

3.2.1 Distance-Based Reference Affinity Model

The affinity model is based on several concepts. Anaddress traceor reference

string is a sequence of accesses to a set of data elements. We use letters such asx, y, z

to represent data elements, subscripted symbols such asax, a
′

x to represent accesses to

a particular data elementx, and the array indexT [ax] to represent the logical time of

the accessax on a traceT .

Volume distanceis the number of distinct elements accessed between two memory

accesses, also calledLRU stack distance.

Based on the volume distance, we define alinked pathin a trace. It is parameterized

by a distance boundk. There is a linked path fromax to ay (x 6= y) if and only if there

exist t accesses,ax1
, ax2

, . . ., axt
, such that (1)dis(ax, ax1

) ≤ k∧ dis(ax1
, ax2

) ≤

k ∧ . . . ∧ dis(axt
, ay) ≤ k and (2)x1, x2, . . . , xt, x andy are different data elements.

We now present the formal definition of the reference affinity.

Definition 1. Strict Reference Affinity. Given an address trace, a setG of data ele-

ments is a strict affinity group (i.e. they have the referenceaffinity) with the link length

k if and only if

1. for anyx ∈ G, all its accessesax must have a linked path fromax to someay for

each other membery ∈ G, that is, there exist different elementsx1, x2, . . . , xt ∈

G such thatdis(ax, ax1
) ≤ k ∧ dis(ax1

, ax2
) ≤ k ∧ . . . ∧ dis(axt

, ay) ≤ k.

2. adding any other element toG will make Condition (1) impossible to hold.

40

Three properties have been proved about strict reference affinity groups [Zhong,

2005]:

• Unique partition: for a given link length, the data partition is consistent, i.e. each

data element belongs to one and only one affinity group.

• Hierarchical structure: an affinity group with a shorter link length is a subset of

an affinity group with a greater link length.

• Bounded distance: when one element is accessed, all other elements will be ac-

cessed within a bounded volume distance.

The strict affinity requires that the members of an affinity group be always accessed

together. On most machines, it is still profitable to group data that are almost always

accessed together because the side effect would not outweigh the benefit.

3.2.2 k-Distance Affinity Analysis

Distance-based affinity analysis is a profiling-based technique to measure the “al-

most strict” reference affinity in complex programs. It detects affinity groups according

to the similarity of the reuse distance histograms of the sets of data in the program.

That’s a necessary but not sufficient condition.

Let a reuse histogram haveB bins after removing short-distance bins. LetX andY

be the two sets of data, andAvgX
i andAvgY

i be the average reuse distance of the two

data sets in theith bin.

d =
B

∑

i=1

|AvgX
i − AvgY

i | ≤ k ·B (3.1)

The equation ensures that the average reuse distance per bindiffers by no more thank.

The left-hand side of the inequality is the difference betweenX andY known as the

Manhattan distance of the two vectors.

41

A reuse distance does not include the exact time of the data access. It is possible

that two elements are accessed in the same reuse distance, but one in the first half of the

execution, and the other in the second half. An improvement is to divide the execution

trace into sub-parts and check the condition for each part.

The maximal difference between any two members of ag-element affinity group is

no more than2gk. For each data setX, we find all other sets whose average distance

differs no more thanbk and letb range from1 to 2g. The solution is the largestb such

that exactlyb − 1 data sets satisfy the condition. The process must terminatewith the

correct result.

In practice, we use a stricter condition to build a group incrementally. Initially each

data set is a group. Then we traverse the groups and merge two groups if a member

in one group and another member in the other group satisfy Equation 3.1. The process

terminates if no more groups can be merged. The reference affinity forms a hierarchy

for differentk values. Interested readers please refer to Zhong’s thesis [Zhong, 2005]

for details.

3.3 Lightweight Frequency-Based Affinity Analysis

The distance-based analysis requires the monitoring of every memory access to

collect reuse distance histograms, the overhead posing a big challenge for the use

in a product compiler. This section presents a lightweight affinity analysis based on

interprocedure-estimation of the access frequencies of data. The analysis shows similar

effectiveness as distance-based analysis for floating-point FORTRAN programs.

First of all, the affinity model becomes different from the one used in the distance-

based analysis. In the new model, arrays are nodes and affinities are edge weights

in the affinity graph, and the affinity groups are obtained through linear-time graph

partitioning.

42

3.3.1 Frequency-Based Affinity Model

A program is modeled as a set of code units, in particular, loops. Suppose there

areK code units. Letfi represent the total occurrences of theith unit in the program

execution. We useri(A) to represent the number of references to dataA in an execution

of theith unit. The frequency vector of dataA is defined as follows:

V (A) = (v1, v2, . . . , vK)

where

vi =







0 if ri(A) = 0;

fi if ri(A) > 0.

A code uniti may have branches inside and may call other functions. We conser-

vatively assume that a branch goes both directions when collecting the data access. We

use interprocedural analysis to find the side effects of function calls.

To save space, we can use a bit vector to replace the access vector of each data and

use a separate vector to record the frequency of code units.

The affinity between two data is the Manhattan distance between their access-

frequency vectors, as shown below. It is a number between zero and one. Zero means

that two data are never used together, while one means that both are accessed whenever

one is. The formula is as follows withδ equal to 0.0001 to avoid zero divider.

affinity(A,B) = 1 −

∑K
i=1 | (vi(A) − vi(B)) |

δ +
∑K

i=1(vi(A) + vi(B))

We construct an affinity graph. Each node represents a data, and the weight of an

edge between two nodes is the calculated affinity between them. There are additional

constraints. To be regrouped, two data must be compatible. As arrays for example,

they should have the same number of elements and they should be accessed in the

43

same order [Ding and Kennedy, 2004]. The data access order isnot always possible to

analyze at compile time. However, when the information is available to show that two

arrays are not accessed in the same order in a code unit, the weight of their affinity edge

will be reset to zero. The same is true if two arrays differ in size.

Graph partitioning gives reference affinity groups; the closeness in a group is deter-

mined by the partition threshold values. The next section presents the technical detail

on program units, frequency estimation, and graph partitioning.

3.3.2 Lightweight Affinity Analysis Techniques

3.3.2.1 Unit of Program Analysis

For scientific programs, most data accesses happen in loops.We use a loop as a

hot code unit for frequency counting for three reasons: coverage, independence, and

efficiency.

• Coverage:A loop often accesses an entire array or most of an array. In that case,

branches and function calls outside the loop have no effect on whether two arrays

are accessed together or not.

• Independence:McKinley and Temam reported that most cache misses in SPEC95

FP programs were due to cross-loop reuses [McKinley and Temam, 1999]. We

expect the same for our test programs and ignore the cache reuse across two

loops. Therefore, the temporal order in which loops are executed has no effect

on the affinity relation. Without the independence, when twoarrays appear in

different code units, their affinity may depend on the temporal relations across

units. The independence property simplifies the affinity analysis by allowing it

to compose the final result from analyzing individual code units.

• Efficiency:The total number of loops determines the size of the access-frequency

vector. In a context-sensitive analysis, a unit becomes multiple elements in the

44

access-frequency vector, one for each distinct calling context. The number of

loops is small enough to enable full context-sensitive analysis, as described in

Section 3.3.2.4. In our experiment, the maximum is 351 for benchmark Galgel.

In comparison, other types of code units are not as good for array regrouping. For

example, a basic block has too little data access to be independent from other basic

blocks. Basic blocks may be too numerous for compiler analysis or lightweight pro-

filing to be affordable. A small procedure lacks independence in data access. A large

procedure has less coverage because it often has a more complex control flow than a

loop does. Other possible code units are super-blocks and regions, but none satisfies the

three requirements as well as loops do. Loops have good independence, so the temporal

order of loops has little impact on the affinity result. The number of loops is not overly

large in most programs. Branches inside loops hurt the coverage. However, very few

branches exist in loops in scientific programs, especially in the innermost loop.

3.3.2.2 Static Estimate of the Execution Frequency

Many past studies have developed compiler-based estimate of the execution fre-

quency (e.g., [Sarkar, 1989; Wagner et al., 1994]). The maindifficulties are to estimate

the value of a variable, to predict the outcome of a branch, and to cumulate the result

for every statement in a program. We use standard constant propagation and symbolic

analysis to find constants and relations between symbolic variables.

We classify loops into three categories. The bounds of the first group are known

constants. The second group of loops have symbolic bounds that depend on the input,

e.g. the size of the grid in a program simulating a three-dimensional space. The number

of iterations can be represented by an expression of a mix of constants and symbolic

values. We need to convert a symbolic expression into a number because the later

affinity analysis is based on numerical values. The exact iteration count is impossible

to obtain. To distinguish between high-trip count loops from low-trip count loops, we

45

assume that a symbolic value is reasonably large (100) sincemost low-trip count loops

have a constant bound. This strategy works well in our experiments.

The third category includes many while-loops, where the exit condition is calculated

in each iteration. Many while-loops are small and do not access arrays, so they are

ignored in our analysis. In other small while-loops, we takethe size of the largest array

referenced in the loop as the number of iterations. If the size of all arrays is unknown,

we simply assign a constant 100 as the iteration count.

The array regrouping is not very sensitive to the accuracy ofloop iteration estima-

tions. If two arrays are always accessed together, they would be regarded as arrays

with perfect affinity regardless how inaccurate the iteration estimations are. Even for

arrays without perfect affinity, the high regrouping threshold provides good tolerance

of estimation errors as discussed in Section 3.5.

The frequency of the innermost loop is the product of its iteration count, the number

of iterations in all enclosing loops in the same procedure, and the estimated frequency

of the procedure invocation. The execution frequency of loops and subroutines is esti-

mated using the same interprocedural analysis method described in Section 3.3.2.4. It

roughly corresponds to in-lining all procedural calls.

For branches, we assume that both paths are taken except whenone branch leads

to the termination of a program, i.e. the stop statement. In that case, we assume that

the program does not follow the exist branch. This scheme mayoverestimate the affin-

ity relation. Consider a loop whose body is a statement with two branchesα andβ.

Suppose arraysa is accessed in theα branch andb in theβ branch. In an execution,

if the two branches are taken in alternative loop iterations, then the affinity relation is

accurate, that is, the two arrays are used together. However, if α is taken in the first

half iterations andβ in the second half (or vice versa), then the two arrays are notused

together. The static result is an overestimate.

46

3.3.2.3 Profiling-Based Frequency Analysis

By instrumenting a program, the exact number of iterations becomes known for the

particular input. To consider the effect of the entire control flow, we count the fre-

quency of execution of all basic blocks. Simple counting would insert a counter and

an increment instruction for each basic block. In this work,we use the existing imple-

mentation in the IBM compiler [Silvera et al., unpublished],which implements more

efficient counting by calculating from the frequency of neighboring blocks, considering

a flow path, and lifting the counter outside a loop. Its overhead is less than 100% for all

programs we tested. The execution frequency for an innermost loop is the frequency of

the loop header block. When a loop contains branches, the analysis is an overestimate

for reasons described in Section 3.3.2.2.

3.3.2.4 Context-Sensitive Lightweight Affinity Analysis

Aliases in FORTRAN programs are caused by parameter passing and storage as-

sociation. We consider only the first cause. We use an interprocedural analysis based

on the invocation graph, as described by Emami et al [Emami etal., 1994]. Given

a program, the invocation graph is built by a depth-first traversal of the call structure

starting from the program entry. Recursive call sequences are truncated when the same

procedure is called again. In the absence of recursion, the invocation graph enumerates

all calling contexts for an invocation of a procedure. A special back edge is added in

the case of a recursive call, and the calling context can be approximated.

The affinity analysis proceeds in two steps. The first step takes one procedure at

a time, treats the parameter arrays as independent arrays, identifies loops inside the

procedure, and the access vector for each array.

The affinity analysis proceeds in two steps. The first step takes one procedure at

a time, treats the parameter arrays as independent arrays, identifies loops inside the

47

procedure, and the access vector for each array. The procedure is given byBuildStati-

cAFVListin Figure 3.1.

The second step traverses the invocation graph from the bottom up. At each call

site, the affinity results of the callee are mapped up to the caller based on the parameter

bindings, as given by proceduresBuildDynamicAFVList, UpdateAFVList, andUpdat-

eDyn in Figure 3.1. As an implementation, the lists from all procedures are merged

in one vector, and individual lists are extracted when needed, as inUpdateDyn. The

parameter binding for a recursive call is not always precise. But a fixed point can be

obtained in linear time using an algorithm proposed by Cooperand Kennedy (Section

11.2.3 of [Allen and Kennedy, 2001]).

Because of the context sensitivity, a loop contributes multiple elements to the access-

frequency vector, one for every calling context. In the worst case, the invocation graph

is quadratic to the number of call sites. However, Emami et al. reported on average

1.45 invocation nodes per call site for a set of C programs [Emami et al., 1994]. We

saw a similar small ratio in FORTRAN programs.

The calculation of the access-frequency vector uses the execution frequency of each

loop, as in procedureUpdateDyn. In the case of static analysis, the frequency of each

invocation node is determined by all the loops in its callingcontext, not including the

back edges added for recursive calls. The frequency information is calculated from the

top down. Indeed, in our implementation, the static frequency is calculatedat the same

timeas the invocation graph is constructed.

The frequency from the lightweight profiling can be directlyused if the profiling is

context sensitive. Otherwise, the average is calculated for the number of loop execu-

tions within each function invocation. The average frequency is an approximation.

The last major problem in interprocedural array regroupingis the consistency of

data layout for parameter arrays. Take, for example, a procedure that has two formal

parameter arrays. It is called from two call sites; each passes a different pair of actual

parameter arrays. Suppose that one pair has reference affinity but the other does not.

48

To allow array regrouping, we will need two different layouts for the formal parameter

arrays. One possible solution is procedural cloning, but this leads to code expansion,

which can be impractical in the worst case. In this work, we use a conservative solution.

The analysis detects conflicts in parameter layouts and disables array regrouping to

resolve a conflict. In the example just mentioned, any pair ofarrays that can be passed

into the procedure are not regrouped. In other words, array regrouping guarantees no

need of code replication in the program.

The invocation graph excludes pointer-based control flow and some use of dynami-

cally loaded libraries. The former does not exist in FORTRAN programs and the latter

is a limitation of static analysis.

3.3.2.5 Implementation

As a short summary, the frequency-based analysis includes the following steps:

1. Building control flow graph and invocation graph with data flow analysis

2. Estimating the execution frequency through either static analysis or profiling

3. Building array access-frequency vectors using interprocedural analysis, as shown

in Figure 3.1

4. Calculating the affinity between each array pair and constructing the affinity

graph

5. Partitioning the graph to find affinity groups in linear time

This work has been implemented in the IBM TPO (Toronto Portable Optimizer),

which is the core optimization component in IBM C/C++ and FORTRANcompilers.

It implements both compile-time and link-time methods for intra- and interprocedural

optimizations. It also implements profiling feedback optimizations. We now describe

the structure of TPO and the implementation of the referenceaffinity analysis.

49

TPO uses a common graph structure based on Single Static Assignment form (SSA) [Allen

and Kennedy, 2001] to represent the control and data flow within a procedure. Global

value numbering and aggressive copy propagation are used toperform symbolic anal-

ysis and expression simplifications. It performs pointer analysis and constant propaga-

tion using the same basic algorithm from Wegman and Zadeck [Wegman and Zadeck,

1985], which is well suited for using SSA form of data flow. Forloop nests, TPO per-

forms data dependence analysis and loop transformations after data flow optimizations.

We use symbolic analysis to identify the bounds of arrays andestimate the execution

frequency of loops. We use dependence analysis to identify regular access patterns to

arrays.

During the link step, TPO is invoked to re-optimize the program. Having access

to the intermediate code for all the procedures in the program, TPO can significantly

improve the precision of the data aliasing and function aliasing information. Interpro-

cedural mod-use information is computed at various stages during the link step.

The reference affinity analysis is implemented at the link step. A software engi-

neering problem is whether to insert it before or after loop transformations. Currently

the analysis happens first, so arrays can be transformed at the same compilation pass

as loops are. As shown later, early analysis does not lead to slower performance in any

of the test programs. We are looking at implementation options that may allow a later

analysis when the loop access order is fully determined.

We have implemented the analysis that collects the static access-frequency vector

and the analysis that measures per-basic-block execution frequency through profiling.

We have implemented a compiler flag that triggers either static or profiling-based affin-

ity analysis. The invocation graph is part of the TPO data structure. We are in the

process of completing the analysis that includes the complete context sensitivity. The

current access-frequency vector takes the union of all contexts. We have implemented

the reference affinity graph and the linear-time partitioning. The array transformations

are semi-automated as the implementation needs time to fully bond inside the compiler.

50

The link step of TPO performs two passes. The first is a forwardpass to accumulate

and propagate constant and pointer information within the entire program. Reference

affinity analysis is part of the global reference analysis used for remapping global data

structures. It can clone a procedure [Allen and Kennedy, 2001] when needed, although

we do not use cloning for array regrouping. The second pass traverses the invocation

graph backward to perform various loop transformations. Interprocedural code motion

is also performed during the backward pass. This transformation will move upward

from a procedure to all of its call points. Data remapping transformations, including

array regrouping when fully implemented, are performed just before the backward pass

to finalize the data layout. Loop transformations are performed during the backward

pass to take full advantage of the interprocedural information. Interprocedural mod-use

information is recomputed again in order to provide more accurate information to the

back-end code generator.

3.4 Affinity-Oriented Data Reorganization

Reorganize data according to their affinity could improve program locality and thus

effective memory bandwidth. We experimented with two reorganization techniques:

structure splitting and array regrouping. This section describes the two techniques fol-

lowed by the experiment results.

3.4.1 Structure Splitting

The elements of a structure may have different affinity amongthem. Structure split-

ting is to split a structure into multiple ones, each including the elements with good

affinity. Figure 3.2 illustrates the splitting of one structureN into two when element

val andleft are always accessed together. There are many issues to implement auto-

51

Data Structure
staticAFV List : the list of local frequency vectors, one per array per subroutine
dynAFV List : the list of global frequency vectors, one per array
loopFreq : the local estimate of the execution frequency of a loop
IGNode : a node in the invocation graph, with the following attributes
freq : the estimated frequency of the node
staticStartId : the position of the subroutine’s first loop in staticAFVList vectors
dynStartId : the position of the subroutine’s first loop in dynAFVList vectors

groupList : the list of affinity groups
Algorithm
1) building control flow graph and invocation graph with data flow analysis
2) estimating the execution frequency (Section 3.3.2.2 and 3.3.2.3)
3) building array access-frequency vectors using interprocedural analysis (Section 3.3.2.4)
4) calculating the affinity and constructing the affinity graph (Section 3.3.1)
5) linear-time graph partitioning to find affinity groups (Section 3.3.1)

Procedure BuildAFVList()

// build access frequency vectors
BuildStaticAFVList ();
BuildDynamicAFVList ();

End

Procedure BuildStaticAFVList()

// local access frequency vectors
id = 0;
For each procedure proc

For each inner-most loop l in proc
refSet = GetArrayRefSet(l);
If (refSet == NULL)
Continue;

End
id ++;
For each member a in refSet
staticAFVList[a][id]

=loopFreq(l);
End

End
End

End

Procedure BuildDynamicAFVList()

// global access frequency vectors
For each leaf node n in

the invocation graph
UpdateAFVList(n);

End
End

Procedure UpdateAFVList(IGNode n)

For each array a in n.refSet
UpdateDyn(a,n);

End
par = n.Parent();
if (par == NULL) return;
For each array virtual parameter p

q = GetRealParameter(p);
UpdateDyn(q,n);

End
n.visited = true;
If (IsAllChildrenUpdated(par))

UpdateAFVList(par);
End

End

Procedure UpdateDyn(array a, IGNode n)

s1=n.staticStartId;
s2=n.dynStartId;
i=0;
While (i< n.loopNum)

dynAFVList[a][s2+i]
+= staticAFVList[a][s1+i]*n.freq;

i++;
End

End

Procedure GraphPartition()

// partition into affinity groups
For each edge e in the affinity graph g

If (edge.affinity> Threshold)
g.merge(edge);

End
End
groupList = g.GetNodeSets();

End

Figure 3.1: Interprocedural reference affinity analysis

52

matic structure splitting such as addressing problem; details are in Chapter 6 of Zhong’s

thesis [Zhong, 2005].

struct N {
int val;
struct N* left;
struct N* right;

};

(a) before splitting

struct N_fragm0 {
int val;
unsigned int left;

};
struct N_fragm1 {

unsigned int right;
};

(b) after splitting

Figure 3.2: Structure splitting example in C

3.4.2 Array Regrouping

Figure 3.3 shows an example of array regrouping. Part (a) shows a program that

uses four attributes of N molecules in two loops. One attribute, “position", is used

in both the compute loop and the visualization loop, but the other three are used only

in the compute loop. Part (b) shows the initial data layout, where each attribute is

stored in a separate array. In the compute loop, the four attributes of a molecule are

used together, but they are stored far apart in memory. On today’s high-end machines

from IBM, Microsystems, and companies using Intel Itanium and AMD processors, the

largest cache in the hierarchy is composed of blocks of no smaller than 64 bytes. In the

worst case, only one 4-byte attribute is useful in each cacheblock, 94% of cache space

would be occupied by useless data, and only 6% of cache is available for data reuse. A

similar issue exists for memory pages, except that the utilization problem can be much

worse.

Array regrouping improves spatial locality by grouping three of the four attributes

together in memory, as shown in part (c) of Figure 3.3.After regrouping, a cache block

should have at least three useful attributes. One may suggest grouping all four at-

tributes. However, three of the attributes are not used in the visualization loop, and

53

% attributes for molecules
position[N], speed[N], mass[N]
force[N]
... ...
compute_loop
 position[m]=f(position[m], speed[m],
			 force[m], mass[m])
... ...
visualization_loop
 display(position[k])
... ...

(a) a program that uses four arrays

(b) initially all arrays are separately stored (c) three arrays are grouped together

m
a
s
s
[
m
]

f
o
r
c
e
[
m
]

s
p
e
e
d
[
m
]

m
a
s
s
[
m
-
1
]

f
o
r
c
e
[
m
-
1
]

s
p
e
e
d
[
m
-
1
]

... ...

s
p
e
e
d
[
m
+
1
]

s
p
e
e
d
[
m
]

s
p
e
e
d
[
m
-
1
]

......

f
o
r
c
e
[
m
+
1
]

f
o
r
c
e
[
m
]

f
o
r
c
e
[
m
-
1
]

m
a
s
s
[
m
+
1
]

m
a
s
s
[
m
]

m
a
s
s
[
m
-
1
]

......

Figure 3.3: An example of array regrouping. Data with reference affinity are placed
together to improve cache utilization

therefore grouping them with “position” hurts cache-blockutilization. However, if the

loop is infrequently executed or it touches only a few molecules, then we may still

benefit from grouping all four attributes.

Array regrouping has many other benefits. First, it reduces the interference among

cache blocks because fewer cache blocks are accessed. By combining multiple arrays,

array regrouping reduces the page-table working set and consequently the number of

Translation Lookaside Buffer (TLB) misses in a large program.It also reduces the

register pressure because fewer registers are needed to store array base addresses. It

may improve energy efficiency by allowing more memory pages to enter a sleeping

model. For the above reasons, array regrouping is beneficialeven for arrays that are

contiguously accessed.

These benefits have been verified in our previous study [Ding and Kennedy, 2004].

Finally, on shared-memory parallel machines, better cache-block utilization means

slower amortized communication latency and better bandwidth utilization.

54

Array regrouping is mostly orthogonal to traditional loop-nest transformations and

single-array transformations. The latter two try to effectcontiguous access within a

single array. Array regrouping complements them by exploiting cross-array spatial lo-

cality, even when per-array data access is contiguous. As a data transformation, it is

applicable to irregular programs where the dependence information is lacking. In the

example in Figure 3.3, the correctness of the transformation does not depend on know-

ing the value of index variablesm andk. While array regrouping has a good potential

for complex programs, it has not been implemented in any production compiler because

the current techniques are not up to the task.

Ding and Kennedy gave the first compiler technique for array regrouping [Ding and

Kennedy, 2004]. They defined the conceptreference affinity. A group of arrays have

reference affinity if they arealwaysaccessed together in a program. Their technique is

conservative and groups arrays only when they are always accessed together. We call

this schemeconservative affinity analysis. Conservative analysis is too restrictive in

real-size applications, where many arrays are only sporadically accessed.

3.5 Evaluation

In this section, we focus on array regrouping in FORTRAN programs. Zhong’s

thesis presents the results of distance-based affinity analysis for structure splitting on a

wider range of programs [Zhong, 2005].

Array regrouping experiments are conducted with 11 benchmarks on two machines

as shown in table 3.1. Table 3.2 gives the source and a description of the test programs.

Eight are from SPEC CFP2000. The other three are programs utilized in the evaluation

of distance-based affinity analysis [Zhong et al., 2004]. Most of them are scientific

simulations for quantum physics, meteorology, fluid and molecular dynamics. Two are

on image processing and number theory. They have 4 to 92 arrays.

55

Table 3.1: Machine architectures for affinity study

Machine Type IBM p690 Turbo+ Intel PC
Processor Power4+ 1.7GHz Pentium 4 2.8GHz
L1 data cache 32KB, 2-way, 128B cache line8KB, 64B cache line
L2 data cache 1.5MB, 4-way 512KB, 8-way

Table 3.2: Test programs in affinity experiments
Benchmark Source Description Arrays
Applu Spec2K Physics / Quantum Chromodynamics38
Apsi Spec2K Meteorology: Pollutant Distribution 92
Facerec Spec2K Image Processing: Face Recognition44
Galgel Spec2K Computational Fluid Dynamics 75
Lucas Spec2K Number Theory / Primality Testing 14
Mgrid Spec2K Multi-grid Solver:3D Potential Field 12
Swim2K Spec2K Shallow Water Modeling 14
Wupwise Spec2K Physics / Quantum Chromodynamics20
Swim95 Zhong+ Shallow Water Modeling 14
Tomcatv Zhong+ Vectorized Mesh Generation 9
MolDyn Zhong+ Molecular Dynmaics Simulation 4

3.5.1 Affinity Groups

Table 3.3 shows the affinity groups identified by interprocedural reference affinity

analysis using static estimates. The program that has most non-trivial affinity groups

is Galgel. It has eight affinity groups, including 24 out of 75 arrays inthe program.

Four programs—Apsi, Lucas, Wupwise, andMolDyn—do not have affinity groups

with more than one array.Apsi uses only one major array, although different parts as

many different arrays in over 90 subroutines. It is possibleto split the main array into

many smaller pieces. It remains our future work.Lucas, Wupwise, andMolDyn

have multiple arrays but no two have strong reference affinity. The affinity groups

in Facerec andMgrid contain only small arrays. The other three SPEC CPU2000

programs,Applu,Galgel, andSwim2K, have reference affinity among large arrays.

56

Table 3.3: Affinity groups
Benchmark Affinity groups
Applu (imax,jmax,kmax) (idmax,jdmax,kdmax) (phi1,phi2) (a,b,c)

(ldx,ldy,ldz) (udx,udy,udz)
Apsi <none>
Facerec (coordx,coordy)
Galgel (g1,g2,g3,g4) (f1,f2,f3,f4) (vyy,vyy2,vxy,vxy2)

(vxxx,vyxx) (vyyy,vxxy,vxyy,vyxy) (v1,v2)
(wxtx,wytx) (wypy,wxpy)

Lucas <none>
Mgrid (j1,j2,j3)
Swim2K (unew,vnew,pnew) (u,v) (uold,vold,pold) (cu,cv,z,h)
Wupwise <none>
Swim95 (unew,vnew,pnew) (u,v) (uold,vold,pold) (cu,cv,z,h)

compare to [Zhong et al., 2004]: (unew,vnew,pnew) (u,v)
(uold,pold) (vold) (cu,cv,z,h)

Tomcatv (x,y) (rxm,rym) (rx,ry)
compare to [Zhong et al., 2004]: (x,y) (rxm,rym) (rx,ry)

MolDyn < none>
compare to [Zhong et al., 2004]:<none>

3.5.2 Comparison with Distance-Based Affinity Analysis

Swim95, Tomcatv, andMolDyn are three FORTRAN programs also tested using

distance-based analysis. The profiling time is in hours for aprogram.

The bottom six rows of Table 3.3 compare the affinity groups from distance-based

analysis. Frequency-based analysis gives the same result for Tomcatv andMolDyn

without any profiling. The results forSwim95 differ in one of the four non-trivial

groups. Table 3.4 shows the performance difference betweenthe two layouts on IBM

and Intel machines. At “-O3”, the compiler analysis gives better improvement than

distance-based profiling. The two layouts have the same performance at “-O5”, the

highest optimization level. Without any profiling, the frequency-based affinity analysis

is as effective as distance-based affinity analysis.

57

Table 3.4: Comparison of compiler andK-distance analysis onSwim95
Static K-distance

Groups unew,vnew,pnew unew,vnew,pnew
u,v u,v
uold,vold,pold uold,pold
cu,cv,z,h cu,cv,z,h

IBM -03 time 17.1s 17.6s
speedup 96% 90%

-05 time 15.2s 15.3s
speedup 91% 91%

Intel -03 time 41.2s 42.3s
speedup 48% 44%

-05 time 34.9s 34.9s
speedup 42% 42%

3.5.3 Comparison with Lightweight Profiling

The lightweight profiling gives the execution frequency of loop bodies and call sites.

These numbers are used to calculate data-access vectors. The resulting affinity groups

are the same compared to the pure compiler analysis. Therefore, code profiling does

not improve the regrouping results of the analysis. One exception, however, is when a

program is transformed significantly by the compiler. The profiling results reflect the

behavior of the optimized program, while our compiler analysis measures the behavior

of the source program. Among all test programs,Swim2K andSwim95 are the only

ones in which binary-level profiling of the optimized program yields different affinity

groups than compiler analysis.

3.5.4 Performance Improvement from Array Regrouping

Table 3.5 and Table 3.6 show the speedup on IBM and Intel machines, respec-

tively. We include only programs where array regrouping is applied. Each program is

compiled with both “-O3” and “-O5” optimization flags. At “-O5” on IBM machines,

array regrouping obtained more than 10% improvement onSwim2K, Swim95, and

58

Tomcatv, 2-3% onApplu andFacerec, and marginal improvement onGalgel and

Mgrid. The improvement is significantly higher at “-O3”, at least 5% for all but

Mgrid. The difference comes from the loop transformations, whichmakes array ac-

cess more contiguous at “-O5” and reduces the benefit of arrayregrouping. The small

improvements forFacerec andMgrid are expected because only small arrays show

reference affinity.

Our Intel machines did not have a good FORTRAN 90 compiler, so Table 3.6 shows

results for only FORTRAN 77 programs. At “-O5”, array regrouping gives similar

improvement forSwim2K andSwim95. It is a contrast to the different improvement

on IBM, suggesting that the GNU compiler is not as highly tunedfor SPEC CPU2000

programs as the IBM compiler is.Applu runs slower after array regrouping on the Intel

machine. The regrouped version also runs 16% slower at “-O5”than “-O3”. We are

investigating the reason for this anomaly.

Table 3.5: Execution time (sec.) on IBM Power4+
Benchmark -03 Optimization -05 Optimization

Original Regrouped Original Regrouped
(speedup) (speedup)

Applu 176.4 136.3 (29.4%) 161.2 157.9 (2.1%)
Facerec 148.6 141.3 (5.2%) 94.2 92.2 (2.2%)
Galgel 123.3 111.4 (10.7%) 83.2 82.6 (0.7%)
Mgrid 231.4 230.1 (0.6%) 103.9 103.0 (0.9%)
Swim2K 236.8 153.7 (54.1%) 125.2 110.1 (13.7%)
Swim95 33.6 17.1 (96.5%) 29.0 15.2 (90.8%)
Tomcatv 17.3 15.4 (12.3%) 16.8 15.1 (11.3%)

3.5.5 Choice of Affinity Threshold

In the experiment, the affinity threshold is set at 0.95, meaning that for two arrays to

be grouped, the normalized Manhattan distance between the access-frequency vectors

is at most 0.05. To evaluate how sensitive the analysis is to this threshold, we apply

59

Table 3.6: Execution time (sec.) on Intel Pentium IV

Benchmark -03 Optimization -05 Optimization
Original Regrouped Original Regrouped

(speedup) (speedup)
Applu 427.4 444.0 (-3.7%) 429.4 444.6 (-3.4%)
Facerec - - - -
Galgel - - - -
Mgrid 461.7 460.6 (0.2%) 368.9 368.1 (0.2%)
Swim2K 545.1 315.7 (72.7%) 408.8 259.4 (57.6%)
Swim95 61.1 41.2 (48.3%) 49.7 34.9 (42.4%)
Tomcatv 48.8 44.5 (9.7%) 40.9 37.8 (8.2%)

Table 3.7: Gap between the top two clusters of affinity values
Benchmark Cluster-I Cluster-II

lower boundary upper boundary
Applu 0.998 0.667
Apsi 1 0.868
Facerec 0.997 0.8
Galgel 1 0.8
Lucas 1 0.667
Mgrid 1 0.667
Swim 0.995 0.799
Swim95 0.995 0.799
Tomcatv 1 0.798
Wupwise 1 0.8

X-means clustering to divide the affinity values into groups. Table 3.7 shows the lower

boundary of the largest cluster and the upper boundary of thesecond largest cluster.

All programs show a sizeable gap between the two clusters, 0.13 for Apsi and more

than 0.2 for all other programs. Any threshold between 0.87 and 0.99 would yield the

same affinity groups. Therefore, the analysis is quite insensitive to the choice of the

threshold.

60

3.6 Related Work

3.6.1 Affinity Analysis

Early compiler analysis identifies groups of data that are used together in loop nests.

Thabit used the concept of pair-wise affinity he called reference proximity [Thabit,

1981]. Wolf and Lam [Wolf and Lam, 1991] and McKinley et al. [McKinley et al.,

1996] used reference groups. But none of them considered the interprocedure com-

plexity.

Program profiling has long been used to measure the frequencyof data access [Knuth,

1971]. Seidl and Zorn grouped frequently accessed objects to improve virtual memory

performance [Seidl and Zorn, 1998]. Using pair-wise affinity, Calder et al. [Calder

et al., 1998] and Chilimbi et al. [Chilimbi et al., 1999b] developed algorithms for hier-

archical data placement in dynamic memory allocation. The locality model of Calder

et al. was an extension of the temporal relation graph of Gloyand Smith, who con-

sidered reuse distance in estimating the affinity relation [Gloy and Smith, 1999]. The

pair-wise affinity forms a complete graph where each datum isa node and the pair-

wise frequency is the edge weight. However, the reference affinity is not transitive in

a (pair-wise) graph. Consider the access sequenceabab..ab ... bcbc..bc: the pair-wise

affinity exists fora andb, for b andc, but not fora andc. Hence the pair-wise affinity

is indeed pair wise and cannot guarantee the affinity relation for data groups with more

than two elements. Furthermore, the criterion for two data “accessed together" is based

on preselected “cut-off” radii. In comparison,k-distance analysis defines affinity in

data groups and measures the “togetherness” with a scale—the data volume between

accesses.

61

3.6.2 Data Transformations

Thabit showed that the optimal data placement using the pair-wise affinity is NP-

hard [Thabit, 1981]. Kennedy and Kremer gave a general modelthat considered,

among others, run-time data transformation. They also showed that the problem is

NP-hard [Kennedy and Kremer, 1998]. Ding and Kennedy used the results of Thabit

and of Kennedy and Kremer to prove the complexity of the partial and dynamic ref-

erence affinity [Ding and Kennedy, 1999b]. To reduce false sharing in multi-treaded

programs, Anderson et al. [Anderson et al., 1995] and Eggersand Jeremiassen [Jeremi-

assen and Eggers, 1995] grouped data accessed by the same thread. Anderson et al.

optimized a program for computation as well as data locality, but they did not combine

different arrays. Eggers and Jeremiassen combined multiple arrays for thread locality,

but their scheme may hurt cache locality if not all thread data are used at the same time.

For improving the cache performance, Ding and Kennedy grouped arrays that are

always used together in a program [Ding and Kennedy, 1999b].They gave the optimal

array layout for strict affinity. They later grouped arrays at multiple granularity [Ding

and Kennedy, 2004]. An earlier version of the distance-based reference affinity work

defined hierarchical reference affinity and tested two programs using x-means and k-

means clustering [Zhong et al., 2003b].

Chilimbi et al. split Java classes into cold and hot portions according to their refer-

ence frequency [Chilimbi et al., 1999a]. Chilimbi later improved structure splitting us-

ing the frequency of data sub-streams called hot-streams [Chilimbi, 2001]. Hot-streams

combines dynamic affinity with frequency but does not yet give whole-program refer-

ence affinity and requires a time-consuming profiling process. Rabbah and Palem gave

another method for structure splitting. It finds opportunities for complete splitting by

calculating theneighbor affinity probabilitywithout constructing an explicit affinity

graph [Rabbah and Palem, 2003]. The probability shows the quality of a given layout

but does not suggest the best reorganization.

62

Reference affinity may change during a dynamic execution. Researchers have ex-

amined various methods for dynamic data reorganization [Das et al., 1992; Ding and

Kennedy, 1999a; Han and Tseng, 2000b; Mellor-Crummey et al.,2001; Mitchell et al.,

1999; Strout et al., 2003]. Ding and Kennedy found that consecutive packing (first-

touch data ordering) best exploits reference affinity for programs with good temporal lo-

cality [Ding and Kennedy, 1999a], an observation later confirmed by Mellor-Crummey

et al. [Mellor-Crummey et al., 2001] and Strout et al [Strout et al., 2003]. Ding and

Kennedy considered the time distance of data reuses and usedthe information in group

packing. They also gave a unified model in which consecutive packing and group pack-

ing became special cases. In principle, the model of reference affinity can be used at

run time to analyze sub-parts of an execution. However, it must be very efficient to be

cost effective. In Chapter 4, the distance-based analysis isapplied to phase-based data

reorganization.

Locality between multiple arrays can be improved by array padding [Bailey, 1992;

Rivera and Tseng, 1998], which changes the space between arrays or columns of arrays

to reduce cache conflicts. In comparison, data regrouping ispreferable because it works

for all sizes of arrays on all configurations of cache, but padding is still needed if not

all arrays can be grouped together.

The distance-based affinity model is the first trace-based model of hierarchical data

locality providing strict properties. The distance-basedaffinity analysis finds array and

structure field organization (among an exponential number of choices) that is consis-

tently better than the layout given by the programmer, compiler, or statistical clustering.

The interprocedure lightweight analysis presents the firstpractical interprocedure affin-

ity analysis.

63

3.7 Future Directions

The locality prediction presented in last chapter and affinity models in this chapter

all targeted traditional sequential programs. A possible extension is to make those

techniques applicable to a wider range of applications, such as parallel programs and

object-oriented programs running on virtual machines withgarbage collectors, and a

larger class of architectures, including Symmetric Multiprocessors (SMP) and Chip

Multiprocessors (CMP).

A difficulty of parallel programs is to obtain accurate data reference traces. An in-

strumented parallel program usually won’t have the same schedule as the original one,

which may deviate the observed access sequence from the original. Among the few ef-

forts to measure locality of parallel programs, people either used simulators [Faroughi,

2005; Forney et al., 2001] or instrumentors with the perturbation caused by the instru-

mented code ignored [Kim et al., 1999]. It is yet unclear how the perturbation and the

simulator affect the accuracy of locality measurement. It remains an open question to

obtain accurate data reference traces of a parallel programrunning on a real machine.

CMP is becoming the trend of the future computers, which raises the urgency of

a better understanding and prediction of the shared-cache performance. Chandra et

al. proposed a statistical scheme to predict the inter-thread cache contention on a

CMP based on the stack distance profile of each thread’s exclusive execution on the

chip [Chandra et al., 2005]. Although they showed less than 4%average prediction

error, their model cannot predict the behavior on any input other than the training one.

The garbage collector in Java-like programs provides a handy way to manipulate

memory objects during run-time. It eases the locality optimization, but on the other

hand, those programs tend to have a large number of objects and branches. The garbage

collection itself introduces new memory problems. It remains an open question to

effectively characterize and optimize locality of those programs online.

64

3.8 Summary

Affinity analysis is an effective tool for data layout transformations. This chap-

ter describes a hierarchical affinity model, and two analysis techniques through profil-

ing and an intereprocedural analysis respectively. The lightweight technique has been

tested in a production compiler and has demonstrated significant performance improve-

ment through array regrouping. The result suggests that array regrouping is an excellent

candidate for inclusion in future optimizing compilers.

The locality and affinity models discussed in the prior chapters treat a program’s

execution as a whole. However, a program usually consists ofmore than one phases. A

compiler, for example, includes parsing, loop optimization, register coloring and other

steps. Different phases likely have different behavior. Itwould be desirable to detect

those phases, predict their behavior, and dynamically adapt the program or running

environment accordingly, which is the next topic of this thesis.

65

4 Locality Phase Analysis through

Wavelet Transform

As computer memory hierarchy becomes adaptive, its performance increasingly de-

pends on forecasting the dynamic program locality. This paper presents a method that

predicts the locality phases of a program by a combination oflocality profiling and

run-time prediction. By profiling a training input, it identifies locality phases by sift-

ing through all accesses to all data elements using variable-distance sampling, wavelet

filtering, and optimal phase partitioning. It then constructs a phase hierarchy through

grammar compression. Finally, it inserts phase markers into the program using binary

rewriting. When the instrumented program runs, it uses the first few executions of a

phase to predict all its later executions.

Compared with existing methods based on program code and execution intervals,

locality phase prediction is unique because it uses locality profiles, and it marks phase

boundaries in program code. The second half of the paper presents a comprehensive

evaluation. It measures the accuracy and the coverage of thenew technique and com-

pares it with best known run-time methods. It measures its benefit in adaptive cache

resizing and memory remapping. Finally, it compares the automatic analysis with man-

ual phase marking. The results show that locality phase prediction is well suited for

identifying large, recurring phases in complex programs.

66

4.1 Introduction

Memory adaptation is increasingly important as the memory hierarchy becomes

deeper and more adaptive, and programs exhibit dynamic locality. To adapt, a program

may reorganize its data layout multiple times during an execution. Several studies have

examined dynamic data reorganization at the program level [Ding and Kennedy, 1999a;

Han and Tseng, 2000a; Mellor-Crummey et al., 2001; Pingali etal., 2003; Strout et al.,

2003] and at the hardware level [Luk and Mowry, 1999; Zhang etal., 2001]. They

showed impressive improvements in cache locality and prefetching efficiency. Unfor-

tunately, these techniques are not yet widely used partly because they need manual

analysis to find program phases that benefit from memory adaptation. In this chapter,

we show that this problem can be addressed by locality-basedphase prediction.

Following early studies in virtual memory management by Batson and Madison [Bat-

son and Madison, 1976] and by Denning [Denning, 1980], we define a locality phase as

a period of a program execution that has stable or slow changing data locality inside the

phase but disruptive transition periods between phases.1 For optimization purpose, we

are interested in phases that are repeatedly executed with similar locality. While data

locality is not easy to define, we use a precise measure in thispaper. For an execution

of a phase, we measure the locality by its miss rate across allcache sizes and its number

of dynamic instructions. At run time, phase prediction means knowing a phase and its

locality whenever the execution enters the phase. Accurateprediction is necessary to

enable large-scale memory changes while avoiding any adverse effects.

Many programs have recurring locality phases. For example,a simulation program

may test the aging of an airplane model. The computation sweeps through the mesh

structure of the airplane repeatedly in many time steps. Thecache behavior of each

1Note that different authors define “phase” in different ways. In this thesis, We use it to refer to a
span of program execution whose behavior, while potentially very nonuniform, ispredictablein some
important respect, typically because it resembles the behavior of some other execution span. Some
authors, particularly those interested in fine-grain architectural adaptation, define a phase to be an interval
whose behavior isuniform in some important respect (e.g., instruction mix or cache miss rate).

67

time step should be similar because the majority of the data access is the same despite

local variations in control flow. Given a different input, for example another airplane

model or some subparts, the locality of the new simulation may change radically but

it will be consistent within the same execution. Similar phase behavior are common

in structural, mechanical, molecular, and other scientificand commercial simulations.

These programs have great demand for computing resources. Because of their dynamic

but stable phases, they are good candidates for adaptation,if we can predict locality

phases.

We describe a new prediction method that operates in three steps. The first analyzes

the data locality in profiling runs. By examining the distanceof data reuses in varying

lengths, the analysis can “zoom in" and “zoom out" over long execution traces and

detects locality phases usingvariable-distance sampling, wavelet filtering, andoptimal

phase partitioning. The second step then analyzes the instruction trace and identifies

the phase boundaries in the code. The third step uses grammarcompression to identify

phase hierarchies and then inserts program markers throughbinary rewriting. During

execution, the program uses the first few instances of a phaseto predict all its later

executions. The new analysis considers both program code and data access. It inserts

static markers into the program binary without accessing the source code.

Phase prediction has become a focus of much recent research.Most techniques

can be divided into two categories. The first is interval based. It divides a program

execution into fixed-length intervals and predicts the behavior of future intervals from

past observations. Interval-based prediction can be implemented entirely and efficiently

at run time [Balasubramonian et al., 2000b, 2003; Dhodapkar and Smith, 2002, 2003;

Duesterwald et al., 2003; Sherwood et al., 2003; Nagpurkar et al., 2006]. It handles

arbitrarily complex programs and detects dynamically changing patterns. However,

run-time systems cannot afford detailed data analysis muchbeyond counting the cache

misses. In addition, it is unclear how to pick the interval length for different programs

and for different inputs of the same program. The second category is code based. It

68

marks a subset of loops and functions as phases and estimatestheir behavior through

profiling [Hsu and Kremer, 2003; Huang et al., 2003; Magklis et al., 2003; Lau et al.,

2006]. Pro-active rather than reactive, it uses phase markers to control the hardware

and reduce the need for run-time monitoring. However, the program structure may not

reveal its locality pattern. A phase may have many procedures and loops. The same

procedure or loop may belong to different locality phases when accessing different

data at different invocations. For example, a simulation step in a program may span

thousands of lines of code with intertwined function calls and indirect data access.

In comparison, the new technique combines locality analysis and phase marking.

The former avoids the use of fixed-size windows in analysis orprediction. The lat-

ter enables pro-active phase adaptation. In addition, the phase marking considers all

instructions in the program binary in case the loop and procedure structures are obfus-

cated by an optimizing compiler.

In evaluation, we show that the new analysis finds recurring phases of widely vary-

ing sizes and nearly identical locality. The phase length changes in tune with program

inputs and ranges from two hundred thousand to three billioninstructions—thislength

is predicted with 99.5% accuracy. We compare it with other phase prediction methods,

and we show its use in adaptive cache resizing and phase-based memory remapping.

Locality phase prediction is not effective on all programs.Some programs may not

have predictable phases. Some phases may not be predictablefrom its data locality. We

limit our analysis to programs that have large predictable phases, which nevertheless

include important classes of dynamic programs. The next chapter describes another

technique to tackle other input-sensitive programs as a compiler, transcoding utilities

and a database.

69

4.2 Hierarchical Phase Analysis

This section first motivates the use of locality analysis andthen describes the steps

of locality-based phase prediction.

4.2.1 Locality Analysis Using Reuse Distance

In 1970, Mattson et al. defined theLRU-stack distanceas the number of distinct data

elements accessed between two consecutive references to the same element [Mattson

et al., 1970]. They summarized the locality of an execution by the distance histogram,

which determines the miss rate of fully-associative LRU cache of all sizes. Building on

decades of development by others, Ding and Zhong reduced theanalysis cost to near

linear time. They found that reuse-distance histograms change in predictable patterns

in large programs [Ding and Zhong, 2003]. In this work we go one step further to see

whether predictable patterns exist for subparts of a program. For brevity, as mentioned

in previous chapters, we call the LRU stack distance betweentwo accesses of the same

data thereuse distanceof the latter access (to the previous access).

Reuse distance reveals patterns in program locality. We use the example ofTomcatv,

a vectorized mesh generation program from SPEC95 known for its highly memory-

sensitive performance. Figure 4.1 shows the reuse distancetrace. Each data access is a

point in the graph—thex-axis gives the logical time (i.e. the number of data accesses),

and they-axis gives the reuse distance2. The points are so numerous that they emerge

as solid blocks and lines.

The reuse distance of data access changes continuously throughout the trace. We

define a phase change as an abrupt change in data reuse pattern. In this example, the

abrupt changes divide the trace into clearly separated phases. The same phases repeat

in a fixed sequence. Reading the code documentation, we see indeed that the program

2To reduce the size of the graph, we show the reuse distance trace after variable-distance sampling
described in Section 4.2.2.1.

70

2 3 4 5

x 10
7

0

0.5

1

1.5

2

x 10
6

Logical Time

R
eu

se
 D

is
ta

nc
e

Figure 4.1: The reuse-distance trace of Tomcatv

has a sequence of time steps, each has five sub-steps—preparation of data, residual

values, solving two tridiagonal systems, and adding corrections. What is remarkable is

that we could see the same pattern from the reuse distance trace without looking at the

program.

The example confirms four commonly held assumptions about program locality.

First, the data locality may change constantly in an execution; however, major shifts in

program locality are marked by radical rather than gradual changes. Second, locality

phases have different lengths. The size of one phase has little relation with the size of

others. Third, the size changes greatly with program inputs. For example, the phases

of Tomcatvcontain a few hundred million memory accesses in a training run but over

twenty-five billion memory accesses in a test run. Finally, aphase often recurs with

similar locality. A phase is a unit of repeating behavior rather than a unit of uniform

behavior. To exploit these properties, locality phase prediction uses reuse distance to

track fine-grain changes and find precise phase boundaries. It uses small training runs

to predict larger executions.

71

Reuse distance measures locality better than pure program orhardware measures.

Compiler analysis cannot fully analyze locality in programsthat have dynamic data

structures and indirect data access. The common hardware measure, the miss rate, is

defined over a window. Even regular programs may have irregular cache miss rate dis-

tributions when we cut them into windows, as shown later in Figure 4.4. It is difficult

to find a fixed window size that matches the phases of unequal lengths. We may use the

miss trace, but a cache miss is a binary event—hit or miss for agiven cache configura-

tion. In comparison, reuse distance is a precise scale. It ispurely a program property,

independent of hardware configurations.

Reuse distance shows an interesting picture of program locality. Next we present a

system that automatically uncovers the hierarchy of locality phases from this picture.

4.2.2 Off-line Phase Detection

Given the execution trace of training runs, phase detectionoperates in three steps:

variable-distance sampling collects the reuse distance trace, wavelet filtering finds abrupt

changes, and finally, optimal phase partitioning locates the phase boundary.

4.2.2.1 Variable-Distance Sampling

Instead of analyzing all accesses to all data, we sample a small number of repre-

sentative data. In addition, for each data, we record only long-distance reuses because

they reveal global patterns. Variable-distance sampling is based on the distance-based

sampling described by Ding and Zhong [Ding and Zhong, 2003].Their sampler uses

ATOM to generate the data access trace and monitors the reusedistance of every ac-

cess. When the reuse distance is above a threshold (thequalification threshold), the

accessed memory location is taken as a data sample. A later access to a data sample is

recorded as an access sample if the reuse distance is over a second threshold (thetem-

poral threshold). To avoid picking too many data samples, it requires that a new data

72

sample to be at least a certain space distance away (thespatial threshold) in memory

from existing data samples.

The three thresholds in Ding and Zhong’s method are difficultto control. Variable-

distance sampling solves this problem by using dynamic feedback to find suitable

thresholds. Given an arbitrary execution trace, its length, and the target number of sam-

ples, it starts with an initial set of thresholds. It periodically checks whether the rate of

sample collection is too high or too low considering the target sample size. It changes

the thresholds accordingly to ensure that the actual samplesize is not far greater than

the target. Since sampling happens off-line, it can use moretime to find appropriate

thresholds. In practice, variable-distance sampling finds15 thousand to 30 thousand

samples in less than 20 adjustments of thresholds. It takes several hours for the later

steps of wavelet filtering and optimal phase partitioning toanalyze these samples, al-

though the long time is acceptable for our off-line analysisand can be improved by a

more efficient implementation (currently using Matlab and Java).

The variable-distance sampling may collect samples at an uneven rate. Even at a

steady rate, it may include partial results for executions that have uneven reuse density.

However, the target sample size is large. The redundancy ensures that these samples

together contain elements in all phase executions. If a datasample has too few access

samples to be useful, the next analysis step will remove themas noise.

4.2.2.2 Wavelet Filtering

Viewing the sample trace as a signal, we use theDiscrete Wavelet Transform (DWT)

as a filter to expose abrupt changes in the reuse pattern. The DWT is a common tech-

nique in signal and image processing [Daubechies, 1992]. Itshows the change of fre-

quency over time. As a mutli-resolution analysis, the DWT applies two functions to

data: the scale function and the wavelet function. The first smooths the signal by av-

eraging its values in a window. The second calculates the magnitude of a range of

frequencies in the window. The window then shifts through the whole signal. After

73

finishing the calculations on the whole signal, it repeats the same process at the next

level on the scaled results from the last level instead of on the original signal. This

process may continue for many levels as a multi-resolution process. For each point on

each level, a scaling and a wavelet coefficient are calculated using the variations of the

following basic formulas:

cj(k) = < f(x), 2−jφ(2−jx− k) >

wj(k) = < f(x), 2−jψ(2−jx− k) >

where,< a, b > is the scaler product ofa and b, f(x) is the input signal,j is the

analysis level,φ andψ are the scaling and wavelet function respectively. Many different

wavelet families exist in the literature, such asHaar, Daubechies, andMexican-hat. We

useDaubechies-6in our experiments. Other families we have tested produce a similar

result. On high-resolution levels, the points with high wavelet coefficient values signal

abrupt changes; therefore they are likely phase changing points.

The wavelet filtering takes the reuse-distance trace of eachdata sample as a signal,

then computes the level-1 coefficient for each access and removes from the trace the

accesses with a low wavelet coefficient value. An access is kept only if its coefficient

ω > m + 3δ, wherem is the mean andδ is the standard deviation. The difference

between this coefficient and others is statistically significant. We have experimented

with coefficients of the next four levels and found the level-1 coefficient adequate.

Figure 4.2 shows the wavelet filtering for the access trace ofa data sample inMol-

Dyn, a molecular dynamics simulation program. The filtering removes accesses during

the gradual changes because they have low coefficients. Notethat it correctly removes

accesses that correspond to local peaks. The remaining fouraccesses indicate global

phase changes.

74

Sherwood et al. used the Fourier transform to find periodic patterns in execution

trace [Sherwood et al., 2001]. The Fourier transform shows the frequencies appeared

during the whole signal. In comparison, wavelets gives thetime-frequencyor the fre-

quencies appeared over time. Joseph et al. used wavelets to analyze the change of

processor voltage over time and to make on-line predictionsusing an efficient Haar-

wavelet implementation [Joseph et al., 2004]. We use wavelets similar to their off-line

analysis but at much finer granularity (because of the natureof our problem). Instead of

filtering the access trace of all data, we analyze the sub-trace for each data element. This

is critical because a gradual change in the subtrace may be seen as an abrupt change

in the whole trace and cause false positives in the wavelet analysis. We will show an

example later in Figure 4.4 (b), where most abrupt changes seen from the whole trace

are not phase changes.

After it filters the sub-trace of each data sample, the filtering step recompiles the

remaining accesses of all data samples in the order of logical time. The new trace is

called afiltered trace. Since the remaining accesses of different data elements may

signal the same phase boundary, we use optimal phase partitioning to further remove

these redundant indicators.

Figure 4.2: A wavelet transform example, where gradual changes are filtered out

75

Figure 4.3: An example illustrating the optimal phase partitioning. Each number in the
sequence represents the reference to a memory location. Notationwk

i represents the
weight of the edge from theith number to thekth. The solid lines show a path from the
beginning to the end of the sequence.

4.2.2.3 Optimal Phase Partitioning

At a phase boundary, many data change their access patterns.Since the wavelet fil-

tering removes reuses of the same data within a phase, the remaining is mainly accesses

to different data samples clustered at phase boundaries. These two properties suggest

two conditions for a good phase partition. First, a phase should include accesses to as

many data samples as possible. This ensures that we do not artificially cut a phase into

smaller pieces. Second, a phase should not include multipleaccesses of the same data

sample, since data reuses indicate phase changes in the filtered trace. The complication,

however, comes from the imperfect filtering by the wavelet transform. Not all reuses

represent a phase change.

We convert the filtered trace into a directed acyclic graph where each node is an

access in the trace. Each node has a directed edge to all succeeding nodes as shown in

Figure 4.3. Each edge (from accessa to b) has a weight defined aswb
a = αr+1, where

1 ≥ α ≥ 0, andr is the number of node recurrences betweena andb. For example, the

traceaceefgefbd has two recurrences ofe and one recurrence off betweenc andb, so

the edge weight between the two nodes is3α+ 1.

76

Intuitively, the weight measures how fit the segment froma to b is as a phase. The

two factors in the weight penalize two tendencies. The first is the inclusion of reuses,

and the second is the creation of new phases. For a sequence ofmemory references,

the optimal case is a minimal number of phases with least reuses in each phase. Since

the trace is not perfect, the weight and the factorα control the relative penalty for too

large or too small phases. Ifα is 1, we prohibit any reuses in a phase. We may have as

many phases as the length of the filtered trace. The result when α ≥ 1 is the same as

α = 1. If α is 0, we get one phase. In experiments, we found that the phasepartitions

were similar whenα is between 0.2 and 0.8, suggesting that the noise in the filtered

trace was acceptable. We usedα = 0.5 in the evaluation.

Onceα is determined, shortest-path analysis on the directed graph finds a phase

partition that minimizes the total penalty. It adds two nodes: a source node that has

directed edges flowing to all original nodes, and a sink node that has directed edges

coming from all original nodes. Any directed path from the source to the sink gives

a phase partition. The sum of the weights of the edges on the path is called thepath

weight, showing the penalty of the phase partition. The best phase partition gives the

least penalty, and it is given by the shortest path between the source and the sink.

Summary of off-line phase detectionThe program locality is a product of all ac-

cesses to all program data. The phase detection first picks enough samples in time and

space to capture the high-level pattern. Then it uses wavelets to remove the temporal

redundancy and phase partitioning to remove the spatial redundancy. The next chal-

lenge is marking the phases in program code. The wavelet filtering loses accurate time

information because samples are considered a pair at a time (to measure the difference).

In addition, the locality may change through a transition period instead of a transition

point. Hence the exact time of a phase change is difficult to attain. We address this

problem in the next step.

77

4.2.3 Phase Marker Selection

The instruction trace of an execution is recorded at the granularity of basic blocks.

The result is a block trace, where each element is the label ofa basic block. This step

finds the basic blocks in the code that uniquely mark detectedphases. Previous pro-

gram analysis considered only a subset of code locations, for example function and

loop boundaries [Hsu and Kremer, 2003; Huang et al., 2003; Magklis et al., 2003].

Our analysis examines all instruction blocks, which is equivalent to examining all pro-

gram instructions. This is especially important at the binary level, where the high level

program structure may be lost due to aggressive compiler transformations such as pro-

cedure in-lining, software pipelining, loop fusion, and code compression.

As explained earlier, phase detection finds the number of phases but cannot locate

the precise time of phase transitions. The precision is in the order of hundreds of

memory accesses while a typical basic block has fewer than ten memory references.

Moreover, the transition may be gradual, and it is impossible to locate a single point.

We solve this problem by using the frequency of the phases instead of the time of their

transition.

We define the frequency of a phase by the number of its executions in the training

run. Given the frequency found by the last step, we want to identify a basic block that is

always executed at the beginning of a phase. We call it themarker blockfor this phase.

If the frequency of a phase isf , the marker block should appear no more thanf times

in the block trace. The first step of the marker selection filters the block trace and keeps

only blocks whose frequency is no more thanf . If a loop is a phase, the filtering will

remove the occurrences of the loop body block and keep only the header and the exit

blocks. If a set of mutual recursive functions forms a phase,the filtering will remove

the code of the functions and keep only the ones before and after the root invocation.

After filtering, the remaining blocks are candidate markers.

78

After frequency-based filtering, the removed blocks leave large blank regions be-

tween the remaining blocks. If a blank region is larger than athreshold, it is considered

as a phase execution. The threshold is determined by the length distribution of the blank

regions, the frequency of phases, and the execution length.Since the training runs had

at least 3.5 million memory accesses, we simply used 10 thousand instructions as the

threshold. In other words, a phase execution must consume atleast 0.3% of the total ex-

ecution to be considered significant. We can use a smaller threshold to find sub-phases

after we find large phases.

Once the phase executions are identified, the analysis considers the block that comes

after a region as markers marking the boundary between the two phases. Two regions

are executions of the same phase if they follow the same code block. The analysis

picks markers that mark most if not all executions of the phases in the training run.

We have considered several improvements that consider the length of the region, use

multiple markers for the same phase, and correlate marker selection across multiple

runs. However, this basic scheme suffices for programs we tested.

Requiring the marker frequency to be no more than the phase frequency is necessary

but not sufficient for phase marking. A phase may be fragmented by infrequently exe-

cuted code blocks. However, a false marker cannot divide a phase more thanf times.

In addition, the partial phases will be regrouped in the nextstep, phase-hierarchy con-

struction.

4.2.4 Marking Phase Hierarchy

Hierarchical construction Given the detected phases, we construct a phase hier-

archy using grammar compression. The purpose is to identifycomposite phases and

increase the granularity of phase prediction. For example,for the Tomcatvprogram

showed in Figure 4.1, every five phase executions form a time step that repeats as a

79

composite phase. By constructing the phase hierarchy, we findphases of the largest

granularity.

We use SEQUITUR, a linear-time and linear-space compressionmethod developed

by Nevill-Manning and Witten [Nevill-Manning and Witten, 1997]. It compresses a

string of symbols into a Context Free Grammar. To build the phase hierarchy, we have

developed a novel algorithm that extracts phase repetitions from a compressed gram-

mar and represents them explicitly as a regular expression.The algorithm recursively

converts non-terminal symbols into regular expressions. It remembers previous results

so that it converts the same non-terminal symbol only once. Amerge step occurs for a

non-terminal once its right-hand side is fully converted. Two adjacent regular expres-

sions are merged if they are equivalent (using for example the equivalent test described

by Hopcroft and Ullman [Hopcroft and Ullman, 1979]).

SEQUITUR was used by Larus to find frequent code paths [Larus,1999] and

by Chilimbi to find frequent data-access sequences [Chilimbi,2001]. Their methods

model the grammar as a DAG and finds frequent sub-sequences ofa given length. Our

method traverses the non-terminal symbols in the same order, but instead of finding

sub-sequences, it produces a regular expression.

Phase marker insertionThe last step uses binary rewriting to insert markers into

a program. The basic phases (the leaves of the phase hierarchy) have unique markers

in the program, so their prediction is trivial. To predict the composite phases, we insert

a predictor into the program. Based on the phase hierarchy, the predictor monitors the

program execution and makes predictions based on the on-line phase history. Since

the hierarchy is a regular expression, the predictor uses a finite automaton to recognize

the current phase in the phase hierarchy. In the programs we tested so far, this simple

method suffices. The cost of the markers and the predictor is negligible because they are

invoked once per phase execution, which consists of on average millions of instructions

as shown in the evaluation.

80

4.3 Evaluation

We conduct four experiments. We first measure the granularity and accuracy of

phase prediction. We then use it in cache resizing and memoryremapping. Finally, we

test it against manual phase marking. We compare with other prediction techniques in

the first two experiments.

Our test suite is given in Table 4.1. We pick programs from different sets of com-

monly used benchmarks to get an interesting mix. They represent common computa-

tion tasks in signal processing, combinatorial optimization, structured and unstructured

mesh and N-body simulations, a compiler, and a database.FFT is a basic implementa-

tion from a textbook. The next six programs are from SPEC: three are floating-point and

three are integer programs. Three are from SPEC95 suite, one from SPEC2K, and two

(with small variation) are from both. Originally from the CHAOS group at University

of Maryland,MolDyn andMeshare two dynamic programs whose data access pattern

depends on program inputs and changes during execution [Daset al., 1994]. They are

commonly studied in dynamic program optimization [Ding andKennedy, 1999a; Han

and Tseng, 2000a; Mellor-Crummey et al., 2001; Strout et al.,2003]. The floating-point

programs from SPEC are written in Fortran, and the integer programs are in C. Of the

two dynamic programs,MolDyn is in Fortran, andMeshis in C. We note that the choice

of source-level languages does not matter because we analyze and transform programs

at the binary level.

For programs from SPEC, we use thetestor thetrain input for phase detection and

the ref input for phase prediction. For the prediction ofMesh, we used the same mesh

as that in the training run but with sorted edges. For all other programs, the prediction

is tested on executions hundreds times longer than those used in phase detection.

We use ATOM to instrument programs to collect the data and instruction trace on

a Digital Alpha machine [Srivastava and Eustace, 1994]. Allprograms are compiled

81

Table 4.1: Benchmarks for locality phase analysis
Benchmark Description Source

FFT fast Fourier transformation textbook
Applu solving five coupled nonlinear PDE’sSpec2KFp
Compress common UNIX compression utility Spec95Int
Gcc GNU C compiler 2.5.3 Spec95Int
Tomcatv vectorized mesh generation Spec95Fp
Swim finite difference approximations for Spec95Fp

shallow water equation
Vortex an object-oriented database Spec95Int
Mesh dynamic mesh structure simulation CHAOS
MolDyn molecular dynamics simulation CHAOS

by the Alpha compiler using “-O5” flag. After phase analysis,we again use ATOM to

insert markers into programs.

4.3.1 Phase Prediction

We present results for all programs except forGccandVortex, which we discuss at

the end of this section. We first measure the phase length and then look at the phase

locality in detail.

Table 4.2 shows two sets of results. The upper half shows the accuracy and cov-

erage of strict phase prediction, where we require that phase behavior repeats exactly

including its length. Except forMolDyn, the accuracy is perfect in all programs, that is,

the number of the executed instructions is predicted exactly at the beginning of a phase

execution. We measure the coverage by the fraction of the execution time spent in the

predicted phases. The high accuracy requirement hurts coverage, which is over 90% for

four programs but only 46% forTomcatvand 13% forMolDyn. If we relax the accuracy

requirement, then the coverage increases to 99% for five programs and 98% and 93%

for the other two, as shown in the lower half of the table. The accuracy drops to 90%

in Swimand 13% inMolDyn. MolDyn has a large number of uneven phases when it

82

Table 4.2: Accuracy and coverage of phase prediction
Benchmarks Strict accuracy Relaxed accuracy

Accuracy (%) Coverage (%) Accuracy (%) Coverage (%)

FFT 100 96.41 99.72 97.76
Applu 100 98.89 99.96 99.70
Compress 100 92.39 100 93.28
Tomcatv 100 45.63 99.9 99.76
Swim 100 72.75 90.16 99.78
Mesh 100 93.68 100 99.58
MolDyn 96.47 13.49 13.27 99.49
Avgerage 99.50 73.32 86.14 98.48

finds neighbors for each particle. In all programs, the phaseprediction can attain either

perfect accuracy, full coverage, or both.

The granularity of the phase hierarchy is shown in Table 4.3 and Table 4.4 by the

average size of the smallest (leaf) phases and the largest composite phases. The left

half shows the result of the detection run, and the right halfshows the prediction run.

The last row shows the average across all programs. With the exception ofMesh,

which has two same-length inputs, the prediction run is larger than the detection run

by, on average, 100 times in execution length and 400 times inthe phase frequency.

The average size of the leaf phase ranges from two hundred thousand to five million

instructions in the detection run and from one million to eight hundred million in the

prediction run. The largest phase is, on average, 13 times the size of the leaf phase in

the detection run and 50 times in the prediction run.

The results show that the phase length is anything but uniform. The prediction run

is over 1000 times longer than the detection run forApplu andCompressand nearly

5000 times longer forMolDyn. The longer executions may have about 100 times more

phase executions (Tomcatv, Swim, andApplu) and over 1000 times larger phase size (in

Compress). The phase size differs from phase to phase, program to program, and input

83

Table 4.3: Number and the size of phases in detection runs
Tests leaf exe. len. avg. leaf avg. largest phase

phases (M inst.) size (M inst.) size (M inst.)
FFT 14 23.8 2.5 11.6
Applu 645 254.3 0.394 3.29
Compress 52 52.0 0.667 2.2
Tomcatv 35 175.0 4.9 34.9
Swim 91 376.7 4.1 37.6
Mesh 4691 5151.9 1.1 98.2
MolDyn 59 11.9 0.202 3.97
Average 798 863.66 1.98 27.39

Table 4.4: Number and the size of phases in prediction runs
Tests leaf exe. len. avg. leaf avg. largest phase

phases (M inst.) size (M inst.) size (M inst.)
FFT 122 5730.4 50.0 232.2
Applu 4437 335019.8 75.5 644.8
Compress 52 62418.4 800.2 2712.0
Tomcatv 5250 24923.2 4.7 33.23
Swim 8101 33334.9 4.1 37.03
Mesh 4691 5151.9 1.1 98.2
MolDyn 569 50988.1 89.6 1699.6
Average 3317 73938.1 146.5 779.58

to input, suggesting that a single interval or threshold would not work well for this set

of programs.

4.3.1.1 Comparison of Prediction Accuracy

Figure 4.4 shows the locality of two representative programs—TomcatvandCompress—

in two columns of three graphs each. The upper graphs show thephase detection in

training runs. The other graphs show phase prediction in reference runs. The up-

per graphs show a fraction of the sampled trace with verticallines marking the phase

boundaries found by variable-distance sampling, wavelet filtering, and optimal phase

partitioning. The lines fall exactly at the points where abrupt changes of reuse behav-

84

ior happen, showing the effect of these techniques. The phases have different lengths.

Some are too short in relative length and the two boundaries become a single line in

the graph. The numbers next to the lines are the basic block IDs where markers are

inserted. The same code block precedes and only precedes thesame locality phase,

showing the effect of marker selection.

The middle two graphs show the locality of predicted phases.To visualize the lo-

cality, we arbitrarily pick two different cache sizes—32KBand 256KB cache—and use

the two miss rates as coordinates. Each execution of a phase is a cross (X) on the graph.

Tomcatvhas 5251 executions of 7 locality phases: all five thousand crosses are mapped

to seven in the graph. Most crosses overlap perfectly. The phase prediction is correct in

all cases because the executions of the same phase maps to a single cross except for a

small difference in the second and third phase, where the first couple of executions have

slightly different locality. We label each phase by the phase ID, the relative frequency,

and the range of phase length. The relative frequency is the number of the executions

of a phase divided by the total number of phase executions (5251 forTomcatv). The last

two numbers give the number of instructions in the shortest and the longest execution

of the phase, in the unit of millions of instructions.Compressis shown by the same

format. It has 52 executions of 4 locality phases: all 52 crosses map to four, showing

perfect prediction accuracy. The phase length ranges from 2.9 thousand to 1.9 million

instructions in two programs. For each phase, the length prediction is accurate to at

least three significant digits.

The power of phase prediction is remarkable. For example, inCompress, when the

first marker is executed for the second time, the program knows that it will execute

1.410 million instructions before reaching the next marker, and that the locality is the

same for every execution. This accuracy confirms our assumption that locality phases

are marked by abrupt changes in data reuse.

Phase vs. intervalAn interval method divides the execution into fixed-size in-

tervals. The dots in the bottom graphs of Figure 4.4 show the locality of ten million

85

(

5 10 15 20
0

2

4

6

8

10

12

32KB cache miss rate (%)

2
5
6
K

B
 c

a
c
h
e
 m

is
s
 r

a
te

 (
%

)

2.96

23.54

12.59

6.73

10.86

36.414.63

0 5 10 15 20 25
0

2

4

6

8

10

12

32KB cache miss rate (%)

2
5
6
K

B
 c

a
ch

e
 m

is
s

ra
te

 (
%

)

26.08

2.972.97
2.97

2.97 2.97

2.97

2.97

2.45

Tomcatv Compress

Phase boundaries in sample trace Phase boundaries in sample trace

marker

block ID

25 billion inst., 5250 executions (crosses)

of 7 phases
62 billion inst., 52 executions (crosses)

of 4 phases

25 billion inst., 2493 intervals (dots)

9 of 38 BBV clusters (boxes) shown

62 billion inst., 6242 intervals (dots)

7 of 21 BBV clusters (boxes) shown

phase ID

shortest & longest exe. length in M inst.

frequency (%)

cluster bounding box
frequency (%)

phase

boundary

(e) (f)

Logical Time Logical Time

Figure 4.4: Prediction Accuracy forTomcatvandCompress. Part (a) and (b) show the
phase boundaries found by off-line phase detection. Part (c) and (d) show the locality
of the phases found by run-time prediction. As a comparison,Part (e) and (f) show the
locality of ten million-instruction intervals and BBV (basic-block vector) clusters.

86

instruction intervals. The 2493 dots inTomcatvand 6242 dots inCompressdo not

suggest a regular pattern.

Both the phases and intervals are partitions of the same execution sequence—the

25 billion instructions inTomcatvand 62 billion inCompress. Yet the graphs are a

striking contrast between the sharp focus of phase crosses and the irregular spread of

interval dots—it indeed matters where and how to partition an execution into phases.

Locality phases are selected at the right place with the right length, while intervals are

a uniform cut. Compared to the phases, the intervals are too large to capture the two

to four million-instruction phases inTomcatvand too small to find the over one billion-

instruction phases inCompress. While the program behavior is highly regular and fully

predictable for phases, it becomes mysteriously irregularonce the execution is cut into

intervals.

Phase vs. BBVThree major phase analysis techniques have been examined [Dho-

dapkar and Smith, 2003]—procedure-based [Huang et al., 2003; Magklis et al., 2003],

code working set [Dhodapkar and Smith, 2002], and basic-block vector (BBV) [Sher-

wood et al., 2003]. By testing the variation in IPC (instruction per cycle), it concluded

that BBV is the most accurate. We implemented BBV prediction according to the algo-

rithm of Sherwood et al [Sherwood et al., 2003]. Our implementation uses the same ten

million-instruction windows and the same threshold for clustering. We implemented

their Markov predictor but in this section we use only the clustering (perfect predic-

tion). It randomly projected the frequency of all code blocks into a 32-element vector

before clustering. Instead of using IPC, we use locality as the metric for evaluation.

BBV clusters the intervals based on their code signature and execution frequency.

We show each BBV cluster by a bounding box labeled with the relative frequency. BBV

analysis produces more clusters than those shown. We do not show boxes for clusters

whose frequency is less than 2.1%, partly to make the graph readable. We note that

the aggregated size of the small clusters is quite large (51%) for Tomcatv. In addition,

87

we exclude the outliers, which are points that are farthest from the cluster center (3δ,

statistically speaking); otherwise the bounding boxes arelarger.

As shown by previous studies [Dhodapkar and Smith, 2003; Sherwood et al., 2003],

BBV groups intervals that have similar behavior. InTomcatv, the largest cluster ac-

counts for 26% of the execution. The miss rate varies by less than 0.3% for the 256KB

cache and 0.5% for the 32KB cache. However, the similarity isnot guaranteed. In

the worst case inCompress, a cluster of over 23% execution has a miss rate ranging

from 2.5% to 5.5% for the 256KB cache and from 7% to 11% for the 32KB cache.

In addition, different BBV clusters may partially intersect.Note that with fine-tuned

parameters we will see smaller clusters with lower variation. In fact, in the majority

of cases in these programs, BBV produces tight clusters. However, even in best cases,

BBV clusters do no have perfectly stacked points as locality phases do.

Table 4.5 shows the initial and normalized standard deviation. The locality is an

8-element vector that contains the miss rate for cache sizesfrom 32KB to 256KB in

32KB increments. The standard deviation is calculated for all executions of the same

phase and the intervals of each BBV cluster. Then the standard deviation of all phases

or clusters are averaged (weighted by the phase or cluster size) to produce the number

for the program. The numbers of BBV clustering and prediction,shown by the last two

columns, are similarly small as reported by Sherwood et al. for IPC [Sherwood et al.,

2003]. Still, the numbers for locality phases are much smaller—one to five orders of

magnitude smaller than that of BBV-based prediction.

So far we measure the cache miss rate through simulation, which does not include

all factors on real machines such as that of the operating system. We now examine the

L1 miss rate on an IBM Power 4 processor for the first two phases of Compress(the

other two phases are too infrequent to be interesting). Figure 4.5 shows the measured

miss rate for each execution of the two phases. All but the first execution of Phase

1 have nearly identical miss rates on the 32KB 2-way data cache. The executions of

Phase 2 show more variation. The effect from the environmentis more visible in Phase

88

Table 4.5: Standard deviation of locality phases and BBV phases
standard deviations

locality phase BBV BBV RLE Markov
prediction clustering prediction

FFT 6.87E-8 0.00040 0.0061
Applu 5.06E-7 2.30E-5 0.00013
Compress 3.14E-6 0.00021 0.00061
Tomcatv 4.53E-7 0.00028 0.0016
Swim 2.66E-8 5.59E-5 0.00018
Mesh 6.00E-6 0.00012 0.00063
MolDyn 7.60E-5 0.00040 0.00067

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Figure 4.5: The miss rates ofCompressphases on IBM Power 4

2 likely because its executions are shorter and the miss ratelower than those of the first

phase.

The comparison with interval-based methods is partial because we use only pro-

grams that are amenable to locality-phase prediction. Manydynamic programs do not

have consistent locality. For them interval-based methodscan still exploit run-time pat-

terns, while this scheme would not work because it assumes that each phase, once in

execution, maintains identical locality. Next are two suchexamples.

89

0.0E0 2.0E7 4.0E7 6.0E7 8.0E7 1.0E8

logical time of data access

0.0E0

2.0E4

4.0E4

6.0E4

8.0E4

1.0E5

sa
m

pl
ed

 r
eu

se
 d

is
ta

nc
e

Spec95/Gcc, compiling cccp.i, sampled 331 times

0.0E0 5.0E8 1.0E9 1.5E9 2.0E9 2.5E9

0.0E0

2.0E5

4.0E5

6.0E5

8.0E5

Spec95/Vortex, test run, sampled 272 times

logical time of data access

sa
m

pl
ed

 r
eu

se
 d

is
ta

nc
e

Figure 4.6: Sampled reuse distance trace ofGccandVortex. The exact phase length is
unpredictable in general.

4.3.1.2 Gcc and Vortex

The programsGccandVortexare different because their phase length is not consis-

tent even in the same execution. InGcc, the phase length is determined by the function

being compiled. Figure 4.6 shows the distance-based sampletrace. Unlike previous

trace graphs, it uses horizontal steps to link sample points. The peaks in the upper

graph roughly correspond to the 100 functions in the 6383-line input file. The size and

location of the peaks are determined by the input and are not constant.

Vortex is an object-oriented database. The test run first constructs a database and

then performs a set of queries. The lower figure of Figure 4.6 shows the sample trace. It

shows the transition from data insertion to query processing. However, in other inputs,

the construction and queries may come in any order. The exactbehavior, likeGcc, is

input dependent and not constant.

The next chapter discusses those programs in more details and proposes a technique

based on active profiling to effectively detect phases in those programs.

90

4.3.2 Adaptive Cache Resizing

During an execution, cache resizing reduces the physical cache size without in-

creasing the miss rate [Balasubramonian et al., 2000b; Huanget al., 2003]. Therefore,

it can reduce the access time and energy consumption of the cache without losing per-

formance. We use a simplified model where the cache consists of 64-byte blocks and

512 sets. It can change from direct mapped to 8-way set associative, so the cache size

can change between 32KB and 256KB in 32KB units. In the adaptation, we need to

predict the smallest cache size that yields the same miss rate as the 256KB cache.

As seen in the example ofTomcatv, program data behavior changes constantly. A

locality phase is a unit of repeating behavior rather than a unit of uniform behavior.

To capture the changing behavior inside a large phase, we divide it into 10K intervals

(called phase intervals). The adaptation finds the best cache size for each interval during

the first few executions and reuses them for later runs. The scheme needs hardware

support but needs no more than that of interval-based cache resizing.

Interval-based cache resizing divides an execution into fixed-length windows. The

basic scheme is to monitor some run-time behavior like branch miss prediction rate

and instruction per cycle during the execution of an interval [Balasubramonian et al.,

2000b]. If the difference between this and the last intervalexceeds a threshold, the

execution is considered as entering a brand new phase. The scheme doesn’t catego-

rize intervals into a number of phases, but only detects whether the current interval is

similar enough to the last one. If not, it immediately startsa new exploration to find

the best cache size for the new phase, even if many similar intervals have appeared

before the last interval. Note that it’s possible for a new phase to be too short for the

exploration to finish. In that case, at the phase change, the incomplete exploration will

be discarded and a new one will start. Once an exploration completes, the best cache

configuration for the current phase is determined. The system then keeps using this

91

configuration for the later intervals until it detects another phase change, which triggers

a new exploration.

We test the basic interval-based scheme using five differentinterval lengths: 10K,

1M, 10M, 40M, and 100M memory accesses. In the experiment, weassume perfect

phase detection: there is a phase change if the best cache size of the current interval

differs from the last one. (We know the best cache size of eachphase or interval by

running it throughCheetah, a cache simulator that measures the miss rate of all eight

cache sizes at the same time [Sugumar and Abraham, 1993].) The implementation is

idealistic because in reality the interval-based scheme usually cannot detect all phase

changes precisely, due to the imperfect correlation between the monitored run-time

behavior and the optimal cache configurations. Moreover, the idealistic version doesn’t

have detection latency: the earliest time to detect a new phase in reality is after the

termination of the first interval in that phase when the information of the hardware

events of the interval becomes available. The upshot is thatevery interval uses its

optimal cache configuration except the exploration periodsin the idealistic scheme.

Some studies extend the basic interval-based scheme by considering code informa-

tion such as code working set [Dhodapkar and Smith, 2002] andbasic-block vector

(BBV) [Sherwood et al., 2003]. We test a BBV predictor using 10M instruction win-

dows, following the implementation of Sherwood et al [Sherwood et al., 2003] and uses

a run-length encoding Markov predictor to predict the phaseidentity of the next interval

(the best predictor reported in [Sherwood et al., 2003]). Unlike the basic interval-based

scheme, the BBV method categorizes past intervals into a number of phases and as-

signs each phase an identity. At the beginning of an interval, the method predicts the

interval’s phase identity or assigns a new identity if this interval is very different from

any previous ones. In our experiment, the implemented scheme is also idealistic: an

exploration is triggered only when a new phase identity is assigned or the current in-

terval has a different optimal cache configuration from the one obtained from the last

exploration of its phase. In comparison, the basic interval-based scheme starts a new

92

exploration at every point when the optimal configuration becomes different from the

last interval.

For run-time exploration, we count the minimal cost—each exploration takes ex-

actly two trial runs, one at the full cache size and one at the half cache size. Then

we start using the best cache size determined by the oracle, the cache simulatorChee-

tah. The results for interval and BBV methods are idealistic. Whilethe result of the

locality-phase method is real; each phase uses the optimal cache configuration of its

first instance for all its instances after the exploration period. Because it is able to pre-

cisely predict the exact behavior repetition, the locality-phase method can amortize the

exploration cost over many executions. With the right hardware support, it can gauge

the exact loss compared to the full size cache and guarantee abound on the absolute

performance loss.

Figure 4.7 shows the average cache size from locality-phase, interval, and BBV

methods. The upper graph shows the results of adaptation with no miss-rate increase.

The results are normalized to the phase method. The largest cache size, 256KB, is

shown as the last bar in each group. Different intervals find different cache sizes, but

all reductions are less than 10%. The average is 6%. BBV gives consistently good

reduction with a single interval size. The improvement is atmost 15% and on average

10%. In contrast, the phase adaptation reduces the cache size by 50% for most programs

and over 35% on average.

The lower graph in Figure 4.7 shows the results of adaptationwith a 5% bound

on the miss-rate increase. The effect of interval methods varies greatly. The 10M

interval was 20% better than the locality phase forFFT but a factor of three worse

for TomcatvandSwim. The 100M interval has the best average reduction of nearly

50%. BBV again shows consistently good reduction with a singleinterval size. On

average it is slightly better than the best interval method.The phase method reduces

the cache size more than other methods do for all programs except forFFT. FFT has

varied behavior, which causes the low coverage and consequently not as large cache-

93

size reduction by locality phase prediction.MolDyndoes not have identical locality, so

phase-based resizing causes a 0.6% increase in the number ofcache misses. Across all

programs, the average reduction using locality phases is over 60%.

Figure 4.8 shows cache miss rate increases due to the cache resizing. The upper

graph shows 0 to 1.2% increase with at most 0.2% on average. The increase mainly

comes from the indispensable explorations. The lower graphdemonstrates less than

4.5% increase, satisfying the required 5% upper bound.

The effectiveness of locality phases is because of their accurate phase boundaries

and the high consistency of phase behavior. Interval-basedschemes including BBV

method cannot work as well because the right phase boundaries may not match interval

boundaries. The large variance of BBV phase instances, illustrated by Figure 4.4, incurs

much more explorations per phase than those per locality phase.

Earlier studies used more accurate models of cache and measured the effect on

time and energy through cycle-accurate simulation. Since simulating the full execu-

tion takes a long time, past studies either used a partial trace or reduced the program

input size [Balasubramonian et al., 2000b; Huang et al., 2003]. We choose to measure

the miss rate of full executions. While it does not give the time or energy, the miss

rate is accurate and reproducible by others without significant efforts in calibration of

simulation parameters.

4.3.3 Phase-Based Memory Remapping

We use locality phases in run-time memory remapping. To support dynamic data

remapping at the phase boundary, we assume that the machine is equipped with the

Impulsememory controller, developed by Carter and his colleagues atUniversity of

Utah [Zhang et al., 2001; Zhang, 2000].Impulsereorganizes data without actually

copying them to CPU or in memory. For example, it may create a column-major version

94

0

0.5

1

1.5

2

2.5

Mold
yn

To
mca

tv
Swim FF

T

Com
pre

ss
M

es
h

App
lu

Ave
rag

e

Benchmarks

N
or

m
al

iz
ed

 A
vg

 C
ac

he
 S

iz
e

Phase

Intvl-10k

Intvl-1M

Intvl-10M

Intvl-40M

Intvl-100M

BBV

largest-size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Mold
yn

To
mca

tv
Swim FF

T

Com
pre

ss
Mes

h
App

lu

Ave
rag

e

Benchmarks

N
or

m
al

iz
ed

 A
vg

 C
ac

he
 S

iz
e

Phase

Intvl-10k

Intvl-1M

Intvl-10M

Intvl-40M

Intvl-100M

BBV

largest-size

Figure 4.7: Average cache-size reduction by phase, interval, and BBV prediction meth-
ods, assuming perfect phase-change detection and minimal-exploration cost for interval
and BBV methods. Upper graph: no increase in cache misses. Lower graph: at most
5% increase.

of a row-major array via remapping. A key requirement for exploiting Impulseis to

identify the time when remapping is profitable.

We consider affinity-based array remapping, where arrays that tend to be accessed

concurrently are interleaved by remapping [Zhong et al., 2004]. To demonstrate the

value of locality phase prediction, we evaluate the performance benefits of redoing the

remapping for each phase rather than once for the whole program during compilation.

95

Figure 4.8: Average cache miss rate increase due to the cacheresizing by phase, inter-
val, and BBV prediction methods. Upper graph: the objective isno increase in cache
misses. Lower graph: the objective is at most 5% increase.

96

We apply affinity analysis for each phase and insert remapping code at the location of

the phase marker. The following table shows the execution time in seconds on 2GHz

Intel Pentium IV machine with thegcccompiler using-O3.

Table 4.6: Performance improvement from phase-based arrayregrouping, excluding
the cost of run-time data reorganization

Benchmark Original Phase (speedup)Global (speedup)

Mesh 4.29 4.17 (2.8%) 4.27 (0.4%)
Swim 52.84 34.08 (35.5%) 38.52(27.1%)

For the two programs, we obtain speedups of 35.5% and 2.8% compared to the

original program and 13% and 2.5% compared to the best staticdata layout [Zhong

et al., 2004], as shown in Table 4.6. In the absence of anImpulseimplementation, we

program the remapping and calculate the running time excluding the remapping cost.

Table 7.3 of Zhang’s dissertation shows the overhead of setting up remappings for a

wide range of programs. The overhead includes setting up shadow region, creating

memory controller page table, data flushing, and possible data movement. The largest

overhead shown is 1.6% of execution time for static index vector remapping [Zhang,

2000].

For example for the 14 major arrays inSwim, whole-program analysis shows close

affinity between arrayu andv, uoldandpold, andunewandpnew. Phase-based analysis

shows affinity group {u,v,p} for the first phase, {u,v,p,unew,vnew,pnew} for the second

phase, and three other groups, {u,uold,unew}, { v,vold,vnew}, and {p,pold,pnew}, for

the third phase. Compared to whole-program reorganization,the phase-based optimiza-

tion reduces cache misses by one third (due to arrayp) for the first phase, by two thirds

for the second phase, and by half for the third phase.

Using the two example programs, we have shown that phase prediction finds oppor-

tunities of dynamic data remapping. The additional issues of affinity analysis and code

transformation are discussed by Zhong et al [Zhong et al., 2004]. The exact interaction

with Impulselike tools is a subject of future study.

97

4.3.4 Comparison with Manual Phase Marking

We hand-analyzed each program and inserted phase markers (manual markers)

based on our reading of the code and its documentation as wellas results fromgprof

(to find important functions). We compare manual marking with automatic marking as

follows. As a program runs, all markers output the logical time (the number of memory

accesses from the beginning). Given the set of logical timesfrom manual markers and

the set from auto-markers, we measure the overlap between the two sets. Two logical

times are considered the same if they differ by no more than 400, which is 0.02% of the

average phase length. We use the recall and precision to measure their closeness. They

are defined by the formulas below. The recall shows the percentage of the manually

marked times that are marked by auto-markers. The precisionshows the percentage of

the automatically marked times that are marked manually.

Recall =
|M ∩ A |

|M |
(4.1)

Precision =
|M ∩ A |

| A |
(4.2)

whereM is the set of times from the manual markers, andA is the set of times from

auto-markers.

Table 4.7 shows a comparison with manually inserted markersfor detection and

prediction runs. The columns for each run give the recall andthe precision. The recall

is over 95% in all cases except forMolDyn in the detection run. The average recall

increases from 96% in the detection run to 99% in the prediction run because the phases

with a better recall occur more often in longer runs. Hence, the auto-markers capture

the programmer’s understanding of the program because theycatch nearly all manually

marked phase changing points.

98

Table 4.7: Overlap with manual phase markers
Benchmark Detection Prediction

Recall Prec. Recall Prec.

FFT 1 1 1 1
Applu 0.993 0.941 0.999 0.948
Compress 0.987 0.962 0.987 0.962
Tomcatv 0.952 0.556 1 0.571
Swim 1 0.341 1 0.333
Mesh 1 0.834 1 0.834
MolDyn 0.889 0.271 0.987 0.267
Average 0.964 0.690 0.986 0.692

The precision is over 95% forAppluandCompress, showing that automatic markers

are effectively the same as the manual markers.MolDyn has the lowest recall of 27%.

We checked the code and found the difference. When the programis constructing the

neighbor list, the analysis marks the neighbor search for each particle as a phase while

the programmer marks the searches for all particles as a phase. In this case, the anal-

ysis is correct. The neighbor search repeats for each particle. This also explains why

Moldyncannot be predicted with both high accuracy and high coverage—the neighbor

search has varying behavior since a particle may have a different number of neighbors.

The low recall in other programs has the same reason: the automatic analysis is more

thorough than the manual analysis.

Four of the test programs are the simulation of grid, mesh andN-body systems in

time steps. Ding and Kennedy showed that they benefited from dynamic data packing,

which monitored the run-time access pattern and reorganized the data layout multiple

times during an execution [Ding and Kennedy, 1999a]. Their technique was automatic

except for a programmer-inserted directive, which must be executed once in each time

step. This work was started in part to automatically insert the directive. It has achieved

this goal: the largest composite phase in these four programs is the time step loop.

Therefore, the phase prediction should help to fully automate dynamic data packing,

which is shown by several recent studies to improve performance by integer factors for

99

physical, engineering, and biological simulation and sparse matrix solvers [Ding and

Kennedy, 1999a; Han and Tseng, 2000a; Mellor-Crummey et al.,2001; Strout et al.,

2003].

SummaryFor programs with consistent phase behavior, the new methodgives ac-

curate locality prediction and consequently yields significant benefits for cache resizing

and memory remapping. It is more effective at finding long, recurring phases than pre-

vious methods based on program code, execution intervals, their combination, and even

manual analysis. For programs with varying phase behavior,the profiling step can often

reveal the inconsistency. Then the method avoids behavior prediction of inconsistent

phases through a flag (as shown by the experiments reported inTable 4.2). Using a

small input in a profiling run is enough for locality phase prediction. Therefore, the

technique can handle large programs and long executions. For programs such asGCC

andVortex, where little consistency exists during the same execution, the locality anal-

ysis can still recognize phase boundaries but cannot yet make predictions. Predictions

based on statistics may be helpful for these programs, whichremains to be our future

work. In addition, the current analysis considers only temporal locality. The future

work will consider spatial locality in conjunction with temporal locality.

4.4 Related Work

This work is a unique combination of program code and data analysis. It builds on

past work in these two areas and complements interval-basedmethods.

Locality phasesEarly phase analysis, owing to its root in virtual-memory manage-

ment, was intertwined with locality analysis. In 1976, Batson and Madison defined a

phase as a period of execution accessing a subset of program data [Batson and Madison,

1976]. They showed experimentally that a set of Algol-60 programs spent 90% time in

major phases. However, they did not predict locality phases. Later studies used time or

reuse distance as well as predictors such as Markov models toimprove virtual memory

100

management. Recently, Ding and Zhong found predictable patterns in the overall local-

ity but did not consider the phase behavior [Ding and Zhong, 2003]. We are not aware

of any trace-based technique that identifies static phases using locality analysis.

Program phasesAllen and Cocke pioneered interval analysis to convert program

control flow into a hierarchy of regions [Allen and Cocke, 1976]. For scientific pro-

grams, most computation and data access are in loop nests. A number of studies showed

that the inter-procedural array-section analysis accurately summarizes the program data

behavior. The work by Hsu and Kremer used program regions to control processor volt-

ages to save energy. Their region may span loops and functions and is guaranteed to be

an atomic unit of execution under all program inputs [Hsu andKremer, 2003]. For gen-

eral purpose programs, Balasubramonian et al. [Balasubramonian et al., 2000b], Huang

et al. [Huang et al., 2003], and Magklis et al. [Magklis et al., 2003] selected as phases

procedures whose number of instructions exceeds a threshold in a profiling run. The

three studies found the best voltage for program regions on atraining input and then

tested the program on another input. They observed that different inputs did not affect

the voltage setting. The first two studies also measured the energy saving of phase-

based cache resizing [Balasubramonian et al., 2000b; Huang et al., 2003]. A recent

work by Lau et al. considers loops, procedures, and call sites as possible phase markers

if the variance of their behavior is lower than a relative threshold [Lau et al., 2006].

In comparison, the new technique does not rely on static program structure. It uses

trace-based locality analysis to find the phase boundaries,which may occur anywhere

and not just at region, loop or procedure boundaries.

Interval phasesInterval methods divide an execution into fixed-size windows, clas-

sify past intervals using machine or code-based metrics, and predict future intervals us-

ing last value, Markov, or table-driven predictors [Dhodapkar and Smith, 2002, 2003;

Duesterwald et al., 2003; Sherwood et al., 2003]. The past work used intervals of length

from 100 thousand [Balasubramonian et al., 2000b] to 10 million instructions [Sher-

wood et al., 2003] and executions from 10 milliseconds to 10 seconds [Duesterwald

101

et al., 2003]. Nagpurkar et al. proposed a framework for online phase detection and

explored the parameter space [Nagpurkar et al., 2006]. Interval prediction works well

if the interval length does not matter, for example, when an execution consists of long

steady phases. Otherwise it is difficult to find the best interval length for a given pro-

gram on a given input. The experimental data in this paper show the inherent limitation

of intervals for programs with constantly changing data behavior. Balasubramonian et

al. searches for the best interval size at run time [Balasubramonian et al., 2003]. Their

method doubles the interval length until the behavior is stable. LetN be the execution

length, this new scheme searchesO(logN) choices in the space ofN candidates. In

this work, we locate phases and determine their exact lengths through off-line locality

analysis. We show that important classes of programs have consistent phase behavior

and the high accuracy and large granularity of phase prediction allow adaptation with

a tight worst-performance guarantee. However, not all programs are amenable to the

off-line analysis. Interval-based methods do not have thislimitation and can exploit the

general class of run-time patterns.

4.5 Summary

This chapter presents a general method for predicting hierarchical memory phases

in programs with input-dependent but consistent phase behavior. Based on profiling

runs, it predicts program executions hundreds of times larger and predicts the length

and locality with near perfect accuracy. When used for cache adaptation, it reduces the

cache size by 40% without increasing the number of cache misses. When used for mem-

ory remapping, it improves program performance by up to 35%.It is more effective at

identifying long, recurring phases than previous methods based on program code, exe-

cution intervals, and manual analysis. It recognizes programs with inconsistent phase

behavior and avoids false predictions. These results suggest that locality phase predic-

102

tion should benefit modern adaptation techniques for increasing performance, reducing

energy, and other improvements to the computer system design.

Scientifically speaking, this work is another attempt to understand the dichotomy

between program code and data access and to bridge the division between off-line anal-

ysis and on-line prediction. The result embodies and extends the decades-old idea that

locality could be part of the missing link.

However, the method is not universal. It relies on the regular repetitions of pro-

gram phase behavior. Some applications, such as compilers and interpretors and server

programs, have strongly input-dependent behavior. An execution of a compiler, for

instance, may compile hundreds of different functions witheach compilation showing

different behavior. The complexity and irregularity pose aspecial challenge to phase

analysis. The next chapter presents an approach to convert that challenge into an op-

portunity to detect phases in those programs and effectively benefit dynamic memory

management.

103

5 Behavior Phase Analysis through

Active Profiling

Utility programs, which perform similar and largely independent operations on a se-

quence of inputs, include such common applications as compilers, interpreters, and

document parsers; databases; and compression and encodingtools. The repetitive be-

havior of these programs, while often clear to users, has been difficult to capture auto-

matically. This chapter presents an active profiling technique in which controlled inputs

to utility programs are used to expose execution phases, which are then marked, auto-

matically, through binary instrumentation, enabling us toexploit phase transitions in

production runs with arbitrary inputs. Experiments with five programs from the SPEC

benchmark suites show that phase behavior is surprisingly predictable in many (though

not all) cases. This predictability can in turn be used for optimized memory manage-

ment leading to significant performance improvement.

5.1 Introduction

Complex program analysis has evolved from the static analysis of source or machine

code to include the dynamic analysis of behavior across all executions of a program.

We are particularly interested in patterns of memory reference behavior, because we

104

can use these patterns to improve cache performance, reducethe overhead of garbage

collection, or assist memory leak detection.

A principal problem for behavior analysis is dependence on program input. Outside

the realm of scientific computing, changes in behavior induced by different inputs can

easily hide those aspects of behavior that are uniform across inputs, and might prof-

itably be exploited. Programming environment tools, server applications, user inter-

faces, databases, and interpreters, for example, use dynamic data and control structures

that make it difficult or impossible for current static analysis to predict run-time be-

havior, or for profile-based analysis to predict behavior oninputs that differ from those

used in training runs.

At the same time, many of these programs have repetitive phases that users under-

stand well at an abstract, intuitive level, even if they havenever seen the source code.

A C compiler, SPEC CPU2000 GCC for example, has a phase in which it compiles a

single input function [Henning, 2000]. It runs this function through the traditional tasks

of parsing and semantic analysis, data flow analysis, register allocation, and instruction

scheduling, and then repeats for the following function.

Most of the applications mentioned above, as well as compression and transcod-

ing filters, have repeatingbehavior phases, and often subphases as well. We refer to

such programs asutilities. They have the common feature that they accept, or can be

configured to accept, a sequence of requests, each of which isprocessed more-or-less

independently of the others. Program behavior differs not only across different inputs

but also across different parts of the same input, making it difficult for traditional analy-

sis techniques to find the phase structure embodied in the code. In many cases, a phase

may span many functions and loops, and different phases may share the same code.

Figure 5.1 illustrates the opportunities behavior phases provide for memory man-

agement. Though the volume of live data in the compiler may bevery large while

compiling an individual, it always drops to a relatively lowvalue at function compi-

lation boundaries. The strong correlation between phases and memory usage cycles

105

0 0.5 1 1.5 2 2.5

x 10
10

1

2

3

4

5

6

7

8
x 10

7

Logical time

M
em

or
y

si
ze

 (
by

te
s)

Figure 5.1: The curve of the minimal size of live data during the execution of GCC
on inputscilabwith a circle marking the beginning of the compilation of a C function.
Logical time is defined as the number of memory accesses performed so far.

0 2 4 6 8

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(a)

4.4 4.45 4.5 4.55 4.6

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(b)

Figure 5.2: (a) IPC curve ofGCC on inputscilab and (b) an enlarged random part.
Compilation boundaries are shown as solid vertical lines.

106

suggests that the phase boundaries are desirable points to reclaim memory, measure

space consumption to predict memory usage trends, and classify object lifetimes to

assist in memory leak detection.

Figure 5.1, however, also illustrates the challenges in detecting phases. Phases dif-

fer greatly in both length and memory usage. Other metrics show similar variation.

Figure 5.2(a), for example, plots IPC (instruction per cycle) for the same program run

(with physical time on thex axis). The strong dependence of curve shape on the func-

tion being compiled makes it difficult for traditional analysis techniques to find the

phase structure embodied in the code. A zoomed view of the curve (Figure 5.2(b)) sug-

gests that something predictable is going on: IPC in each instance has two high peaks

in the middle and a declining tail. But the width and height of these features differs so

much that previous signal-processing based phase analysis, as the locality phase analy-

sis in Chapter 4, cannot reliably identify the pattern [Shen et al., 2004b]. Furthermore,

the phases of GCC and other utility programs typically span many function calls and

loops, precluding any straightforward form of procedure orloop based phase detection.

In this paper we introduceactive profiling, which addresses the phase detection

problem by exploiting the following observation:

If we control the input to a utility program, we can often force it to dis-

play an artificially regular pattern of behavior that exposes the relationship

between phases and fragments of machine code.

Active profiling uses a sequence of identical requests to induce behavior that is both

representative of normal usage and sufficiently regular to identify outermost phases (de-

fined in Section 5.2.1). It then uses different real requeststo capture inner phases and

to verify the representativeness of the constructed input.In programs with a deep phase

hierarchy, the analysis can be repeated to find even lower level phases. We can also de-

sign inputs to target specific aspects of program behavior, for example, the compilation

of loops.

107

Utility programs are the ideal target for this study becausethey are widely used

and commercially important, and because users naturally understand the relationship

between inputs and top-level phases. Our technique, which is fully automated, works

on programs in binary form. No knowledge of loop or function structure is required, so

a user can apply it to legacy code. Because users control the selection of regular inputs,

active profiling can also be used to build specialized versions of utility programs for

different purposes, breaking away from the traditional “one-binary-fits-all” program

model.

We evaluate our techniques on five utility programs from the SPEC benchmark

suites. For each we compare the phases identified by active profiling with phases based

on static program structure (functions and loop nests) and on run-time execution inter-

vals. Finally, we demonstrate the use of phase information to monitor memory usage,

improve the performance of garbage collection, and detect memory leaks.

5.2 Active Profiling and Phase Detection

5.2.1 Terminology

Program phases have a hierarchical structure. For utility programs, we define an

outermost phaseas the processing of a request, such as the compilation of a function

in a C compiler, the compression of a file in a file compressor, and the execution of

a query on a database. Aninner phaseis a computation stage in the processing of a

request. Compilation, for example, typically proceeds through parsing and semantic

analysis, data flow analysis, register allocation, and instruction scheduling. Aphase

marker is a basic block that is always executed near the beginning ofthat phase, and

never otherwise.

108

0 0.5 1 1.5 2 2.5

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

Figure 5.3: IPC curve ofGCCon an artificial regular input, with top-level (solid vertical
lines) and inner-level (broken vertical lines) phase boundaries.

5.2.2 Constructing Regular Inputs

In utility programs, phases have variable length and behavior as shown in Fig-

ure 5.2. We can force regularity, however, by issuing a sequence of identical requests—

in GCC, by compiling a sequence of identical functions, as shown in Figure 5.3. Solid

and broken vertical lines indicate outermost and inner phase boundaries, identified by

our analysis. The fact that behavior repeats a predetermined number of times (the num-

ber of input repetitions) is critical to the analysis.

A utility program provides an interface through which to make requests. A re-

quest consists of data and requested operations. The interface can be viewed as a mini-

language. It can be as simple as a stream of bytes and a small number of command-line

arguments, as, for example, in a file compression program. Itcan also be as compli-

cated as a full-fledged programming language, as for example, in a Java interpreter or

a simulator used for computer design.

To produce a sequence of repeating requests, we can often just repeat a request if the

service is stateless—that is, the processing of a request does not change the internals of

the server program. File compression, for example, is uniformly applied to every input

file; the compression applied to later files is unaffected by the earlier ones. Care must

109

be taken, however, when the service stores information about requests. A compiler

generally requires that all input functions in a file have unique names, so we replicate

the same function but give each a different name. A database changes state as a result of

insertions and deletions, so we balance insertions and deletions or use inputs containing

only lookups.

The appropriate selection of regular inputs is important not only to capture typical

program behavior, but also to target analysis at subcomponents of a program. For

example, inGCC, if we are especially interested in the compilation of loops, we can

construct a regular input with repeated functions that havenothing but a sequence of

identical loops. Phase detection can then identify the inner phases devoted to loop

compilation. By constructing special inputs, not only do we isolate the behavior of a

sub-component of a service, we can also link the behavior to the content of a request.

We will discuss the use of targeted analysis for aPerl interpreter in Section 5.3.2.

5.2.3 Selecting Phase Markers

Active profiling finds phase markers in three steps. The first step searches for reg-

ularity in the basic-block trace induced by a regular input;this indicates outermost

phases. The second and third steps use real inputs to check for consistency and to

identify inner phases.

Using a binary instrumentation tool, we modify the application to generate a dy-

namic trace of basic blocks. Given a regular input containing f requests, the trace

should containf nearly identical subsequences. The phase markers must be executed

f times each, with even intervening spaces.

We first purify the block trace by selecting basic blocks thatare executedf times.

Not all such blocks represent actual phase boundaries. A block may happen to be

executedf times during initialization, finalization, memory allocation, or garbage col-

110

Data Structure
innerMarkers : the set of inner phase markers
outerMarker : the outermost phase marker
traceR : the basic block trace recorded in the regular training run
traceI : the basic block trace recorded in the normal (irregular) training run
RQSTR : the number of requests in the regular input
RQSTI : the number of requests in the normal input
setB : the set of all basic blocks in the program
setB1, setB2, setB3 : three initialy empty sets
bi : a basic block insetB
timeR(bi, j) : the instructions executed so far whenbi is accessed for thejth time
Vi =< Vi

1, Vi
2, . . . , Vi

k > : the recurring distance vector of basic blockbi in traceR, where
Vi

j = timeR(bi, j + 1) − timeR(bi, j)

Algorithm
step 1) Select basic blocks that appearRQSTR times intraceR and put them intosetB1.
step 2a) FromsetB1, select basic blocks whose recurring distance pattern is similar to

the majority and put them intosetB2.
step 2b) FromsetB2, select basic blocks that appearRQSTI times intraceI and

put them intosetB3.
step 3) FromsetB3, select basic blocks that are followed by a long computation intraceR

before reaching any block insetB3
and put those blocks intoinnerMarkers; outerMarker is the block
in innerMarkers that first appears intraceR.

Procedure Step2a()
// M andD are two initially empty arrays
for everybi in setB1 {

Vi = GetRecurDistance(bi, traceR);
mi = GetMean(Vi);
di = GetStandardDeviation(Vi);
M .Insert(mi);
D.Insert(di);}

if (!IsOutlier(mi,M) &&
!IsOutlier(di,D)){
setB2.AddMember(bi);}

End

Procedure IsOutlier(x, S)
// S is a container of values
m = GetMean(S);
d = GetStandardDeviation(S);
if (|x − m| > 3 ∗ d) return true;
return false;

End

Figure 5.4: Algorithm of phase marker selection and procedures for recurring-distance
filtering.

111

lection. We therefore measure the mean and standard deviation of distance between

occurrences, and discard blocks whose values are outliers (see Figure 5.4).

The remaining code blocks all havef evenly spaced occurrences, but still some

may not be phase markers. InGCC, for example, the regular input may contain a

single branch statement. Code to parse a branch may thus occuronce per request with

this input, but not with other inputs. In step two we check whether a block occurs

consistently in other inputs. We use a real input containingg (non-identical) requests.

We measure the execution frequency of the candidate blocks and keep only those that

are executedg times. Usually one real input is enough to remove all false positives, but

this step can be repeated an arbitrary number of times to increase confidence.

Having identified blocks that appear always to occur exactlyonce per outermost

phase, we consider the possibility that these may actually mark interesting pointswithin

an outermost phase. Compilation, for example, typically proceeds through parsing and

semantic analysis, data flow analysis, register allocation, and instruction scheduling.

We call theseinner phases. Each is likely to begin with one of the identified blocks.

In step three we select inner phases of a non-trivial length and pick one block for

each phase boundary. Figure 5.5 shows a trace ofGCC on regular input. Each circle

on the graph represents an instance of a candidate inner phase marker. The x-axis

represents logical time (number of memory accesses); the y-axis shows the identifier

(serial number) of the executed block. We calculate the logical time between every

two consecutive circles: the horizontal gaps in Figure 5.5.From these we select the

gaps whose width is more than 3 standard deviations larger than the mean. We then

designate the basic block that precedes each such gap to be aninner-phase boundary

marker. The first such marker doubles as the marker for the outermost phase.

The phases of a utility program may also nest. For example, the body of a function

in the input to a compiler may contain nested statements at multiple levels. This nesting

may give rise to deeply nested phases, which our framework can be extended to identify,

using a sequence of identical sub-structures in the input. In the case of the compiler, we

112

0 1 2 3 4 5 6 7

x 10
9

1

2

3

4

5

6

7

8

9
x 10

4

Number of instructions

B
a

s
ic

 b
lo

c
k
 I

D

Figure 5.5:GCC inner-phase candidates with inner-phase boundaries.

can construct a function with a sequence of identical loop statements, and then mark

the portions of each inner phase (compilation stage) devoted to individual loops, using

the same process that we used to identify outermost phases inthe original step of the

analysis.

5.3 Evaluation

We test six programs, shown in Table 5.1, from the SPEC95 and SPEC2K bench-

mark suites: a file compression utility, a compiler, two interpreters, a natural language

parser, and an object-oriented database. Three other utility programs—two more com-

pression utilities—exist in these two suites. We have not yet experimented with them

because they do not contribute a new application type. All test programs are written in

C. Phase analysis is applied to the binary code.

We construct regular inputs as follows. ForGCCwe use a file containing 4 identical

functions, each with the same long sequence of loops. ForCompress, which is written

to compress and decompresses the same input 25 times, we provide a file that is 1% of

the size of the reference input in the benchmark suite. ForLI, we provide 6 identical

113

Table 5.1: Benchmarks for utility phase analysis
Benchmark Description Source
Compress UNIX compression utility SPEC95Int
GCC GNU C compiler 2.5.3 SPEC2KInt
LI Xlisp interpreter SPEC95Int
Parser natural language parser SPEC2KInt
Vortex object oriented database SPEC2KInt
Perl Perl interpreter SPEC2KInt

expressions, each of which contains 34945 identical sub-expressions. ForParserwe

provide 6 copies of the sentence “John is more likely that Joedied than it is that Fred

died.” (That admittedly nonsensical sentence is drawn fromthe reference input, and

not surprisingly takes an unusually long time to parse.) Theregular input forVortexis

a database and three iterations of lookups. Since the input is part of the program, we

modify the code so that it performs only lookups but neither insertions nor deletions in

each iteration.

We use ATOM [Srivastava and Eustace, 1994] to instrument programs for the phase

analysis on a decade-old Digital Alpha machine, but measureprogram behavior on

a modern IBM POWER4 machine through its Due to the lack of a binaryrewriting

tool on the IBM machine, we insert phase markers into the Alphabinary, manually

identify their location, insert the same markers at the source level, and then compile

and run the marked program on the IBM platform. hardware performance monitoring

facilities. POWER4 machines have a set of hardware counters, which are automatically

read every 10ms. The AIX 5.1 operating system provides a programming interface

library called PMAPI to access those counters. By instrumenting the program with the

library function calls, one can determine the set of the hardware events specified by

the user at the instrumentation point. The instrumentationis also set to automatically

generate an interrupt every 10ms so that the hardware counters are read at the 10ms

granularity. Not all hardware events can be measured simultaneously. We collect cache

114

miss rates and IPCs (in a single run) at the boundaries of program phases and, within

phases, at 10ms intervals.

The phase detection technique finds phases for all 6 benchmarks. GCC is the most

complex program and shows the most interesting behavior.Perl has more than one type

of phase. We describe these in the next two subsections, and the remaining programs

in the third subsection.

5.3.1 GCC

GCC comprises 120 files and 222182 lines of C code. The phase detection tech-

nique successfully finds the outermost phase, which begins the compilation of an in-

put function. We also find 8 inner phases. Though the analysistool never considers

the source, we can, out of curiosity, map the automatically inserted markers back to

the source code, where we discover that the 8 markers separate different compilation

stages.

The first marker is at the end of function “loop_optimize”, which performs loop op-

timization on the current function. The second marker is in the middle point of function

“rest_of_compilation”, where the second pass of common sub-expression elimination

completes. The third and fourth markers are both in function“life_analysis”, which

determines the set of live registers at the start of each basic block and propagates the

life information inside the basic block. The two markers areseparated by an analysis

pass, which examines each basic block, deletes dead stores,generates auto-increment

addressing, and records the frequency at which a register isdefined, used, and rede-

fined. The fifth marker is in function “schedule_insns”, which schedules instructions

block by block. The sixth marker is at the end of function “global_alloc”, which allo-

cates pseudo-registers. The seventh marker is in the same function as the fifth marker,

“schedule_insns”. However, the two markers are in different branches, and each invoca-

tion triggers one sub-phase but not the other. The two sub-phases are executed through

115

two calls to this function (only two calls per compilation ofa function), separated by

the sixth marker in “global_alloc” among other function calls. The last marker is in the

middle of function “dbr_schedule”, which places instructions into delay slots. These

automatically detected markers separate the compilation into 8 major stages. Given the

complexity of the code, manual phase marking would be extremely difficult for some-

one who does not know the program well. Even for an expert inGCC, it might not be

easy to identify sub-phases that occupy large portions of the execution time, of roughly

equal magnitude.

GCC behavior varies with its input. Regularity emerges, however, when we cut

the execution into phases. Figure 5.6(a) shows the same curve as Figure 5.2(b) with

markings for outermost (solid) and inner (broken) phases. Both outermost and inner

phases show similar signal curves across phase instances. The IPC curves of GCC

on other inputs have a related shape, shown in Figure 5.6(b)–(d). This shows that

GCCdisplays a recurring execution pattern—the same complex compilation stages are

performed on each function in each input file. The outermost phase and inner phase

markers accurately capture the variation and repetition ofprogram behavior, even when

the shape of the curve is not exactly identical from functionto function or from input

to input. Note that while we have used IPC to illustrate behavior repetition, the phase

marking itself is performed off-line and requires no on-line instrumentation.

The lower four graphs in Figure 5.6 show the IPC curves ofCompress, Vortex, LI,

andParser. We will discuss them in Section 5.3.3 when comparing behavior phases

from active profiling with other types of phases.

Figure 5.8(a) shows a distribution graph of IPC and cache hitrates for phase in-

stances ofGCC. Instances of different sub-phases are represented by different symbols.

GCChas 57 instances of the outermost phase in that ref input. Each instance is divided

into 8 inner phases. We have a total of 456 points in Figure 5.8(a). The 456 points

cluster into 5 rough groups. The top group is the cluster of phase 3. It corresponds

to the highest peak in the IPC curve, and is separated from theother phase instances.

116

4.45 4.5 4.55 4.6

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(a) GCC onscilabenlarged

0 1 2 3 4 5 6

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(b) GCC on166

0 5 10 15

x 10
4

0.5

1

1.5

2

Time(miliseconds)

IP
C

(c) GCC on200without phase markers

4.2 4.3 4.4 4.5 4.6

x 10
4

0

0.5

1

1.5

2

Time(miliseconds)

IP
C

(d) GCC on200enlarged

0 5000 10000 15000
0.2

0.4

0.6

0.8

1

1.2

Time(miliseconds)

IP
C

(e) Compress

0 5000 10000 15000

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time(miliseconds)

IP
C

(f) Vortex

0 1 2 3 4 5 6

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time(miliseconds)

IP
C

(g) Li

0 1000 2000 3000 4000 5000 6000 7000

0.2

0.4

0.6

0.8

1

Time(miliseconds)

IP
C

(h) Parser

Figure 5.6: IPC curves of GCC, Compress, Vortex, Li and Parser with phase markers

117

The cluster of phase 4 overlaps with the top of the cluster of phase 6, but separates

from its major body. Phase 4 corresponds to the highland in the IPC curve, and phase

5 corresponds to the second highest peak with some low transition parts. The cluster

of phase 8 corresponds to a short segment in IPC curve with lowIPC and high cache

hit rate. It separates from the other clusters well. The remaining large cluster contains

the instances of phases 1, 2, 5 and 7. These four phases correspond to the 4 lowest IPC

segments. They are close to each other but still separate mostly. Phase 2 has the highest

cluster, phase 7 the lowest, with phase 1 in the middle. Phase5 has the rightmost cluster

with highest cache hit rate. Most of the 8 groups are very tight except for the values

from phase 2. Even for this group, most points have almost thesame IPC, and cache

hit rates that vary by less than 0.2.

5.3.2 Perl

Though our active analysis tool is usually employed in a fully automated form (the

user provides a regular input and a few real inputs, and the tool comes back with an in-

strumented binary), we can invoke the sub-tasks individually to explore specific aspects

of an application.

As an example, consider thePerl interpreter. The installed version in our system

directory has 27 thousand basic blocks and has been strippedof all debugging informa-

tion. Perl interprets one program at a time, so it does not have outermost phases as other

programs do. In hopes of exploring how the interpreter processes function calls, how-

ever, we created a regular 30-line input containing 10 identical calls. Given this input,

the regularity checking tool (step 1 of Section 5.2.3) identified 296 candidate marker

blocks. We then created a 10-line irregular program containing three calls to two differ-

ent functions. The consistency checking tool (step 2) subsequently found that 78 of the

296 candidates appeared consistently. Choosing one of theseblocks at random (num-

ber 5410, specifically), we tested a third input, written to recursively sum the numbers

118

from 1 to 10 in 11 calls. Block 5410 was executed exactly 11 times. This experience

illustrates the power of active profiling to identify high-level patterns in low-level code,

even when subsumed within extraneous computation.

5.3.3 Comparison with Procedure and Interval Phase Analysis

In this section, we compare the ability of different analysis techniques—active pro-

filing, procedure analysis, and interval analysis—to identify phases with similar be-

havior. In Section 5.4 we will consider how to use these phases to optimize memory

management. Different metrics—and thus different analysis techniques—may be ap-

propriate for other forms of optimization (e.g., fine-graintuning of dynamically config-

urable processors).

Program phase analysis takes a loop, subroutine, or other code structures as a

phase [Balasubramonian et al., 2000b; Georges et al., 2004; Huang et al., 2003; Lau

et al., 2004; Liu and Huang, 2004; Magklis et al., 2003]. For this experiment, we

mainly consider procedure phases and follow the scheme given by Huang et al., who

picked subroutines by two thresholds,θweight andθgrain [Huang et al., 2003]. Assume

the execution length isN . Their scheme picks a subroutinep if the cumulative time

spent inp (including its callees) is no less thanθweightT and the average time per invo-

cation no less thanθgrainT . In other words, the subroutine is significant and does not

incur an excessive overhead. Huang et al. used 5% forθweight and 10K instructions

for θgrainT . Georges et al. made the threshold selection adaptive basedon individual

programs, the tolerable overhead, and the need of a user [Georges et al., 2004]. They

studied the behavior variation of the procedure phases for aset of Java programs. Lau et

al. considered loops and call sites in addition to subroutines and selected phases whose

behavior variation is relatively low [Lau et al., 2004]. In this experiment, we use the

fixed thresholds from Huang et al. The extension by Lau et al. may reduce the behavior

variation seen by in our experiments.

119

Profile-based phase analysis depends on the choice of the training input. In our

test set, the number of outermost phase instances range from3 queries inVortex to

850 sentences inParser. The thresholdθgrain would need to less than 0.13%. Many

procedures may qualify under a smallθgrain, making it difficult to find the procedure

for the outermost phase, if such procedure exists. In addition, the behavior of phase

instances of a utility program may differ significantly. Forexample inLi, the IPC

of the outermost phase has an unpredictable pattern, so consistency-based selection

may find only the whole program as a phase. Indeed, the execution speed may vary

greatly inLi as the interpreter processes different Lisp expressions. As we will show

later, such phase is still valuable for memory management because each phase instance,

regardless of its IPC or cache miss rate variation, represents a memory usage cycle.

Active profiling, as guided by a user, does not depend on the same empirical thresholds.

It considers all program instructions as possible phase boundaries not just procedures

and other code regions. In addition, active profiling uses much smaller inputs. For

example, the regular input toParsercontains only 6 sentences.

Interval analysis divides an execution into fixed-size windows, classifies past in-

tervals using machine or code-based metrics, and predicts the class of future intervals

using last value, Markov, or table-driven predictors [Balasubramonian et al., 2000b;

Dhodapkar and Smith, 2002; Duesterwald et al., 2003; Sherwood et al., 2003]. Most

though not all past studies use a fixed interval length for allexecutions of all programs,

for example, 10 million or 100 million instructions. For purposes of comparison, we

select the interval length for each program in our experiments so that the total number

of intervals equals the number of inner behavior phase instances identified by active

profiling. Space limitations do not permit us to consider allpossible prediction and

clustering methods. We calculate the upper bound of all possible methods using this

interval length by applying optimal partitioning (approximated byk means in practice)

on the intervals of an execution. We further assume perfect prediction at run-time—we

120

assume knowledge of the number of clusters, the behavior, and the cluster membership

of each interval before execution.

Though phases are not in general expected to have uniform internal behavior, dif-

ferent instances of the same phase should have similaraveragebehavior. In our exper-

iments we consider cache hit rate and IPC as measures of behavior. Quantitatively, we

compute thecoefficient of variation (CoV)among phase instances, which is the stan-

dard deviation divided by the mean. The CoV is the expected difference between the

prediction (the average) and the actual value of each phase.In a normal distribution, a

standard deviation ofd means that 68% of the values fall in the range[m − d,m + d]

and 95% fall in the range[m−2d,m+2d]. The results from our hardware counters are

not accurate for execution lengths shorter than 10ms, so we excluded phase instances

whose lengths are shorter than 10ms.

Figure 5.7(a) shows the CoVs of cache hit rates. Each program is shown by a

group of floating bars. Each bar shows the CoV of a phase analysis method. When a

program has multiple inner phases, the two end points of a barshow the maximum and

minimum and the circle shows the average. The four bars in each group show the CoVs

of behavior phases, procedure phases, intervals with no clustering (all intervals belong

to the same group), and intervals withk-means clustering (the best possible prediction

given the number of clusters).

Unlike the other methods, the results for procedure phases are obtained via sim-

ulation. Since some of the procedures are library routines,we would require binary

instrumentation to obtain equivalent results from hardware counters. We use simula-

tion because we lack an appropriate tool for the IBM machine.

GCC has 8 behavior sub-phases. The CoV is between 0.13% and 12%, and the

average is 4.5%. The CoV for procedure phases ranges from 1.2%to 32% with an

average of 4%. When cutting the execution into the same numberof fixed length in-

tervals as the number of inner phase instances, the CoV is 16%.When the intervals

are clustered into 8 groups, the CoV ranges from 1% to 22% with an average of 2.7%.

121

 GCC Compress Vortex LI Parser Average
0

5

10

15

20

25

30

35

C
oV

(%
)

active profiling

procedure phases

basic intervals

clustered intervals

(a) Cache hit rate CoV

 GCC Compress Vortex LI Parser Average
0

10

20

30

40

C
oV

(%
) clustered intervals

 basic intervals

 active profiling

(b) IPC CoV

Figure 5.7: Behavior consistency of four types of phases, calculated as the coefficient
of variance among instances of each phase. For each program,the range of CoV across
all inner phases is shown by a floating bar where the two end points are maximum and
minimum and the circle is the average. A lower CoV and a smallerrange mean more
consistent behavior. Part (b) shows the CoV of IPC.

The average CoV for procedure phases and interval phases is lower than that of the

behavior phases. However, the procedure phases do not coverthe entire execution, and

the interval results assume perfect clustering and prediction. In addition, the behavior

phase that has the highest consistency (0.13% CoV) is the 4th subphase, which repre-

sents 8% of the program execution. The boundaries of this sub-phase are not procedure

boundaries. The phase length varies rather than staying constant. As a result, neither

procedure nor interval analysis, under however ideal circumstances, could identify and

predict this behavior.

Compresshas two sub-phases. The cache hit rate is always 88% for instances of

the first sub-phase and 90% for those of the second sub-phase,despite the fact that the

instances have different lengths, as shown in Figure 5.6(e). The relative length ratio

is constant. In each outermost phase, the first sub-phase takes 88% of the time and

the second takes the remaining 12%. The CoVs of the two sub-phases are 0.15% and

122

0.21%, barely visible in Figure 5.7 (a). When divided into two clusters, the smallest

and average CoV from interval phases is 0.7% and 0.9%. This program shows the value

of variable-length phases: even the ideal clustering of fixed length intervals cannot be

as accurate.

Vortexhas less behavior variation than the previous two programs.The best case

procedure and interval phase results are 0.3% CoV, better than the 0.7% minimum CoV

of behavior phases. The highest CoV, 8.9%, occurs in a procedure phase. For predicting

the cache hit rate, the behavior phase information is not very critical. A carefully picked

interval length may capture a similar stable behavior. However, behavior phases still

have the advantage of not needing to pick an interval length.

LI shows very few performance changes, as seen in Figure 5.6(g). Except for pro-

cedure phases, all methods have a CoV of less than 1%. The worstprocedure, however,

shows an 11% CoV.Parser is similar. The CoV is below 2% except for procedure

phases, which have a CoV of 3% on average and 26% in the worst case. The two pro-

grams show that the behavior variation for a procedure can belarge even for a program

with relatively constant overall behavior. The results also show the difficulty of setting

thresholds in procedure and interval phase analysis. A CoV of1% may be too large for

LI but too small for programs such asGCC.

The CoVs of the programs’ IPC are shown in Figure 5.7(b). We do not include the

procedure-based method for IPC since it is based on simulation and therefore could not

be directly compared to the real measurement of IPCs in the other three cases. Between

the behavior and interval phases, the qualitative results are the same for IPC as for the

cache hit rate. On average across all programs, the CoV is 4.9%for behavior phases

and 7.1% for intervals with optimal clustering and prediction.

The five programs show a range of behavior.Compressis at one extreme, with be-

havior that is highly varied but consistent within sub-phases.LI is at the other extreme,

with behavior that is mostly constant and that does not change between phases. Graphi-

cally, the two graphs in Figure 5.8 plot the cache hit rate andIPC on a two-dimensional

123

plot. Each phase instance is a point. In the first graph forCompress, the points are in

two tight clusters. In the second graph forLI, the points spread within an range. The

behavior variation of the other three programs is between these two extremes. Note that

the interval phases do not produce highly clustered points as in Figure 5.8(a). These

points have variable lengths, which currently can only be marked by behavior phases.

Recently, Georges et al. [Georges et al., 2004] and Lau et al. [Lau et al., 2004]

improved procedure phase analysis by picking procedures whose behavior variation

is below a threshold. Their method can avoid procedures witha high CoV. The best

possible result is shown by the lower bound CoV in Figure 5.7. However, procedure

phases, especially those with consistent behavior, may notcover the entire execution.

Setting the threshold for each program is not trivial. Procedure phases cannot capture

behavior phases that do not start or end on procedure or loop boundaries, for example,

the 4th sub-phase ofGCCas discussed above. Finally, memory phases are valuable for

garbage collection (as we show next), even though their instances have highly varied

CPU or cache behavior.

5.4 Uses of Behavior Phases

Behavior phases allow a programmer to improve the performance of commonly

used programs on conventional hardware. Program dynamic data allocation sites can

be classified into "phase local" and "global" according to the living period of their

allocated data. It in turn helps the detection of memory leaks: if there are objects from

"phase local" sites that are not released after a phase instance, the allocation could be

memory leak. We also applied phase information to preventive memory management:

Garbage collection is invoked at phase boundaries only except a hard memory bound

is reached in a phase. The experiment on programLI shows 44% speedup compared

to the original program [Ding et al., 2005]. For Java programs, the phase information

124

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Hit Rate

IP
C

1st
2nd
3rd
4th
5th
6th
7th
8th

(a) GCC: 456 instances of 8 phases

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Hit Rate

IP
C

1st
2nd

(b) Compress: 50 instances of 2 phases

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Hit Rate

IP
C

1st
2nd
3rd

(c) Vortex: 36 instances of 3 phases

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Miss Rate

IP
C

(d) Li: 271 instances of 1 phase

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Miss Rate

IP
C

(e) Parser: 703 instances of 1 phase

Figure 5.8: IPC and cache hit rate distribution graphs.

125

enables program-level memory control: We use an adaptive scheme to explore at phase

boundaries to find the good heap size [Zhang et al., 2006].

5.5 Related Work

Early phase analysis was aimed at virtual memory managementand was intertwined

with locality analysis. In 1976, Batson and Madison defined a phase as a period of ex-

ecution accessing a subset of program data [Batson and Madison, 1976]. Later studies

used time or reuse distance as well as predictors such as Markov models to improve

virtual memory management. Recently, Shen et al. used reuse distance to model pro-

gram behavior as a signal, applied wavelet filtering, and marked recurring phases in

programs [Shen et al., 2004b]. For this technique to work, the programs must exhibit

repeating behavior. By using active profiling, we are able to target utility programs,

whose locality and phase length are typically input-dependent, and therefore not regu-

lar or uniform.

Balasubramonian et al. [Balasubramonian et al., 2000b], Huang et al. [Huang et al.,

2003; Liu and Huang, 2004], and Magklis et al. [Magklis et al., 2003] selected as

program phases procedures, loops, and code blocks whose number of instructions ex-

ceeds a given threshold during execution. For Java programs, Georges et al. selected

as phases those procedures that display low variance in execution time or cache miss

rate [Georges et al., 2004]. Lau et al. considered loops, procedures, and call sites as

possible phase markers if the variance of their behavior is lower than a relative thresh-

old [Lau et al., 2004]. It is not easy to determine the expected size or behavior variance

for phases of a utility program when one has no control over the input. For example, in-

stances of the compilation phase may have very different execution length and memory

usage.

Allen and Cocke pioneered interval analysis to model a program as a hierarchy of

regions [Allen and Cocke, 1976]. Hsu and Kremer used program regions to control

126

processor voltages to save energy. Their regions may span loops and functions and

are guaranteed to be an atomic unit of execution under all program inputs [Hsu and

Kremer, 2003].

In comparison to program phases, active profiling does not rely on the static pro-

gram structure. It considers all program statements as possible phase boundaries. We

found that inGCC, some sub-phase boundaries were methods called inside one branch

of a conditional statement. In addition, active profiling relies on a user to target specific

behavior rather than on empirical thresholds that may need to be tuned for each target

machine or class of input.

Interval methods divide an execution into fixed-size windows, classify past intervals

using machine or code-based metrics, and predict the behavior of future intervals us-

ing last value, Markov, or table-driven predictors (e.g., [Balasubramonian et al., 2000b;

Dhodapkar and Smith, 2002; Duesterwald et al., 2003; Sherwood et al., 2003]). Bal-

asubramonian et al [Balasubramonian et al., 2003] dynamically adjust the size of the

interval based on behavior predictability/sensitivity. However, since the intervals don’t

match phase boundaries, the result may be an averaging of behavior across several

phases. Duesterwald et al. gave a classification of these schemes [Duesterwald et al.,

2003]. Nagpurkar et al. proposed a framework for online phase detection and explored

the parameter space [Nagpurkar et al., 2006]. A fixed interval may not match the phase

length in all programs under all inputs. Our technique finds variable-length phases in

utility programs. It targets program level transformations such as memory management

and parallelization, so it is designed for different purposes than interval phase analysis

is.

5.6 Future Directions

Locality phases and behavior phases can successfully detect and predict large-scale

phase behavior without any application-dependent threshold. However, both techniques

127

require one or more profiling runs with complicated analysis, and either of them is only

applicable to a class of programs. Those limitations may be tolerable to the uses on

some important applications. But for general users, it is desirable to have a universal

approach with lightweight analysis but without the limitations of current approaches.

The second extension exists in the connection between program concurrency and

phases. Computers are increasingly equipped with multi-level parallelism: instruction-

level, thread-level on a single chip, thread-level across chips, and parallelism across

machines. Even on the same level, the granularity could varya lot. A critical problem

of exploiting the parallelism is to recognize and predict the concurrency granularity in

each phase of a program. TRIPS system [Burger et al., 2004], forexample, is a research

architecture having more than 32 computing units on a singletile. The TRIPS compiler

sends executable code to the hardware in blocks of up to 128 instructions. The pro-

cessor executes a block all at once, as if it were a single instruction, greatly decreasing

the overhead associated with instruction handling and scheduling. Instructions inside a

block execute in a "data flow" fashion, meaning that each instruction executes as soon

as its inputs arrive, rather than in some sequence imposed bythe compiler or the pro-

grammer. Phase analysis could be extended to predict the level of concurrency and

guide the parallel execution. Another example is contention-aware and resource-aware

automatic parallelization. With the knowledge of the contention and available resource

in the future, the programming system can dynamically decide the number of threads

and the granularity.

5.7 Summary

The chapter has presented active profiling for phase analysis in utility programs,

such as compilers, interpreters, compression and encodingtools, databases, and docu-

ment parsers. By reliably marking large-scale program phases, active profiling enables

the implementation of promising new program improvement techniques, including pre-

128

ventive garbage collection (resulting in improved performance relative to standard re-

active collection), memory-usage monitoring, and memory leak detection.

Using deliberately regular inputs, active profiling exposes top-level phases, which

are then marked via binary instrumentation and verified withirregular inputs. The tech-

nique requires no access to source code, no special hardwaresupport, no user knowl-

edge of internal application structure, and no user intervention beyond the selection

of inputs. The entire process is fully automated, from the scripting of profiling runs,

through the collection and analysis of the resulting statistics, to the instrumentation of

the program binary to mark application phases and perform the garbage collection or

memory monitoring.

Beyond the realm of memory management, we have used active profiling to specu-

latively execute the phases of utility programs in parallel, obtaining nontrivial speedups

from legacy code, which is described in the next chapter.

129

6 Behavior-Oriented Parallelization

Many programs exhibit some high-level parallelism but may not be parallelizable be-

cause of the program’s size and complexity. In addition, their parallelism may be dy-

namic and available with certain inputs only. In this paper we present the design and

implementation ofspeculative co-processing, which uses an extra processor to specu-

latively execute likely parallel regions of code. We show that this speculation improves

performance when the parallelism exists. When there is not parallelism, the program

still runs correctly and completes as quickly as the unmodified sequential version. We

show our software-based implementation of speculative co-processing successfully par-

allelizes two large open-source applications and a scientific library and improves their

performance by up to 86% on a dual-processor PC. The results demonstrate the im-

portance of the three novel features of speculative co-processing: language support for

specifying possible (rather than definitive) program behavior, strong isolation to en-

sure correctness, and using redundant computation to hide the overhead of run-time

monitoring and correctness checking.

6.1 Introduction

Most existing programs are written for a sequential machine, yet they often have

parallelism that a user understands at the high level, such as, a compression tool that

130

processes data buffer by buffer and file1 by file, an English parser parsing sentence

by sentence, and a compiler compiling function by function.Specifying exact paral-

lelism is difficult, however, because thousands of lines of code may be executed at each

processing step. Moreover, this parallelism is often dynamic and input dependent.

As modern PCs and workstations are increasingly equipped with multiple proces-

sors, it becomes possible and desirable for commonly used legacy software to make

use of more than one processor. The problem differs from traditional parallel process-

ing because the target application is large, the parallelism is likely but not guaranteed,

and there are often extra processors and memory space that would otherwise be idle

if not used. In this work we presentspeculative co-processing, which uses an extra

processor and additional memory to speculatively execute likely parallel code regions

simultaneously and thereby improve performance over sequential programs.

In general, speculation-based parallelization techniques need to solve three prob-

lems: selecting what to speculate, checking for correctness, and recovering from in-

correct speculation. We discuss each one in turn. For software implementations, the

granularity of speculation needs to be large to amortize thecost of parallel execution

on modern processors, which are optimized for uninterrupted, sequential execution.

Existing programs are often highly optimized for sequential execution and contain im-

plicit dependences from error handling, buffer reuse, and custom memory management.

Although a user can often identify large possibly parallel tasks in a program, the pro-

grammer may not know whether dependences exist between tasks let alone the source

of the dependence.

Speculative co-processing gives a programmer the ability to indicatepossibly par-

allel regions (PPR)in a program by marking the beginning and end of the region with

matching markers:BeginPPR(p)andEndPPR(p). Figure 6.1 shows an example of the

marking of possible loop parallelism, where the loading of the tasks is sequential but

the processing of each task is possibly parallel. Figure 6.2shows the marking of pos-

sible function parallelism, where the two calls to a function are possibly parallel. The

131

while (1) {
get_work();
...
BeginPPR(1);
step1();
step2();
EndPPR(1);
...

}

Figure 6.1: Possible loop parallelism

...
BeginPPR(1);
work(x);
EndPPR(1);
...
BeginPPR(2);
work(y);
EndPPR(2);
...

Figure 6.2: Possible function paral-
lelism

semantics of the PPR markers is thatwhenBeginPPR(p)is executed, it isadvisableto

start a (speculative) parallel execution fromEndPPR(p). The markers indicate that the

parallelism is likely but not definite, so the parallel execution may have to be canceled

and their effect reverted. Such markers may also be insertedby profiling analysis,

which can identify frequent but not all possible behavior ofa program.

The second problem of speculation is checking for correctness, which entails find-

ing a proof that no dependence in the sequential execution isviolated in the reordered

execution. In co-processing, we call the non-speculative computationmain and the

speculative onesspec. Existing methods of speculation can be differentiated by how

the two groups communicate. The first, used by most methods ofspeculation as well

as supporting transactional memory (see Section 6.4), is what we callweak isolation,

where updates from non-speculative computation become immediately visible to spec-

ulative computations. As we explain in Section 6.2.2, this requires fine-grained com-

munication costly to support in software and vulnerable to subtle concurrency errors.

Co-processing usesstrong isolation, where the updates ofmainare made available only

at the end. While strong isolation does not support implicit pipelined computation (for

which a user can specify explicitly using PPR directives), it enables efficient specula-

tion and rollback, its value based (in addition to dependence based) checking allows

certain types of parallel execution in the presence flow dependences, and it allows the

program to make use of unmodified hardware and compilers thatwere designed and

132

optimized for sequential execution. On top of the strong safety net, we include simple

improvements to allow early termination ofspecas soon a conflict is detected.

The last major problem of speculation is safe recovery when speculations fail. In

real applications, the speculative work may execute low-level, highly optimized code

and perform billions of operations on millions of bytes. It may misbehave in arbi-

trary ways if it is started on an incorrect state. Unlike mostexisting methods that use

threads, co-processing uses Unix processes formainandspec, so the entire speculative

computation can be terminated without any side effect on themain’smemory or pro-

cessor state. Memory copy-on-write has the effect of incremental check pointing and

on-demand privatization. The cost of process creation and termination is moderated by

the other two features of co-processing: the large granularity of PPR amortizes the cost,

and strong isolation removes the need of most inter-processcommunication.

One unique problem of strong isolation is that the success ofspecis not known until

bothmainandspecfinish. We present a novel solution, which uses redundant compu-

tation through a third process we call theunderstudyto provide an important perfor-

mance guarantee:the speculation result is used only when it is correct and when the

overheads of speculation—starting, checking, committing—do not outweigh the benefit

of the speculation.This guarantee is achieved through a coordinated ensemble of these

processes, which we describe in detail in Section 6.2.3.

Co-processing differs from traditional parallel processing because its goal is not

scalable parallel performance but using extra processors for small-scale performance

improvement with minimal programming effort by the user. Asa parallel programming

system, it requires little or no manual changes to the sequential program and no parallel

programming or debugging. Furthermore, the system recordsthe causes for the spec-

ulation failure, so a programmer can incrementally remove hidden dependences. The

programmer can also specialize a program for parallel processing on frequent rather

than all inputs. This ease of programming is key to the scalability of a different sort—

co-processing for large, existing software.

133

Co-processing has several limitations. Speculation cannothandle general forms of

I/O or other operations with unrecoverable side effects. The current implementation

allows limited dynamic allocation within the parallel region and uses only one extra

processor for co-processing. The software implementationis best for loosely coupled

coarse-grain parallelism but not efficient enough for managing fine-grained computa-

tions on multiple processors.

6.2 Speculative Co-processing

6.2.1 Possibly Parallel Regions

The PPR markers are written asBeginPPR(p)andEndPPR(p), wherep is a unique

identifier. While multipleBeginPPR(p)may exist in the code,EndPPR(p)must be unique

for the same identifier. At a beginning marker, co-processing forks a process that jumps

to the matching end marker and starts speculative executionthere. The matching mark-

ers can only be inserted into the same function. The exact code sequence in C language

is as follows.

• BeginPPR(p): if (BeginPPR(p)==1) goto EndPPR_p;

• EndPPR(p): EndPPR(p); EndPPR_p:;

As PPR markers suggest possible behavior, there is no guarantee on the order of

their execution. A beginning marker may not be followed by its matching end marker,

or an end marker may occur before any beginning marker. Co-processing constructs

a sequence of zero or more non-overlapping PPR instances at run time. At any point

t, the next PPR instance starts from the first beginning markeroperationBeginPPR(p)

aftert and ends at the first end marker operationEndPPR(p)after theBeginPPR(p). For

example, assume there exist two PPR regions in the code,p andq, and let their markers

134

be pb, pe, qb, andqe. If the execution, from the starts, produces the following trace

(marked with their order in the superscript)

s p1
b q

2
e p

3
e p

4
e q

5
b p

6
b q

7
e

Co-processing identifies two PPR instances: one from the firstbeginning markerp1
b to

its first matching endp3
e and the other from the next beginning markerq5

b to its matching

endq7
e . The remaining parts of the trace, froms to p1

b and fromp3
e to q5

b , are executed

sequentially. The second PPR instance will be run speculatively, and for the result to be

correct, the parallel execution and the would-be sequential execution must both reach

EndPPR(q), which is unique in the code.

PPR markers can be used to bracket a region of the loop body to indicate that the

regions can be run in parallel (while the code outside regionis sequential), as shown

in Figure 6.1 (a). This is an instance of pipelined parallelism. Many loops have a

sequential part either due to its function, for example, thereading of a task queue, or

due to its implementation, for example, the increment of a loop counter. PPR allows

a programmer or a profiler (Section 6.2.4) to mark the likely boundaries between the

sequential and parallel regions of a loop. The system automatically communicates data

and detects dependence violations at run-time. PPR markerscan also be used to indicate

that two or more regions of code are likely parallel, as in Figure 6.2 (b).

The scope of PPR regions is dynamic and flat. This is in contrast to most paral-

lel constructs, which have static and hierarchical scopes.Co-processing uses dynamic

scopes to support high-level, coarse-grain tasks with a complete correctness guaran-

tee. Coarse-grain tasks often execute thousands of lines of code, communicate through

dynamic data structures, and have dynamic dependences and non-local control flows.

Co-processing tolerates incorrect marking of parallelism in unfamiliar code. The PPR

markers can be inserted anywhere in a program and executed inany order at run-time.

135

Next, we describe how to ensure correctness automatically once the PPR regions are

marked.

6.2.2 Correctness

Co-processing guarantees that the same result is produced asin the sequential

execution. To guarantee correctness, it divides the runtime data of a program into

three disjoint groups: shared, checked, and private. More formally, we sayData =

(Dshared, Dchecked, Dprivate), whereDshared, Dchecked, andDprivate form a partition of

all data. This section first describes these three types of data protection with a running

example in Figure 6.3 and a summary in Table 6.1. Then is a proof of correctness as a

global property of the localized checks. Last is a comparison with existing methods.

For the following discussion we consider two Unix processes—the main process

that executes thecurrent PPRinstance, and thespeculation processthat executes the

next PPRinstance and the code in between. The cases fork (k > 1) speculation

processes can be proved inductively by validating the correctness for thek−1 case and

then treat thekth process as the speculation and the earlier computation asthe main

process.

6.2.2.1 Three Types of Data Protection

Page-based protection of shared data All heap data by default are shared atBe-

ginPPRby default. Co-processing preserves all run-time dependences on shared data

at a page-level granularity. An example is the variableshared in Figure 6.3. It holds

the root of a tree that each PPR instance may use and modify. Page-based protection

allows concurrent executions as long as the nodes on the samepage do not cause a

dependence violation. Many programs initialize and grow some large dictionary data

structures. The shared-data protection allows non-conflicting access by both PPRs.

136

shared = ReadTree();
...
while (...) {
...
BeginPPR(1)
...
if (...)
private = Copy(checked++)
Insert(shared, new Node(private))

...
if (!error) Reset(checked)
...
EndPPR(1)
...

}

Figure 6.3: Examples of shared, checked, and private data

Table 6.1: Three types of data protection
type shared data checked data (likely) private data

Dshared Dchecked Dprivate

protection Not written bymain Value atBeginPPR no read before
and read byspec is the same as 1st write inspec.

at EndPPRin main. Concurrent read/write
Concurrent read/write allowed

allowed
granularity page/element element element

needed compiler, profiler compiler, profiler compiler (run-time)
support run-time run-time

target data global vars, heap global vars stack, global vars

By using Unix processes, co-processing eliminates all anti-and output dependences

through the replication of the address space. It detects flowdependences at run-time

and at page granularity using OS-based protection. AtBeginPPR, the program places

shared data on a set of memory pages, turns off write permission for the current PPR

and read/write permission for the next PPR, and installs customized page-fault handlers

that open the permission for read or write upon the first read or write access. At the

same time, the handler records which page has what type of access by which process.

The speculation fails if and only if a page is written by the current PPR and accessed

137

by the next PPR. All other access patterns are permitted If speculation succeeds, the

modified pages are merged into a single address space before the execution continues.

Page level protection leads to false alerts. We can alleviate the problem by us-

ing profiling analysis to identify the global variables and dynamic allocation sites that

cause false alerts and then use compiler and run-time support to allocate them on dif-

ferent pages. In the current implementation, we allocate each global variable on its

own page(s). The shared data is never mixed with checked and private data on the

same page, although at run time newly allocated heap data areprivate at first and then

converted to shared data atEndPPR, as we will explain later.

Selective value-based checkingAccess-based checking is sufficient, but not neces-

sary, for correctness. Consider the variablechecked in Figure 6.3. If the first con-

ditional is frequently true then both the current and next PPR will modify and read

checked. These accesses will then lead to a flow dependence between the PPRs. On

the other hand, if the error condition is typically false, then the value ofchecked is reset

and will be the same at eachBeginPPR. We refer to this situation as asilent dependence

because the value from preceding writes is killed by the reset operation, and the flow

dependence has no consequence and can be ignored, as we proveformally shortly after.

Most silent dependences come from explicit reinitialization. For example, the Gcc

compiler uses a variable to record the loop-level of the current code being compiled.

The value returns to zero after compiling a function. We classify these variables as

checked data, which tend to take the same value atBeginPPRand EndPPR, in other

words, the current PPR execution has no visible effect on thevariable, as far as the next

PPR instance is concerned.

There is often no guarantee that the value of a variable is reset by EndPPR. For

example in Figure 6.3, if there is an error then there may be a real flow dependence

between the two PPR instances. In addition,checked may be aliased and modified

138

after the reset, and the reset may assign different values atdifferent times. Hence run-

time checking is necessary.

Co-processing allocates checked variables in a region, makes a copy of their value

at theBeginPPRof main, and checks their value at theEndPPRof main. In the current

implementation, checked data must be global variables, so their size is statically known.

Checked data are found through profiling analysis (describedmore in Section 6.2.4),

which identifies variables whose value is likely to be constant at the PPR boundaries.

Even if a checked variable does not return to its initial value in every PPR instance,

co-processing still benefits if the value remains constant for just two consecutive PPR

instances only.

Private data The third group, private data, is those that are known not to cause a

conflict. In Figure 6.3, ifprivate is always initialized before it is used, the access in the

current PPR cannot affect the result of the next PPR, so the dependence can be ignored.

Private data come from three sources. The first is the programstack, which in-

cludes local variables that are either read-only in the PPR or always initialized before

use. Intra-procedure data flow analysis is adequate for mostprograms. When the two

conditions cannot be guaranteed by compiler analysis, for example, due to unknown

control flow or the address of a local variable escaping into the program heap, we rede-

fine the local variable to be a global variable and classify itas shared data. This solution

does not work if the local variable is inside a recursive function, in which case we sim-

ply disable co-processing. This restriction applies only to procedures that appear on the

call chain up toBeginPPR. Taking the address of local variables for recursive functions

called from a PPR is permitted.

The second source is global variables and arrays that are always initialized before

the use in the PPR. The standard technique to detect this is interprocedural kill analy-

sis [Allen and Kennedy, 2001]. In many programs, the initialization routines are often

called immediately afterBeginPPR. However, a compiler may not always ascertain all

139

cases of initialization. Our solution is for the system to automatically place each data

element onto a separate page and treats it as shared until thefirst access. For aggregated

data, the compiler automatically inserts calls after the initialization assignment or loop

to classify the data as private at run time. Any access by the speculation process before

the initialization aborts the speculation. Additionally,we allow the user to specify the

list of variables that are known to be written before read in PPR. These variables are

protected until the first write. We call this grouplikely private data.

The third type of private data is newly allocated data in a PPRinstance. Before

BeginPPR, the control process reserves a region of memory for the speculation process.

Speculation would abort if it allocates more than the capacity of the region. The main

process does not allocate to the region, so atEndPPR, its newly allocated data can be

merged with the data from the speculation process. For programs that use garbage

collection, we control the allocation in the same way but delay the garbage collection

until afterEndPPR. If any GC happens in the middle, it will cause the speculation to fail

because of the many changes it makes to the shared data.

6.2.2.1.1 Synopsis The three data protection schemes are summarized and com-

pared in Table 6.1. We make a few observations. First, they share the following

property: The meta-data ofmain andspecis collected in isolation. Full correctness

is checked after both processes finish. The strong isolationmeans thatthe correctness

of the system does not depend on communication during the parallel execution.The

shared data – whose protection is access based – and checked data – whose protection

is value based – have a significant overlap, which are the datathat are either read only

or untouched bymain andspec. We classify them as checked if their size is small;

otherwise, they are shared. A problem is when different parts of a structure or an array

require different protection schemes. Structure splitting, when possible, may alleviate

the problem. Section 6.2.3 describes how we hide most of the protection overhead.

140

Section 6.2.4 describes how we classify all program data into these three groups. Sec-

tion 6.3.1 describes the compiler support for data placement.

6.2.2.2 Correctness of Speculative Co-processing

It is sufficient to prove the correctness of a single instanceof parallel execution

betweenmainandspec. We first define an abstract model of an execution.

memory Vx: a set of variables.Vall is the complete set (memory).

memory state St
V : the content ofV at timet. For ease of reading we useSt

x (rather

thanSt
Vx

) for the sub-state ofVx at t.

instruction rx: an instruction of the program. Here we consider the markersof two

PPRs,p andq, whose markers arepb, pe, qb, andqe. The two can be the same

region.

execution state(rx, S
t
V): a point in execution where the current instruction isrx and

the memory isSt
V .

execution (r1, S
t1
all)

p
=⇒ (r2, S

t2
all): a continuous execution by processp from instruc-

tion r1 and memory stateSt1
all to the next occurrence ofr2 with an ending state of

St2
all.

If a parallel execution passes the three data protection schemes described before, all

program variables in our abstract model can be partitioned into the following categories:

• Vwf : variables whose first access byspec is a write.wf stands for write first.

• Vexcl_main: variables accessed only bymain.

• Vexcl_spec: variables accessed only byspec.

141

(a) sequential execution (b) parallel execution

(p
b

, Sinit)

(pe
, Smid)

(qe
, Sseq)

main process
(main)

(p
b

, Sinit)

(pe
, Smain)

(pe
, Sinit)

(qe
, Sspec)

speculation process
(spec)

(qb
, S') (qb

, S")

Figure 6.4: The states of the sequential and parallel execution. The symbols are defined
in Section 6.2.2.2

• Vchk: the remaining variables.chk stands for checked.

Vall − Vwf − Vexcl_main − Vexcl_spec

Examining Table 6.1, we see thatDshared contains data that are either accessed by only

one process (Vexcl_main andVexcl_spec), written before read inspec(Vwf), read only in

both processes (Vchk), or not accessed by either (Vchk). Dprivate contains data either in

Vwf or Vchk. Dchecked is a subset ofVchk. In addition, the following two conditions are

met upon a successful check.

1. main reaches the end PPR markerpe after leaving the beginning markerpb, and

spec, after leavingpe, encountersqb and thenqe.

2. the state ofVchk is identical at the beginning and the end ofmain, that is,Sinit
chk =

Smain
chk .

To compare the result of the parallel execution with that of the sequential one, we

examine their states, including the beginning, middle, andend of the sequential execu-

tion, Sinit at pb, Smid at pe, andSseq at qe; the start and end ofmain, Sinit at pb and

Smain atpe; and those ofspec, Sinit atpe andSspec at qe. These states are illustrated in

Figure 6.4.

142

Let the final state of the parallel execution beSparallel atqe. Sparallel is a combination

of Smain andSspec upon successful speculation. In particular,

Sparallel = Sspec
all−excl_main + Smain

excl_main

In words, the final state is the result of speculation plus themodified data inmain.

We now quickly specify the instruction model and then move tothe main proof.

We define each operationrt by its inputs and outputs. All inputs occur before anything

is output. The inputs are a set of read variablesR(rt). The outputs include a set of

modified variablesW (rt) and the next instruction to execute,rt+1
1.

Theorem 1 (Correctness).If specreaches the end marker of the second PPR instance

qe, and the protection in Table 6.1 passes, the sequential execution would also reach

qe. Furthermore, the ending state of the sequential executionis identical to that of the

parallel execution,Sseq = Sparallel, assuming that both start with the same state,Sinit

at pb.

Proof Consider the speculative execution,(pe, S
init)

spec
=⇒ (qe, S

spec), which speculates

on the sequential execution,(pe, S
mid)

seq
=⇒ (qe, S

seq). Note that both start at the end

PPR marker. We denote the correct sequential execution aspe, r1, r2, · · · and the spec-

ulative execution aspe, r
′

1, r
′

2, · · · . We prove by contradiction that every operationr′t

in the speculative execution must be “identical” tort in the sequential execution in the

sense thatrt andr′t are the same instruction, they input from and output to the same

variables with the same values, and they move next to the sameinstructionrt+1.

Assume the two sequences are not identical and letr′t be thefirst instruction that

produces a different value thanrt, either by modifying a different variable, the same

1An operation is an instance of a program instruction. For thesimplicity of the presentation, we
overload the symbolrx as both the static instruction and the dynamic instance. We call the former an
instructionand the latter anoperation. For example, we can have only one instructionrx but any number
of operationsrx.

143

variable with a different value, or moving to a different instruction. Sincert andr′t are

the same instruction, the difference in output must be due toa difference in the input.

Supposert andr′t read a variablev but see different valuesv andv′. Letrv andr′v be

the previous write operations that producev andv′. r′v can happen either inspec before

r′t or inmain as the last write tov. We show neither of the two cases is possible. First,

if r′v happens inspec, then it must produce the same output asrv as per our assumption

thatr′t is the first to deviate. Second,r′v is part ofmain and produces a value not visible

to spec. Consider howv can be accessed. Since (r′v is the last write so)v is read before

being modified inspec, it does not belong toVwf or Vexcl_main. Neither is it inVexcl_spec

since it is modified inmain. The only case left is forv to belong toVchk. Since

V main
chk = V init

chk , the last write inmain “restores” the value ofv to the beginning state

wherespec starts and consequently cannot causer′t in specto see a different value asrt

does in the sequential run. Thereforert andr′t cannot have different inputs and produce

different outputs, and the speculative and sequential executions must be identical.

We now show thatSparallel is correct orSparallel = Sseq. Sincespec reads and writes

correct values,Vwf , Vexcl_spec, and the accessed part ofVchk are correct.Vexcl_main is also

correct because of the copying of the their values at the commit time. The remaining

part ofVchk is not accessed bymain or spec and still holds the same value asSinit. It

follows that the two statesSparallel andSseq are identical.

The style of the previous proof is patterned after the proof of the Fundamental The-

orem of Dependence [Allen and Kennedy, 2001]. The conclusion rules out a common

concern with value-based checking, where the value flow might produce a dependence

before the last write. In co-processing, the three checkingschemes work together to

ensure no such case is possible.

144

6.2.2.3 Novel Features

Most existing speculation methods use what we term as weak isolation because the

program data or the system meta data are concurrently accessed by parallel threads.

In addition, the correctness checking happens while speculation continues. Weak iso-

lation allows more dynamic parallelism at the risk of race conditions in the system

and the user program. The problem is complicated by memory consistency problems

due to the reordering of memory operations due to the compiler and the hardware and

by the value-based checking in aggressive speculation support. Threads lack a well-

defined memory model [Boehm, 2005]. Specific solutions are developed for the ABA

problem in DSTM [Herlihy et al., 2003], for re-checking value prediction results in

hardware [Martin et al., 2001], and for avoiding race conditions in software speculation

(that does not use value-based checking) [Cintra and Llanos,2005].

In co-processing, data are logically replicated, and the updates of data and meta-data

by mainandspecare completely separated from each other. The concluding correctness

check is conclusive, as shown by Theorem 1. Consequently, no concurrency error

may arise during the parallel execution and the correctnesscheck. The compiler and

hardware are free to reorder program operations as usual. While strong isolation does

not support dynamic parallelism as efficiently as weak isolation, its simplicity suits co-

processing, which uses extra processors to improve over thefastest sequential time on

computations that may be parallelizable.

Most previous techniques monitor data at the granularity ofarray elements, objects,

and cache blocks; co-processing uses pages for heap data andelements for global data.

It uses Unix’s forking mechanism and paging support. It allows monitoring ofall global

and heap data, reduces the monitoring cost to one or two page faults per page of data,

and needs only a negligible amount of shadow data relative tothe size of program

data. The copy-on-write mechanism creates copies for modified data (for eliminating

non-flow dependences and for possible rollbacks) on demand and in the background.

145

Paging has two downsides. The first is the cost of setting up permissions and handling

page faults, though this will be amortized if PPR instances are large. The second is false

sharing, which can be alleviated by data placement, as we discuss when describing the

implementation.

Value-based checking is different from value-specific dynamic compilation (for ex-

ample in DyC [Grant et al., 1999b]), which finds values that are constant for a region

of the code rather than values that are the same at specific points of an execution (and

can change arbitrarily between these points). It is different from asilent write, which

writes the same value as the previous write to the variable, and from hardware-based

value prediction, where individual values are checked for every load [Martin et al.,

2001]. Our software checking happens once per PPR for a global set of data, and the

correctness is independent of the memory consistency modelof the hardware.

6.2.3 Performance

The parallel ensemble of processes hides most protection overhead off thecritical

path, which we define as the worst-performance execution where all speculation fails

and the program runs sequentially.

6.2.3.1 Parallel Ensemble

We consider the case of using only one speculation process for co-processing. It

needs four Unix processes. Each holds a logically separate copy of the program’s ad-

dress space and communicates through explicit communication. At any given time at

most two processes are active. In general,k-process speculation requiresk + 1 proces-

sors (andk + 2 processes).

The program starts as thecontrolprocess. When reachingBeginPPR, controlcreates

mainandspec. The former executes the current PPR instance, while the latter jumps

to the end marker and speculatively executes the next PPR instance (see Section 6.2.1

146

Figure 6.5: The parallel ensemble includes the control, main, speculation, and un-
derstudy processes. Not all cases are shown. See Table 6.2 for actions under other
conditions.

for the definition of a PPR instance). Whenmain reaches the end PPR marker, it im-

mediately starts theunderstudyprocess, which re-executes the next PPR instance (not

speculatively). Depending on whether speculation succeeds beforeunderstudyfinishes,

eitherunderstudyor specbecomescontrol, and is ready to start the next cycle of spec-

ulation. The diagram in Figure 6.5 shows the parallel ensemble. We first discuss the

overhead in the first three processes and then turn the attention to the understudy pro-

cess.

For shared dataDshared, main turns off write permission atBeginPPRwhile spec

turns off readandwrite permission. They install a customized page-fault handler. The

handler serves two purposes. First, the handler enables thepage to be read from at the

time of the first read, and to be written at the first write. Second, the handler records

in an access map which page has what type of access by which process. When both

processes finish, the two access maps are compared to check for a flow dependence.

Upon commit,maincopies all modified pages tospec.

Checked dataDchecked are protected in three steps. First,spectake a snapshot of

Dchecked. Second,main takes another snapshot when reachingEndPPRand compares

147

it with the first one. In our implementation, the size of checked data is bounded and

determined through profiling analysis, and the compiler groups the checked data into

a contiguous memory region for fast copying and comparison at run time. Finally,

likely private data are read and write protected inspecwhen it starts. The permission

is opened either by a page fault or by a run-time call after thedata is initialized.

Data copying takes time and may hurt locality. However, the locality in the same

PPR instance is preserved. The footprint of co-processing is larger than the sequential

run because of the replication of modified data. However, theread-only data is not

copied and consequently will be shared by all four processesin main memory and in

shared level two or three cache (that is physically indexed). As a result, the footprint is

likely much smaller than running two copies of the program.

6.2.3.2 Understudy Process

As discussed in Section 6.2.2.3, co-processing cannot certify speculation results

until bothmain andspecfinish because of their strong isolation. For shared data, for

example, a conflict may occur with the last write inmainor the last read inspec. For

large and complex programs, incorrect speculations may behave in an unpredictable

manner: it may follow an incorrect path, execute a differentPPR instance, exit, loop

infinitely, or cause a segmentation fault.

Instead of waiting forspec, mainstartsunderstudyimmediately upon finishing the

current PPR instance and begins a two-way race betweenunderstudyand spec. As

shown in Figure 6.5, ifspecreachesEndPPRand finishes checking and committing

changes before the understudy reachesEndPPR, speckills the understudy and becomes

the nextcontrol. However, if speculation misbehaves or takes too long to commit, the

understudy will reachEndPPRfirst, abortspec, and continue as the nextcontrol.

The two-way race is a team race. Team understudy, which also includescontrol

andmain, represents the worst-case performance or the critical path. If all speculation

148

fails, the three processes sequentially execute the program. The overhead on the critical

path includes only the forking ofmainandunderstudyand the page-based write mon-

itoring by main. The run-time cost is one page fault per page of shared data modified

by main. There is no overhead associated withunderstudy. All other overheads, fork-

ing and monitoringspec, taking and comparing snapshots, checking and committing

speculation results, are off the critical path.As a result, when the granularity of the

PPR is large enough, the worst-case execution time of co-processing should be almost

identical to that of the unmodified sequential execution. Onthe other hand, whenever a

speculation process succeeds, it means a faster finish than the understudy and therefore

a performance improvement over the sequential execution.

The performance benefit ofunderstudycomes at the cost of potentially redundant

computation. However, the incurred cost is at most running each speculatively executed

PPR instance for the second time, regardless of how many PPR instances are speculated

at a time.

With understudy, the worst-case parallel running time is equal to the best-case se-

quential time. One may argue that this can be easily done by running the sequential

version side by side in a sequential-parallel race. The difference is that co-processing is

a relay racefor every two PPR instances. At the whole-program level it issequential-

parallel collaboration rather than competition because the winner of each relay joins

together to make the co-processing time. Each time counts when speculation runs

faster, and no penalty when it runs slower. In addition, co-processing allows read-

only data shared in cache and memory, while multiple sequential runs do not. Finally,

running two instances of a program is not always possible fora utility program, since

the communication with the outside world often cannot be undone. In co-processing,

unrecoverable I/O and system calls can and should be placed outside the parallel region.

149

Table 6.2: Co-processing actions for unexpected behavior
behavior prog. exit or error unexpected PPR markers

control exit continue
main exit continue
spec abort speculation continue
understudy exit continue

6.2.3.3 Expecting the Unexpected

The control flow in Figure 6.5 shows the expected behavior when an execution

of PPR runs fromBeginPPRto EndPPR. In general, the execution may reach an exit

(normal or abnormal) or an unexpected PPR marker. If the current PPR instance is

started withBeginPPR(p), the expected marker isEndPPR(p). Other markers such as

BeginPPR(p)and markers of a different PPR, are unexpected. Unexpected behavior

does not mean incorrect behavior. A program may execute PPR markers in any order.

Table 6.2 shows the actions forcontrol, main, spec, andunderstudywhen encountering

an exit, error, or unexpected PPR markers.

The abort byspecin Table 6.2 is conservative. For example, speculation may cor-

rectly hit a normal exit, so an alternative scheme may delay the abort and salvage the

work if it turns out correct. We favor the conservative design for performance. Al-

though it may recompute useful work, the checking and commitcost cannot delay the

critical path.

The speculation process may also allocate an excessive amount of memory and

attempt permanent changes through I/O and other OS or user interactions. The latter

cases are solved by aborting the speculation upon file reads,system calls, and memory

allocation over a threshold. The file output is buffered and is either written out or

discarded at the commit point. Additional engineering can support regular file I/O. The

current implementation supports stdout and stderr for debugging (and other) purposes.

150

6.2.4 Programming with PPR

We use offline profiling to find the possible parallel regions (PPRs). It identifies

the high-level phase structure of a program [Shen et al., 2004a] and uses dependence

profiling to find the phase with the largest portion of run-time instructions that can be

executed in parallel as the PPR. At the same time, program dataare classified into

shared, checked and private categories based on their behavior in the profiling run. For

lack of space, we will leave the detailed description to a later technical report.

Co-processing can also be added by a programmer. The programming interface has

three parts. The first is the computation interface by which aprogrammer specifies

PPRs using the two markers. The second is the data interface for the programmer to

help the system classify all data as shared, checked, or private. Static variables are

classified by the compiler analysis. Global and heap variables are considered shared by

default. The data interface allows a user to specify a list ofglobal and static variables

that are write first (privatizable) in each PPR instance. Thedata interface supports the

specification of checked data indirectly because a programmer can identify the value of

the checked variable and insert assignment explicitly at the PPR boundary.

The write-first list opens the possibility of incorrect parallel execution when a vari-

able is incorrectly classified as write first. For scalar variables the system can treat

them as likely private data and check for unexpected access at run time. For aggregated

data, the system cannot easily check. The programmer shouldtest the system by re-

initializing write-first variables atBeginPPR(possibly with random values to increase

the chance of catching an error) and executing the program sequentially. If the out-

put is not expected, the programmer can find the problem by debugging the sequential

code. In general, the programmer should ensure that the write-first list is correct for all

inputs. For any specific input, if the sequential program runs correctly, co-processing

is guaranteed to return the same result.

151

The third component of the interface is the run-time feedback to the user. When

speculation fails, the system outputs the cause of the failure, in particular, the memory

page that receives conflicting accesses. In our current implementation, global variables

are placed on separate memory pages by the compiler. As a result, the system can

output the exact name of the global variable when it causes a conflict. A user can

then examine the code and remove the conflict by making the variable privatizable or

moving the dependence out of the parallel region.

Three features of the API are especially useful for working with large, unfamiliar

code. First, the user does not write a parallel program and never needs parallel debug-

ging. Second, the user parallelizes a program step by step ashidden dependences are

discovered and removed one by one. Finally, the user can parallelize a program for a

subset of inputs rather than all inputs. The program can run in parallel even if it has an

unknown number of latent dependences.

6.2.4.1 Profiling Support

A possible parallel region (PPR)is the largest region of a program that is likely

parallel. Obviously the region should be selected carefully to avoid including irrevo-

cable operations. A more difficult challenge is to select a likely parallel region. In the

processing loop of a large utility program, every statementthat executes once and only

once in an iteration is a possible place for inserting regionmarkers. The purpose of

parallelism analysis is to consider all candidates and select the best region. For this

paper we do not consider multiple PPRs in the same loop or nested (recursive) PPRs,

although we believe that both can be used in co-processing with additional finesse.

We assume that the processing loop is known. One semi-automatic technique is

active training, which first uses a sequence of identical requests to expose high-level

phase structure and then uses real inputs to capture common sub-phases [Shen et al.,

2004a]. Active profiling does not require a user to know anything about the program

code. Alternatively, a user can manually identify the main processing loop and then

152

 PPR

control

control

An illustration of PPR analysis

Loop-carried dependences are
marked with a bar. Dotted

dependences, if present, cause
speculation failure.

Figure 6.6: Profiling analysis for finding the PPR

invoke the analysis to find common sub-steps. The result is a set of phase markers

that are always executed in the same order in every processing step in all training runs.

Note that the marker locations may spread throughout a program. Except in the simplest

programs, the marker locations do not reside in the same function and are not executed

in the order of their appearance in the source code.

Givennmarker locations, each loop is broken inton primitive regions. Dependence

profiling records the dependences between any two primitiveregions and aggregates the

results from all training runs. If we view each primitive region as a single statement,

we can borrow the nomenclature of loop dependence [Allen andKennedy, 2001]. The

dependence between any two regions can be either loop independent or loop carried.

Loop carried dependences may have a constant or a variable distance. We consider only

flow dependences.

There are
(

n
2

)

= n(n−1)
2

candidate PPR regions, each sections the processing loop

into three parts with two regions (we call control) on eitherside. Figure 6.6 shows an

execution view, where each section is continuous and appears in order. While twelve

types of cross-section dependence may happen in a three-section loop, the figure shows

only common types for simplicity. Three types that would prohibit parallelization are

shown with dotted edges, while loop-carried dependences are marked with a bar. The

parallelism of a candidate region is then measured by the frequency of instances where

the three dotted types are absent and by the number of run-time instructions in these

153

instances. The best candidate is the one that gives the largest portion of run-time in-

structions that can be executed in parallel.

Currently we use brute force and test all regions. Alternatively we can use a graph

model, where each primitive region is a node. The worst case complexity is the same

since the number of edges may beO(n2).

In the example in Figure 6.3, a marker may be inserted before every top-level state-

ment in the while loop. Consider the assignment ofZ at the beginning of the loop.

Assuming no other assignment ofZ, then BeginPPR would be placed either before or

after the assignment. The analysis picks the earlier spot because the size of PPR is

larger. Once PPR is determined, the analysis classifies eachglobal variable as shared,

checked, or private data.

The classification depends on the choice of PPR. In the example, Z is private when

BeginPPR proceeds the assignment but it would be checked if BeginPPR followed the

assignment. While profiling analysis is sufficient to determine the first two groups,

compiler analysis, as described in Section 6.2.2, is neededfor the third group, for ex-

ample, ensuringZ is always initialized before used. Besides those, the profiling anal-

ysis finds the variables that are never read before being written in all PPR instances

through the profiling run. The run-time system doesn’t need to monitor those variables

except ensuring their write-first property by closing theirread and write permissions at

EndPPR of the speculative process and opening the permission at the first write opera-

tion. Any unpermitted operation causes the speculation process to abort.

Profiling analysis has long been used to measure the behaviorof complex programs.

Many studies have examined the potential of parallelism andlocality. Coarse-grain

parallelism analysis has three unique features. The first islarge granularity. A PPR

may span many loops and functions in thousands of lines of code. Much code may

be used in both the sequential and parallel parts. The secondis cross-input behavior.

The set of markers are valid across all training runs, so the parallelism results are also

correlated across all runs. Last is the integration with behavior protection. The usage

154

pattern is used to classify data into different protection groups. As a result, the system

exploits parallelism when the behavior is expected but reverts to sequential execution

with little additional overhead when the behavior is unexpected.

In addition to profiling and compiler analysis, co-processing uses the run-time

bookkeeping to report the cause whenever a speculation fails. In particular, it places all

global variables on a separate page, so it can pinpoint the exact variable. As we will

discuss later, this feature is especially useful for the manual adaptation of a program for

co-processing. The run-time feedback leads a user directlyto the few key variables and

routines amidst a sea of other code and data not relevant to coarse-grain parallelism.

Co-processing depends on the granularity of PPRs. In additionto off-line profiling,

on-line analysis can be used to disable speculation if a program does not show large,

parallel regions or if data protection requires excessive overhead (for the speculation

process). The run-time system monitors the granularity of the last PPRs possibly using

hardware counters and the success rate of speculation, which can then be easily disabled

by changing a flag. The remaining program is then executed by the control process

without interruption.

6.3 Evaluation

6.3.1 Implementation

We have implemented the compiler support in Gcc 4.0.1, in particular, in the in-

termediate language, GIMPLE (based on static-single assignment [Cytron et al., 1991]

similar to SIMPLE form [Hendren et al., 1992]), so the transformation is applied after

high-level program optimization passes but before machinecode generation. The main

transformation is converting global variables to use dynamic allocation, so the run-time

support can place them for appropriate protection. The compiler allocates a pointer for

each global (and file and function static) variable, insertsan initialization function in

155

each file that allocates heap memory for variables (and assigns initial values) defined in

the file, and redirects all accesses through the global pointer. All initialization functions

are called at the beginning of the main function. As we will see later, the indirection

causes only marginal slowdown because most global-variable accesses have been re-

moved or converted to (virtual) register access after the GIMPLE passes. Source-level

indirection would be much more costly.

For parallelism analysis we also implemented an instrumentor, which collects com-

plete data and instruction access traces for use by the behavior analyzer. It provides

unique identifiers for instructions, data accesses, and memory and register variables, so

the behavior analyzer can trace all data dependences and identify possible phase mark-

ers. We have implemented similar systems using two binary instrumentors, which do

not require program source but offer no easy way of relocating global data, tracking

register dependences, or finding the cause of conflicts at thesource level.

For data protection, we have not implemented the compiler analysis for local vari-

ables. Instead the system privatizes all stack data. Globaland heap variables are pro-

tected. Each global variable is allocated on a separate page(s), which reduces false

sharing at a bounded space cost.

The run-time system is implemented as a statically linked library. Shared mem-

ory is used for storing snapshots, access maps, and for copying data at a commit. Five

types of signals are used for process coordination, which wedo not elaborate for lack of

space, except for four points. First, there is no busy waiting from locks or semaphores.

Second, only two signals, SIGSEGV and SIGUSR1 (for process ready), may happen

on the critical path. In addition, the design guarantees forward progress, which means

no deadlocks or starvation provided that the OS does not permanently stall any process.

Finally, it was tricky to design and debug the concurrent system with four types of pro-

cesses and 15 customized signal handlers. To improve efficiency, the implementation

uses shared meta-data to pass information.

156

Experimental Setup

In our initial design, the program process and any other process did not stay alive

longer than two PPRs (for one moment we thought we had an incredible speedup).

Currently each program starts with a timing process, which immediately forks the first

control process and waits until a valid exit is reached. We cannot collect user and

system time for all processes, so we use wall-clock time of the timing process, which

includes OS overheads in process scheduling. We use the smallest over three runs on

an unloaded system.

For each program we measure four variations. The time of the unmodified original

program is labeledoriginal. The time of the sequential version before PPR insertion is

labeledsequential. It differs from the original program in that all global variables have

been changed to dynamic allocation (and separately placed on different memory pages

at run time). For a program with manually inserted PPRs, the original version may be

transformed by unrolling the processing loop (to increase the granularity). The sequen-

tial version includes the effect of all manual changes except for the PPR markers. The

third is the worst-case time of co-processing, labeledspec fail. We artificially induce

conflicts so speculation always fails. It gives the time of the critical path. Last is the

co-processingtime, which measures the improvement from the dynamic speculation.

We use GNU Gcc 4.0.1 with “-O3” flag for all programs.

The test machine has two Intel Xeon 2 GHz processors with 512KL1 cache, 2GB

Memory, and hyperthreading. The relative effect of co-processing is similar with and

without hyperthreading. We report the running time with hyperthreading turned on,

which sometimes makes a program marginally faster. We also tested a dual-processor

Intel 1.27 GHz Pentium III workstation. Since co-processing mainly reduces CPU time,

the effect is more dramatic on the slower machine (up to 40% slower than the 2GHz

Xeon). We do not report Pentium III results for lack of space.However, we note that

157

co-processing would be more effective on multi-core chips if the cores are made from

simpler and slower CPUs.

6.3.2 Micro-benchmarks

We wrote two small programs and manually inserted PPR markers to examine the

cost and benefit of co-processing over controlled parameters including the size of data,

intensity of computation, and frequency of run-time conflicts. The next section shows

the result on real programs, including the automatic insertion of PPRs.

6.3.2.1 Reduction

The reduction program initializes an array ofn integers, performsk square-root

operations, and adds the results together. The parallel version adds the numbers in

blocks, each block is a PPR. To get thespec failversion, all PPRs use the same sum

variable. The speculation always fails because of the conflict. In theco-processing

version, we use a partial sum for each block and add them at theend.

 0

 5

 10

 15

 20

180M140M100M60M20M

w
a

ll-
c
lo

c
k
 t

im
e

 (
s
e

c
.)

num. integers (2 sqrts per element)

Improvement over data size

original
sequential

spec fail
co-processing

Figure 6.7: Co-processing performance for the reduction program

158

Figure 6.7 shows the performance whenn increases from 20 million to 180 million

in 40 million increments. The computation intensity,k, is two square-roots per element,

and the speculation happens once (two blocks). In all versions, the time scales in a

straight line with the data size.Sequentialis 2% to 3% slower thanoriginal possibly

due to the indirect access to the reduction variable.Spec failadds another 1.5% to 3%.

Since the overhead scales with the data size, most of it is thecost of the page fault

incurred by the main process for each page of shared data.Co-processingimproves

the speed by 48%, 53%, 52%, and 55% for the four data sizes fromthe smallest to the

largest (about one third reduction in running time).

 0

 5

 10

 15

 20

43210

w
a
ll-

c
lo

c
k
 t
im

e
 (

s
e
c
.)

sqrts per element (100M integers)

Improvement over computation intensity

original
sequential

spec fail
co-processing

 0

 2

 4

 6

 8

 10

 12

987654321

w
a
ll-

c
lo

c
k
 t
im

e
 (

s
e
c
.)

num. of speculations (100M integers)

Improvement over speculation frequency

original
sequential

spec fail
co-processing

Figure 6.8: Co-processing performance for the reduction program

Next we vary the computation intensity and the frequency of speculation. The left

half of Figure 6.8 shows the computation intensityk from zero to four square-roots per

element. When there is no computation, the speed is bounded bythe effective memory

bandwidth, and co-processing is pure overhead. Compared tooriginal, sequentialis

3% slower,spec fail7%, andco-processing3.6%. When there is much computation

(k = 4), sequentialis 5% faster,spec fail4%, andco-processing77%. The right half

of Figure 6.8 shows the effect of speculation granularity. For 100 million numbers and

two square-roots per number, we reduce the block size to increase the number of blocks

from 2 to 18 and hence the speculation attempts from 1 to 9 for the same amount of

computation.Original andsequentialhave the same time in the figure because they do

not speculate. The slowdown fromspec fail(worst-case time) oversequentialincreases

159

from 1.4% to 8.7%, and the improvement from co-processing decreases from 55% to

44%. For this workload on average, each additional speculation adds 1% time overhead

and loses 1% performance gain.

6.3.2.2 Graph Reachability

Our second benchmark is a computation of graph reachability. For an undirected

graph, a typical reachability test performs depth-first search on each node, marks reach-

able nodes, and skips the next one if it is marked. The amount of parallelism available

is entirely input dependent: the test loop is fully parallelif the graph has no edge, but

it is completely sequential if the entire graph is connected. For this test we use ran-

dom graphs with different average node degrees. We create a favorable environment

for co-processing—each node is 4KB in size, and a large amount of computation is

performed for each connected component. Figure 6.9 shows the results when a random

graph of 100 nodes has between 1 and 100 connected components. The solid curve

shows the portion of nodes in the connected components foundby speculation. The

dotted curve shows the reduction in running time. The resultshows that co-processing

can exploit highly dynamic and input-dependent parallelism with no explicit parallel

programming—no locks, semaphores, or barriers. A user writes a sequential program

and then inserts PPR. For co-processing to be profitable however, we need large granu-

larity, which may exist in large programs.

6.3.3 Application Benchmarks

6.3.3.1 Gzip v1.2.4 by J. Gailly

As a compression tool,Gzip takes one or more files as input and compresses them

one by one using the Lempel-Ziv coding algorithm (LZ77). Theversion we use is

1.2.4 and comes from the SPEC 2000 benchmark suite. We did notspecify “spec” so

the program behaves as a normal compressor rather than a benchmark program (which

160

 0

 10

 20

 30

 40

 50

926944191161

%
 c

o
m

p
.

fo
u

n
d

 b
y
 s

p
e

c
 (

%
ti
m

e
 r

e
d

u
c
ti
o

n
)

num. components in graph

Parallel reachability test

components found by spec
time reduction (idealized)

Figure 6.9: Co-processing performance for the reachabilitytest

artificially lengthens the input by replication). The program has 8616 lines of C code.

BeginPPRand EndPPRare automatically inserted before reading a file and after the

output of the compressed file (for this one we allow file I/O in the PPR). As shown in

Table 6.3, the analyzer identifies 33 variables and allocation sites as shared data, 78

checked variables (many are not used during compression), 33 likely private variables.

Behavior analysis, in fact, detected flow dependences between compressions because

the originalGzipreinitialized only part of the data structure before compressing another

file. The values were used but seemed to have no effect. We changed the code to

reinitialize these variables to 0. Compression returns identical results in all test inputs.

For each file,Gzip compresses one input buffer at a time and stores the results

until the output buffer is full. We manually placed PPR around the buffer loop and

specified the set of likely private variables through the program interface described in

Section 6.2.4. The program returned correct results but speculation failed because of

conflicts caused by two variables, “unsigned short bi_buf” and “int bi_valid”, as re-

ported by the run-time feedback. The two variables are used in only three functions in

a 205-line file. Inspecting code, we realized that the compression produced bits, not

bytes, and the two variables stored the partial byte betweencompressing consecutive

161

Table 6.3: The size of different protection groups in the training run
Data groups Gzip Parser

shared num. objs. 33 35
data size(bytes) 210K 70K

accesses 116M 343M
checked num. objs. 78 117
data size(bytes) 2003 5312

accesses 46M 336M
(likely) num. objs. 33 16
private size(bytes) 119K 6024
data accesses 51M 39M

buffers. The dependence was hidden below layers of code and among 104 global vari-

ables, but the run-time analyzer enabled us to quickly pin down the cause. We modified

the code to compress buffers in parallel and concatenate thecompressed bits afterwards.

Figure 6.10 shows the results of three sets of tests. The firstis compressing 10

identical archive files, each a mix of text, Powerpoint and binary files. This is the best

case for co-processing, and the compression runs 78% faster. The second is the set of

five files in Spec2K ref input. Two files are compressed in parallel, which leads to a

lower 16% improvement due to the different length of PPR instances. With an even

length (when we replicate the five files), the improvement becomes 51%. The third

input is an 84MB Gcc tar file. The intra-file co-processing speculates on 30MB of

compression and improves the compression time by 34%.

Inter-file co-processing uses around 130KB additional memory in all executions,

mostly for likely private data shown in Table 6.3. Intra-fileco-processing uses 7.45MB

(1865 replicated pages) additional memory, mostly forspecto buffer the compressed

data for the input used. In addition, the program has 104 global variables, so the space

overhead for page allocation is at most 104 pages or a half mega-byte for the sequen-

tial execution. The space cost of their run-time replication is already counted in the

numbers above (130KB and 7.45MB).

162

 0

 2

 4

 6

 8

 10

 12

 14

 16

singe 84MB
file (intra-file

co-processing)

5 Spec2K ref
files (inter-file
co-processing)

10 ident. files
(inter-file

co-processing)

w
a

ll-
c
lo

c
k
 t

im
e

 (
s
e

c
.)

Gzip v1.2.4 by J. Gailly
(single and multi-file co-processing)

original
sequential

spec fail
co-processing

 0

 5

 10

 15

 20

 25

 30

100502510

w
a

ll-
c
lo

c
k
 t

im
e

 (
s
e

c
.)

num. sentences in a processing unit

Sleator-Temperley English parser v2.1

original
sequential

spec fail
co-processing

Figure 6.10: The effect of co-processing onGzipandParser

6.3.3.2 Sleator-Temperley Link Parser v2.1

According to the Spec2K web site, “The parser has a dictionary of about 60000

word forms. It has coverage of a wide variety of syntactic constructions, including

many rare and idiomatic ones. ... It is able to handle unknownvocabulary, and make

intelligent guesses from context about the syntactic categories of unknown words.” It

is not clear in the documentation or the 11,391 lines of its C code whether the parsing

163

of sentences can be done in parallel. In fact, they are not. One dependence we found

during training comes from commands (mixed with sentences)that, for example, turn

on or off the echo mode for printing parsed sentences.

The parallelism analyzer identifies the sentence-parsing loop. We manually strip-

mine the loop to create a larger PPR. The data are then classified as in Table 6.3 auto-

matically. During the training run, 16 variables are alwayswritten first by the specula-

tion process during training, 117 variables always have thesame value at the two ends

of a PPR instance, and 35 variables are shared.

The lower graph of Figure 6.10 shows the performance on an input with 600 sen-

tences. We tested different strip-mine sizes from 10 sentences to 100 sentences in each

group. The group size has mixed effects on program performance. Forsequentialand

spec fail, the largest group size gives the lowest overhead, 3.1% and 3.6% respectively.

Co-processing improves performance by 16%, 46%, 61%, and 33%for the four group

sizes. The best performance happens with the medium group size. When the group

size is small, the relative overhead is high; when the group size is large, there are fewer

PPR instances and hence more likely uneven-size PPRs. Finally, the space overhead of

co-processing is 123KB, 100KB of which is checked data. The space overhead does

not seem to change with the group size.

6.3.3.3 ATLAS by R. C. Whaley

The Automatically Tuned Linear Algebra Software (ATLAS) isone of the fastest

library implementations of linear algebra routines [Whaleyet al., 2001]. It is used

widely by scientific programmers and included in larger systems such as Maple, MAT-

LAB, and Mathematica. Using parameterized adaptation and source code adaptation, it

generates different source code depending on the types of parameters of the input and

the machine environment such as the data type, matrix size, cache size and length of

floating point pipelines. The version of ATLAS built for our Pentium 4 machine con-

tains 2,905 source files with 1,991,508 lines of code and 4,904 object files. Compilation

164

was done with the following parameters: Posix thread support enabled, express setup

enabled, maximum cache size of 4096 KB, and Level 1 BLAS tuning enabled. The

total time for compilation was 2 hours and 42 minutes. The developer version, release

3.7.11, of the code is used which gives access to the most updated sources, which run

faster in our experiment when compared to the stable version, release 3.6.0. On the test

machine, base ATLAS is an order of magnitude faster than the naive implementation,

whose speed is about 400 MFLOPS. The multi-threaded ATLAS comes with the 3.7.11

distribution. It is implemented by hand and tuned to use up tofour threads on the test

machine.

In this experiment we compare two parallel implementationsof square matrix mul-

tiply: co-processed sequential ATLAS and threaded ATLAS. In co-processing, the user

data is protected from conflicting accesses by the program and the library. The data

inside the library needs no protection since each PPR process uses it as a sequential

program does. We compare five versions of square matrix multiply: base atlasinitial-

izes two matrices and makes one call to sequential ATLAS,threaded atlascalls the

parallel version,base atlas + co-processingcomputes the result matrix in three steps:

the upper matrix and the lower matrix in two parallel regionsand the middle section

at the end (to avoid false sharing),threaded atlas + co-processingcalls threaded AT-

LAS inside the parallel regions, and finallyco-processing spec failinserts an artificial

conflict to cause co-processing to fail. For matrices ofN2 size, the performance is mea-

sured by2 ∗N3 divided by the total wall-clock running time. The results are shown in

Figure 6.11.

Co-processing runs slower thanbase atlasfor N less than 800 where the specu-

lation overheads outweigh the benefit of parallelism. AfterN reaches 2800 (and the

time reaches 8.7 seconds), co-processing outperforms manually parallelized and tuned

ATLAS by 2% and the base ATLAS by as much as 86%. The combined co-processing

and threaded ATLAS runs correctly but has a lower parallel performance. The version

spec failperforms significant slower thanbase atlaswhenN is below 1400, showing

165

 0

 1000

 2000

 3000

 4000

 5000

3400300026002200180014001000600

M
F

L
O

P
S

Matrix order

ATLAS matrix multiply by R. C. Whaley

base (sequential) atlas
threaded (parallel) atlas

base atlas + coprocessing
threaded atlas + coprocessing

coprocessing spec fail

Figure 6.11: Co-processing performance with ATLAS

the effect of the speculation overhead when the running timeis under 2 seconds. The

two versions then run neck and neck forN up to 2000, after whichspec failwins a

nose ahead. It seems that breaking the multiply into three pieces leads to faster se-

quential performance. The space overhead changes with the input. For the largest run,

N = 36002, co-processing uses 45.2MB (11312 copied pages) additional memory, for

mostly the half matrix being speculatively computed on.

An important observation is that the threaded ATLAS has lesssmooth performance

than the base ATLAS, indicating that parallel tuning is moredifficult for a programmer

than sequential tuning. In contrast, the parallel performance of co-processing scales as

smoothly as the sequential ATLAS, showing the advantage of co-processing based on

the fastest (and often the best tuned) sequential code.

6.4 Related Work

A complete system like ours is undoubtedly built on the ideasof many earlier

projects. For lack of space, we cite mostly software solutions but similar ideas of

166

speculation and data monitoring have been explored extensively in hardware-based so-

lutions.

Parallel languages The separation of performance and correctness is a key idea em-

bodied in High Performance Fortran, where a user can specifydata distribution but let

the compiler parallelize the program [Forum, 1997; Allen and Kennedy, 2001]. In co-

processing, a user specifies likely rather than definite parallelism. Pipelined parallelism

in loops can be specified by thedoacrossconstruct, where specific data are posted

by the producer iteration and waited by the consumer iteration [Cytron, 1986; Allen

and Kennedy, 2001]. Most parallel languages have constructs for specifying parallel

statements. Well-known examples include the parallel regions in OpenMP [OpenMP],

transactions in transactional memory [Herlihy and Moss, 1993], and future in Multi-

lisp [Halstead, 1985]. The future construct specifies that the result of a computation

is not immediately needed until a later point, which can be inferred in pure functional

languages as in Multilisp [Halstead, 1985] or explicitly marked by a programmer as

the end of a transaction in transactional memory [Herlihy and Moss, 1993] or thesync

point in Cilk [Frigo et al., 1998].

Like HPF and transactions, possibly parallel regions do notguarantee parallelism.

PPR goes one step further because data sharing and synchronization points are implicit.

The scope of a region is dynamic rather than static, so it allows arbitrary control flow in,

out, and between parallel regions. On the other hand, parallel languages are often more

expressive and can specify nested parallelism([Frigo et al., 1998; Moss, 2006] for exam-

ples) and exact data sharing, such as reduction and data copying in OpenMP [OpenMP]

and typed and programmable specification in Jade [Rinard and Lam, 1998].

Dynamic and speculative parallelization The concept of data dependence was de-

veloped for parallelization (vectorization) by Lamport inthe Parallelizer system, by

Kuck and his colleagues in Paraphrase, and by Kennedy and others in Parallel For-

167

tran Converter (PFC) [Allen and Kennedy, 2001]. Control dependence was developed

by Ferrante et al [Cytron et al., 1991; Allen and Kennedy, 2001]. Static dependence

checking can be overly conservative when two statements aremostly but not always

independent and when the independence is too difficult to prove, especially between

large code regions. Early dynamic checking techniques developed for array-based sci-

entific programs include the inspector-executor for dynamic parallelization [Saltz et al.,

1991] and the privatizingdoall (PD) test for speculative parallelization [Rauchwerger

and Padua, 1995]. The PD test has two separate phases: the marking of data access and

checking for dependence. Later techniques speculatively privatize shared arrays (to al-

low for non-flow dependences) and combine the marking and checking phases [Gupta

and Nim, 1998; Dang et al., 2002; Cintra and Llanos, 2005]. Thetechnique of array

renaming is generalized in Array SSA [Knobe and Sarkar, 1998]. Inspection is used to

parallelize Java programs at run-time [Chan and Abdelrahman, 2004].

These techniques are more scalable than co-processing currently is. They address

issues of parallel reduction [Gupta and Nim, 1998; Rauchwerger and Padua, 1995; Saltz

et al., 1991] and different strategies of loop scheduling [Cintra and Llanos, 2005]. In

co-processing, a user can enable parallel reduction by explicit coding.

Hardware-based thread-level speculation is among the firstto automatically exploit

loop- and method-level parallelism in integer code. In mosttechniques, the states of

speculative threads are buffered and checked by monitoringthe data writes in earlier

threads either through special hardware additions to a processor [Sohi et al., 1995], bus

snooping [Chen and Olukotun, 2003], or an extended cache coherence protocol [Stef-

fan et al., 2005]. Since speculative states are buffered in hardware, the size of threads

is limited to no more than thousands of instructions. A recent study classifies existing

loop-level techniques as control, data, or value speculation and shows that the maximal

possible speedup is 12% on average for SPEC2Kint even with no speculation overhead

and unlimited computing resources [Kejariwal et al., 2006]. The limited potential sug-

168

gests that the programmer support like ours is needed for speculative system to fully

utilize multi-processor machines.

Speculative execution is closely related to methods of nonblocking concurrency

control. Run-time dependence checking is an efficient (but not necessary) solution to

ensure serializability, which is NP-hard in the general case [Papadimitriou, 1979]. An

influential solution assigns a sequence number to each transaction and ensures the same

result as the serialized execution [Kung and Robinson, 1981]. Transactional memory

was originally proposed as a hardware mechanism to support nonblocking synchroniza-

tion (by extending cache coherence protocols) [Herlihy andMoss, 1993]. It is rapidly

gaining attention because of its potential to be a general and easy to use solution for

concurrency [Grossman, 2006]. Various software implementations rely on transactional

data structures and primitive atomic operations availableon existing hardware [Harris

and Fraser, 2003; Herlihy et al., 2003; Shavit and Touitou, 1997] (see [Marathe and

Scott, 2004] for a survey). Many hardware-based TM systems have also been devel-

oped.

As discussed in more detail in Section 6.2.2.3, co-processing is different from most

existing speculation techniques in three aspects: page-based monitoring, value-based

checking, and strong isolation. Value-based checking allows co-processing in the pres-

ence of flow dependences, so it improves the basic dependencechecking as used by

existing software-based schemes [Chan and Abdelrahman, 2004; Cintra and Llanos,

2005; Gupta and Nim, 1998; Knobe and Sarkar, 1998; Rauchwerger and Padua, 1995;

Saltz et al., 1991]. Strong isolation protects correctnessbut opens the possibility of

speculation failure after the main process finishes. The understudy process is a novel

solution to this problem. The understudy execution has no protection overhead except

for forking and copying modified pages, which is necessary for its cancellation when

speculation finishes early and correctly. Being able to rollback a safe execution to im-

prove performance is an interesting feature of the system.

169

Run-time data monitoring For large programs using complex data, per-access mon-

itoring causes slow-downs often in integer multiples, as reported for data breakpoints

and on-the-fly data race detection, even after removing as many checks as possible

by advanced compiler analysis [Mellor-Crummey, 1992; Perkovic and Keleher, 2000;

Wahbe et al., 1993]. Dynamic co-processing cannot possiblyafford such slowdown

and be practical. Page-based data monitoring was used for supporting distributed

shared memory [Li, 1986; Keleher et al., 1994] and then for many other purposes.

Co-processing uses page-based monitoring for shared data totrade precision for effi-

ciency (without compromising correctness). For likely private data and for checked

data, it incurs only a constant cost per PPR. Most speculationoverhead occurs on the

speculative path. Only one page fault per modified page is incurred on the critical path.

No other software systems we know has as low an amortized costfor loosely coupled

parallelism.

6.5 Future Directions

Behavior-Oriented Parallelization can be extended in threedirections: efficiency,

scalability, and applicability. The current scheme hasn’texploited compiler analysis

much. Potentially, a good dependence analysis should help reduce both profiling and

run-time overhead.

For scalability, one possibility is to extend the co-processing to multi-processing,

where more than one process could do speculative execution simultaneouly. An im-

plementation difficulty is the increased potential race conditions among the processes.

The second possibility is a distributed version of behavior-oriented parallelization, a

scheme working on both SMP systems and clusters.

The current co-processing is designed and tested on utilityprograms with one PPR

only. The extension to a wider range of applications with more PPRs remains a future

research topic.

170

6.6 Summary

The paper has presented the design and evaluation of co-processing including the

PPR markers for specifying likely parallelism, strong isolation for protecting shared,

checked and likely private data, and the parallel ensemble for hiding the speculation

overhead and ensuring that the worse parallel performance is as good as the best se-

quential performance. Our prototype includes a profiler, a modified GNU C Compiler,

and a run-time system. On a dual-processor PC, co-processingshows expected proper-

ties when tested on micro-benchmarks and improves performance by 16% to 86% for

two large integer applications and a scientific library.

Co-processing provides a new programming system. Known dependences, such as

error handling and garbage collection, can stay in code as long as they happen rarely.

Parallelization can be done in incremental steps by removing dependences one by one

as detected by the run-time feedbacks. At no point does a programmer need parallel

debugging.

Not all programs have loosely-coupled coarse-grain parallelism, although many

utility programs do, at least for certain inputs. Process-based (behavior-level) paral-

lelism complements finer-grained parallelism such as threads. In fact, a PPR may con-

tain threaded code. Overall, these results show that co-processing offers cost-effective

way to make use of coarse grain parallelism and to improve thebest sequential imple-

mentation on existing parallel hardware with no explicit parallel programming.

171

7 Conclusions and Speculations

My advisor, Professor Chen Ding, once asked the students in a compiler class whether

computer science is science. Students immediately asked for the definition of "science".

The definition Professor Ding offered is similar to the following1:

"Any system of knowledge that is concerned with the physical world and

its phenomena and that entails unbiased observations and systematic exper-

imentation. In general, a science involves a pursuit of knowledge covering

general truths or the operations of fundamental laws."

Well, that helped, but not ultimately: the students’ answers diverged from uniform

uncertainty to polar opposites.

The arguments on the question are out of the scope of this thesis, but one of its

ensuing questions is quite relevent: what is the relation between computer programs

and the physical world? Within the last century, with no doubt, the former has quickly

covered almost every aspect of the latter. Computer programshave composed a new

world—the program world, which models and interacts with the physical world, and

shows interesting analogies with the latter.

1From Encyclopedia Britannica: http://www.britannica.com

172

An N-body molecule system for example behaves differently in a different physical

environment. Physics research tries to discover the underlying laws and predict the be-

havior of an arbitrary set of molecules in any environment. Program analysis, similarly,

tries to discover the general behavior patterns of a programand predict its behavior for

an arbitrary input in any running environment.

In the physical world, an object has both intra- and interactions. The intra-actions of

the Earth form mountains; the interaction with the Sun brings us four seasons. A pro-

gram has intra-actions among its data, functions and components; it also interacts with

other programs, sometimes being constructive as providingor obtaining extra function-

alities, sometimes being destructive as competing for limited resources.

Mother nature seeds the capability of learning, self-evolution and adaptation into

every life, which is essential for the progress of the physical world. In my opinion, the

program world needs such capability not less at all. A program, running in a different

environment (machines, operating systems) with various inputs, mechanically follows

the road map designed at its "birth" despite the actual environment, inputs and its run-

ning history: its one billion’th run on the same input is not any better than its first run.

The program world needs intelligence.

Behavior-based program analysis is an exploration in that direction. This thesis

describes three aspects: whole-program locality and affinity analysis, program phase

analysis, and behavior-oriented parallelization. The first two start from cross-input

prediction of the average behavior of a whole program, and extend to the prediction of

large-scale dynamic behavior of program phases. Forecasting the future enables various

adaptations like data reorganization and cache resizing. Behavior-oriented paralleliza-

tion is a special kind of adaptation: a sequential program is(semi-)automatically given

the ability to utilize multi-processors when necessary. These techniques reveal both

spatial and temporal large-scale program patterns, which are not visible from individu-

ally analyzing program code, data, input, or running environment, but indispensable to

creating an intelligent program world.

173

This research has established a new basis for intelligent programming systems,

which introduce into a program the ability to automaticallyevolve its code and data

and configure its running environment such that a better version of the program could

dynamically match the input, behavior and system conditions.

174

Bibliography

Allen, F. and J. Cocke. 1976. A program data flow analysis procedure.Communications

of the ACM, 19:137–147.

Allen, R. and K. Kennedy. 2001.Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann Publishers.

Almasi, G., C. Cascaval, and D. Padua. 2002. Calculating stack distances efficiently. In

Proceedings of the first ACM SIGPLAN Workshop on Memory SystemPerformance.

Berlin, Germany.

Anderson, J., S. Amarasinghe, and M. Lam. 1995. Data and computation transforma-

tion for multiprocessors. InProceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming. Santa Barbara, CA.

Arnold, M. and B. G. Ryder. 2001. A framework for reducing the cost of instrumented

code. InProceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation. Snowbird, Utah.

Bailey, D. 1992. Unfavorable strides in cache memory systems. Technical Report

RNR-92-015, NASA Ames Research Center.

Balasubramonian, R., D. Albonesi, A. Buyuktos, and S. Dwarkadas. 2000a. Dynamic

memory hierarchy performance and energy optimization. InProceedings of the 27th

Annual International Symposium on Computer Architecture.

175

Balasubramonian, R., D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. 2000b.

Memory hierarchy reconfiguration for energy and performance in general-purpose

processor architectures. InProceedings of the 33rd International Symposium on Mi-

croarchitecture. Monterey, California.

Balasubramonian, R., S. Dwarkadas, and D. H. Albonesi. 2003. Dynamically managing

the communication-parallelism trade-off in future clustered processors. InProceed-

ings of International Symposium on Computer Architecture. San Diego, CA.

Balasundaram, V., G. Fox, K. Kennedy, and U. Kremer. 1991. A static performance es-

timator to guide data partitioning decisions. InProceedings of the Third ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming. Williams-

burg, VA.

Batson, A. P. and A. W. Madison. 1976. Measurements of major locality phases in

symbolic reference strings. InProceedings of the ACM SIGMETRICS Conference

on Measurement & Modeling Computer Systems. Cambridge, MA.

Beyls, K. and E.H. D’Hollander. 2001. Reuse distance as a metric for cache behavior.

In Proceedings of the IASTED Conference on Parallel and Distributed Computing

and Systems.

Beyls, K. and E.H. D’Hollander. 2002. Reuse distance-based cache hint selection. In

Proceedings of the 8th International Euro-Par Conference. Paderborn, Germany.

Boehm, Hans-Juergen. 2005. Threads cannot be implemented asa library. InProceed-

ings of the 2005 ACM SIGPLAN Conference On Programming Language Design and

Implementation, pages 261–268.

Burd, T. and R. Brodersen. 1995. Energy efficient cmos microprocessor. InThe Pro-

ceedings of the 28th Hawaii International Conference on System Sciences.

176

Burger, D. and T. Austin. 1997. The SimpleScalar tool set, version 2.0. Technical

Report CS-TR-97-1342, Department of Computer Science, University of Wisconsin.

Burger, D., S. Keckler, M. Dahlin, L. John, C. Lin, K. McKinley,C. Moore, J. Burrill,

R. McDonald, and W. Yoder. 2004. Scaling to the end of silicon with edge architec-

tures.IEEE Computer, 37(7):44–55.

Burke, M. and R. Cytron. 1986. Interprocedural dependence analysis and paralleliza-

tion. In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction.

Palo Alto, CA.

Calder, B., C. Krintz, S. John, and T. Austin. 1998. Cache-conscious data placement.

In Proceedings of the Eighth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-VIII). San Jose.

Callahan, D., J. Cocke, and K. Kennedy. 1988a. Analysis of interprocedural side ef-

fects in a parallel programming environment.Journal of Parallel and Distributed

Computing, 5(5):517–550.

Callahan, D., J. Cocke, and K. Kennedy. 1988b. Estimating interlock and improving

balance for pipelined machines.Journal of Parallel and Distributed Computing,

5(4):334–358.

Carr, S. and K. Kennedy. 1994. Improving the ratio of memory operations to floating-

point operations in loops.ACM Transactions on Programming Languages and Sys-

tems, 16(6):1768–1810.

Cascaval, G. C. 2000.Compile-time Performance Prediction of Scientific Programs.

Ph.D. thesis, University of Illinois at Urbana-Champaign.

Chan, B. and T. S. Abdelrahman. 2004. Run-time support for the automatic paralleliza-

tion of java programs.Journal of Supercomputing, 28(1):91–117.

177

Chandra, D., F. Guo, S. Kim, and Y. Solihin. 2005. Predicting inter-thread cache con-

tention on a chip multi-processor architecture. InProceedings of the International

Symposium on High Performance Computer Architecture (HPCA).

Chen, Michael K. and Kunle Olukotun. 2003. The Jrpm system fordynamically paral-

lelizing java programs. In30th International Symposium on Computer Architecture,

pages 434–445.

Chen, Trista P., Horst Haussecker, Alexander Bovyrin, Roman Belenov, Konstantin

Rodyushkin, Alexander Kuranov, and Victor Eruhimov. 2005. Computer vision

workload analysis: Case study of video surveillance systems. Intel Technology Jour-

nal, 9(2):109–118.

Chilimbi, T. M. 2001. Efficient representations and abstractions for quantifying and

exploiting data reference locality. InProceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation. Snowbird, Utah.

Chilimbi, T. M., B. Davidson, and J. R. Larus. 1999a. Cache-conscious structure def-

inition. In Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation. Atlanta, Georgia.

Chilimbi, T. M., M. D. Hill, and J. R. Larus. 1999b. Cache-conscious structure layout.

In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation. Atlanta, Georgia.

Cintra, M. H. and D. R. Llanos. 2005. Design space exploration of a software specula-

tive parallelization scheme.IEEE Transactions on Parallel and Distributed Systems,

16(6):562–576.

Cooper, Keith and Linda Torczon. 2004.Engineering a Compiler. Morgan Kaufmann

Publishers.

178

Cytron, R. 1986. Doacross: Beyond vectorization for multiprocessors. InProceedings

of the 1986 International Conference on Parallel Processing. St. Charles, IL.

Cytron, R., J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. 1991.Efficiently com-

puting static single assignment form and the control dependence graph.ACM Trans-

actions on Programming Languages and Systems, 13(4):451–490.

Dang, F., H. Yu, and L. Rauchwerger. 2002. The R-LRPD test: Speculative paralleliza-

tion of partially parallel loops. Technical report, CS Dept., Texas A&M University,

College Station, TX.

Das, R., D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. 1992. The design and

implementation of a parallel unstructured euler solver using software primitives. In

Proceedings of the 30th Aerospace Science Meeting. Reno, Navada.

Das, R., M. Uysal, J. Saltz, and Y.-S. Hwang. 1994. Communication optimizations

for irregular scientific computations on distributed memory architectures.Journal of

Parallel and Distributed Computing, 22(3):462–479.

Daubechies, I. 1992. Ten Lectures on Wavelets. Capital City Press, Montpe-

lier,Vermont.

Denning, P.J. 1980. Working sets past and present.IEEE Transactions on Software

Engineering, SE-6(1).

Dhodapkar, A. S. and J. E. Smith. 2002. Managing multi-configuration hardware via

dynamic working-set analysis. InProceedings of International Symposium on Com-

puter Architecture. Anchorage, Alaska.

Dhodapkar, A. S. and J. E. Smith. 2003. Comparing program phase detection tech-

niques. InProceedings of International Symposium on Microarchitecture.

179

Ding, C. 2000. Improving Effective Bandwidth through Compiler Enhancementof

Global and Dynamic Cache Reuse. Ph.D. thesis, Dept. of Computer Science, Rice

University.

Ding, C. and K. Kennedy. 1999a. Improving cache performance in dynamic applica-

tions through data and computation reorganization at run time. InProceedings of the

SIGPLAN ’99 Conference on Programming Language Design and Implementation.

Atlanta, GA.

Ding, C. and K. Kennedy. 1999b. Inter-array data regrouping.In Proceedings of The

12th International Workshop on Languages and Compilers for Parallel Computing.

La Jolla, California.

Ding, C. and K. Kennedy. 2004. Improving effective bandwidththrough compiler en-

hancement of global cache reuse.Journal of Parallel and Distributed Computing,

64(1):108–134.

Ding, C., C. Zhang, X. Shen, and M. Ogihara. 2005. Gated memory control for memory

monitoring, leak detection and garbage collection. InProceedings of the 3rd ACM

SIGPLAN Workshop on Memory System Performance. Chicago, IL.

Ding, C. and Y. Zhong. 2003. Predicting whole-program locality with reuse distance

analysis. InProceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation. San Diego, CA.

Duesterwald, E., C. Cascaval, and S. Dwarkadas. 2003. Characterizing and predicting

program behavior and its variability. InProceedings of International Conference on

Parallel Architectures and Compilation Techniques. New Orleans, Louisiana.

Emami, M., R. Ghiya, and L. Hendren. 1994. Context-sensitive interprocedural points-

to analysis in the presence of function pointers. InProceedings of the SIGPLAN

Conference on Programming Language Design and Implementation.

180

Fang, C., S. Carr, S. Onder, and Z. Wang. 2004. Reuse-distance-based miss-rate predic-

tion on a per instruction basis. InProceedings of the first ACM SIGPLAN Workshop

on Memory System Performance. Washington DC.

Fang, C., S. Carr, S. Onder, and Z. Wang. 2005. Instruction based memory distance

analysis and its application to optimization. InProceedings of International Confer-

ence on Parallel Architectures and Compilation Techniques. St. Louis, MO.

Faroughi, Nikrouz. 2005. Multi-cache memory profiling for parallel processing pro-

grams. InThe Workshop on Binary Instrumentation and Application.

Forney, Brian, Steven Hart, and Matt McCornick. 2001. An analy-

sis of cache sharing in chip multiprocessors. (course project report,

http://www.cs.wisc.edu/ mattmcc/papers/MPCacheStudy.pdf).

Forum, High Performance Fortran. 1997. High performance fortran language specifica-

tion, version 2.0. Technical report, CRPC-TR92225, Center for Research on Parallel

Computation, Rice University.

Frigo, M., C. E. Leiserson, and K. H. Randall. 1998. The implementation of the Cilk-5

multithreaded language. InProceedings of ACM SIGPLAN Conference on Program-

ming Language Design and Implementation.

Georges, A., D. Buytaert, L. Eeckhout, and K. De Bosschere. 2004. Method-level

phase behavior in Java workloads. InProceedings of ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages and Applications.

Gloy, N. and M. D. Smith. 1999. Procedure placement using temporal-ordering infor-

mation.ACM Transactions on Programming Languages and Systems, 21(5).

Grant, B., M. Philipose, M. Mock, C. Chambers, and S. Eggers. 1999a. An evalua-

tion of staged run-time optimizations in DyC. InProceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementation. Atlanta, GA.

181

Grant, B., M. Philipose, M. Mock, C. Chambers, and S. J. Eggers. 1999b. An evalu-

ation of staged run-time optimizations in DyC. InProceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementation. Atlanta, Geor-

gia.

Grossman, Dan. 2006. Software transactions are to concurrency as garbage collection is

to memory management. Technical Report UW-CSE 2006-04-01, Dept. of Computer

Science and Engineering, University of Washington.

Gupta, M. and R. Nim. 1998. Techniques for run-time parallelization of loops. In

Proceedings of SC’98.

Halstead, R. H. 1985. Multilisp: a language for concurrent symbolic computation.ACM

Transactions on Programming Languages and Systems (TOPLAS), 7(4):501–538.

Han, H. and C. W. Tseng. 2000a. Improving locality for adaptive irregular scien-

tific codes. InProceedings of Workshop on Languages and Compilers for High-

Performance Computing (LCPC’00). White Plains, NY.

Han, H. and C. W. Tseng. 2000b. Locality optimizations for adaptive irregular scientific

codes. Technical report, Department of Computer Science, University of Maryland,

College Park.

Harris, Tim and Keir Fraser. 2003. Language support for lightweight transactions. In

Proceedings of ACM SIGPLAN Conference on Object-Oriented Programming Sys-

tems, Languages and Applications. Anaheim, CA.

Havlak, P. and K. Kennedy. 1991. An implementation of interprocedural bounded

regular section analysis.IEEE Transactions on Parallel and Distributed Systems,

2(3):350–360.

182

Hendren, L., C. Donawa, M. Emami, G. Gao, Justiani, and B.ăSridharan. 1992. De-

signing the McCAT compiler based on a family of structured intermediate represen-

tations. InProceedings of LCPC. Lecture Notes in Computer Science No. 457.

Hennessy, Jone L. and David A. Patterson. 2003.Computer Architecture: A Quantita-

tive Approach, chapter 5. Morgan Kaufmann.

Henning, J. 2000. Spec2000: measuring cpu performance in the new millennium.IEEE

Computer.

Herlihy, M. and J. E. Moss. 1993. Transactional memory: Architectural support for

lock-free data structures. InProceedings of the International Symposium on Co

mputer Architecture. San Diego, CA.

Herlihy, Maurice, Victor Luchangco, Mark Moir, and WilliamN. Scherer III. 2003.

Software transactional memory for dynamic-sized data structures. InProceedings of

the 22th PODC, pages 92–101. Boston, MA.

Hopcroft, J. E. and J. D. Ullman. 1979.Introduction to automata theory, languages,

and computation. Addison-Wesley.

Hsu, C.-H. and U. Kremer. 2003. The design, implementation and evaluation of a

compiler algorithm for CPU energy reduction. InProceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementation. San Diego, CA.

Huang, M., J. Renau, and J. Torrellas. 2003. Positional adaptation of processors: ap-

plication to energy reduction. InProceedings of the International Symposium on

Computer Architecture. San Diego, CA.

Huang, S. A. and J. P. Shen. 1996. The intrinsic bandwidth requirements of ordinary

programs. InProceedings of the 7th International Conferences on Architectural Sup-

port for Programming Languages and Operating Systems. Cambridge, MA.

183

Jeremiassen, T. E. and S. J. Eggers. 1995. Reducing false sharing on shared memory

multiprocessors through compile time data transformations. In Proceedings of the

Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 179–188. Santa Barbara, CA.

Jiang, S. and X. Zhang. 2002. LIRS: an efficient low inter-reference recency set replace-

ment to improve buffer cache performance. InProceedings of ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems. Marina Del Rey,

California.

Joseph, R., Z. Hu, and M. Martonosi. 2004. Wavelet analysis for microprocessor de-

sign: Experiences with wavelet-based di/dt characterization. In Proceedings of In-

ternational Symposium on High Performance Computer Architecture.

Keckler, S.W., D. Burger, C.R. Moore, R. Nagarajan, K. Sankaralingam, V. Agarwal,

M.S. Hrishikesh, N. Ranganathan, and P. Shivakumar. 2003. A wire-delay scalable

microprocessor architecture for high performance systems. In Proceedings of the

International Solid-State Circuits Conference (ISSCC), pages 1068–1069.

Kejariwal, A., X. Tian, W. Li, M. Girkar, S. Kozhukhov, H. Saito, U. Banerjee, A. Nico-

lau, A. V. Veidenbaum, and C. D. Polychronopoulos. 2006. On the performance po-

tential of different types of speculative thread-level parallelism. InProceedings of

ACM International Conference on Supercomputing.

Keleher, P., A. Cox, S. Dwarkadas, and W. Zwaenepoel. 1994. TreadMarks: Distributed

shared memory on standard workstations and operating systems. InProceedings of

the 1994 Winter USENIX Conference.

Kennedy, K. and U. Kremer. 1998. Automatic data layout for distributed memory

machines.ACM Transactions on Programming Languages and Systems, 20(4).

184

Kim, Seon Wook, Michael Voss, and Rudolf Eigenmann. 1999. Characterization of

locality in loop-parallel programs. Technical Report ECE-HPCLab-99201, School

of Electrical and Computer Engineering.

Knobe, K. and V. Sarkar. 1998. Array SSA form and its use in parallelization. In

Proceedings of Symposium on Principles of Programming Languages. San Diego,

CA.

Knuth, D. 1971. An empirical study of FORTRAN programs.Software—Practice and

Experience, 1:105–133.

Kung, H. T. and J. T. Robinson. 1981. On optimistic methods forconcurrency control.

ACM Transactions on Database Systems, 6(2).

Larus, J. R. 1999. Whole program paths. InProceedings of ACM SIGPLAN Conference

on Programming Language Design and Implementation. Atlanta, Georgia.

Lau, J., E. Perelman, and B. Calder. 2004. Selecting software phase markers with code

structure analysis. Technical Report CS2004-0804, UCSD.conference version to

appear in CGO’06.

Lau, Jeremy, Erez Perelman, and Brad Calder. 2006. Selecting software phase markers

with code structure analysis. InProceedings of the International Symposium on Code

Generation and Optimization.

Li, K. 1986.Shared Virtual Memory on Loosely Coupled Multiprocessors. Ph.D. thesis,

Dept. of Computer Science, Yale University, New Haven, CT.

Li, Z., J. Gu, and G. Lee. 1996. An evaluation of the potentialbenefits of register

allocation for array references. InWorkshop on Interaction between Compilers and

Computer Architectures in conjunction with the HPCA-2. San Jose, California.

Li, Z., P. Yew, and C. Zhu. 1990. An efficient data dependence analysis for parallelizing

compilers.IEEE Transactions on Parallel and Distributed Systems, 1(1):26–34.

185

Liu, W. and M. Huang. 2004. Expert: Expedited simulation exploiting program behav-

ior repetition. InProceedings of International Conference on Supercomputing.

Luk, C. and T. C. Mowry. 1999. Memory forwarding: enabling aggressive layout

optimizations by guaranteeing the safety of data relocation. In Proceedings of Inter-

national Symposium on Computer Architecture. Atlanta, GA.

Magklis, G., M. L. Scott, G. Semeraro, D. H. Albonesi, , and S.Dropsho. 2003. Profile-

based dynamic voltage and frequency scaling for a multiple clock domain micropro-

cessor. InProceedings of the International Symposium on Computer Architecture.

San Diego, CA.

Marathe, Virendra J. and Michael L. Scott. 2004. A qualitative survey of modern soft-

ware transactional memory systems. Technical Report TR 839,Department of Com-

puter Science, University of Rochester.

Marin, G. and J. Mellor-Crummey. 2004. Cross architecture performance predictions

for scientific applications using parameterized models. InProceedings of Joint In-

ternational Conference on Measurement and Modeling of Computer Systems. New

York City, NY.

Marin, G. and J. Mellor-Crummey. 2005. Scalable cross-architecture predictions of

memory hierarchy response for scientific applications. InProceedings of the Sympo-

sium of the Las Alamo s Computer Science Institute. Sante Fe, New Mexico.

Martin, M. K., D. J. Sorin, H. V. Cain, M. D. Hill, and M. H. Lipasti. 2001. Cor-

rectly implementing value prediction in microprocessors that support multithreading

or multiprocessing. InProceedings of the International Symposium on Microarchi-

tecture (MICRO-34).

Mattson, R. L., J. Gecsei, D. Slutz, and I. L. Traiger. 1970. Evaluation techniques for

storage hierarchies.IBM System Journal, 9(2):78–117.

186

McKinley, K. 2004. Polar opposites: Next generation languages and architectures.

Keynotes Talk on Memory Systems Performance.

McKinley, K. S., S. Carr, and C.-W. Tseng. 1996. Improving datalocality with

loop transformations.ACM Transactions on Programming Languages and Systems,

18(4):424–453.

McKinley, K. S. and O. Temam. 1999. Quantifying loop nest locality using SPEC’95

and the perfect benchmarks.ACM Transactions on Computer Systems, 17(4):288–

336.

Mellor-Crummey, J. 1992. Compile-time support for efficient data race detection in

shared memory parallel programs. Technical Report CRPC-TR92232, Rice Univer-

sity.

Mellor-Crummey, J., D. Whalley, and K. Kennedy. 2001. Improving memory hierarchy

performance for irregular applications.International Journal of Parallel Program-

ming, 29(3).

Merriam-Webster. 1998. Merriam-Webster’s Collegiate Dictionary (10th Edition).

Merriam-Webster.

Mitchell, N., L. Carter, and J. Ferrante. 1999. Localizing non-affine array references. In

Proceedings of International Conference on Parallel Architectures and Compilation

Techniques. Newport Beach, California.

Moss, J. E. B. 2006. Open nested transactions: semantics and support. InProceedings

of the Workshop on Memory Performance Issues (WMPI).

Nagpurkar, P., M. Hind, C. Krintz, P. F. Sweeney, and V.T. Rajan. 2006. Online phase

detection algorithms. InProceedings of the International Symposium on Code Gen-

eration and Optimization.

187

Nevill-Manning, C. G. and I. H. Witten. 1997. Identifying hierarchical structure in

sequences: a linear-time algorithm.Journal of Artificial Intelligence Research, 7:67–

82.

OpenMP. 2005. OpenMP application program interface, version 2.5.

Http://www.openmp.org/drupal/mp-documents/spec25.pdf.

Papadimitriou, C. H. 1979. The serializability of concurrent database updates.Journal

of ACM, 26(4).

Perkovic, D. and P. J. Keleher. 2000. A protocol-centric approach to on-the-fly race

detection. IEEE Transactions on Parallel and Distributed Systems, 11(10):1058–

1072.

Pingali, V. S., S. A. McKee, W. C. Hsieh, and J. B. Carter. 2003. Restructuring compu-

tations for temporal data cache locality.International Journal of Parallel Program-

ming, 31(4).

Rabbah, R. M. and K. V. Palem. 2003. Data remapping for design space optimization of

embedded memory systems.ACM Transactions in Embedded Computing Systems,

2(2).

Rauchwerger, L. and D. Padua. 1995. The LRPD test: Speculativerun-time paral-

lelization of loops with privatization and reduction parallelization. InProceedings of

ACM SIGPLAN Conference on Programming Language Design and Implementation.

La Jolla, CA.

Rawlings, J. O. 1988.Applied Regression Analysis: A Research Tool. Wadsworth and

Brooks.

Rinard, M. C. and M. S. Lam. 1998. The design, implementation, and evaluation

of Jade. ACM Transactions on Programming Languages and Systems (TOPLAS),

20(3):483–545.

188

Rivera, G. and C.-W. Tseng. 1998. Data transformations for eliminating conflict misses.

In Proceedings of the SIGPLAN Conference on Programming Language Design and

Implementation.

Saltz, J. H., R. Mirchandaney, and K. Crowley. 1991. Run-time parallelization and

scheduling of loops.IEEE Transactions on Computers, 40(5):603–612.

Sarkar, V. 1989. Determining average program execution times and their variance. In

Proceedings of ACM SIGPLAN Conference on Programming Language Design and

Implementation. Portland, Oregon.

Seidl, M. L. and B. G. Zorn. 1998. Segregating heap objects by reference behavior

and lifetime. InProceedings of the Eighth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-VIII). San

Jose.

Shavit, Nir and Dan Touitou. 1997. Software transactional memory.Distributed Com-

puting, 10(2):99–116.

Shen, X. and C. Ding. 2004. Adaptive data partition for sorting using probability dis-

tribution. InProceedings of International Conference on Parallel Processing. Mon-

treal, Canada.

Shen, X. and C. Ding. 2005. Parallelization of utility programs based on behavior phase

analysis. InProceedings of the International Workshop on Languages andCompilers

for Parallel Computing. Hawthorne, NY. Short paper.

Shen, X., C. Ding, S. Dwarkadas, and M. L. Scott. 2004a. Characterizing phases in

service-oriented applications. Technical Report TR 848, Department of Computer

Science, University of Rochester.

189

Shen, X., Y. Gao, C. Ding, and R. Archambault. 2005. Lightweight reference affinity

analysis. InProceedings of the 19th ACM International Conference on Supercom-

puting. Cambridge, MA.

Shen, X., Y. Zhong, and C. Ding. 2003. Regression-based multi-model prediction of

data reuse signature. InProceedings of the 4th Annual Symposium of the Las Alamos

Computer Science Institute. Sante Fe, New Mexico.

Shen, X., Y. Zhong, and C. Ding. 2004b. Locality phase prediction. In Proceedings of

the Eleventh International Conference on Architect ural Support for Programming

Languages and Operating Systems (ASPLOS XI). Boston, MA.

Shen, X., Y. Zhong, and C. Ding. 2004c. Phase-based miss rate prediction. InPro-

ceedings of the International Workshop on Languages and Compilers for Parallel

Computing. West Lafayette, IN.

Sherwood, T., E. Perelman, and B. Calder. 2001. Basic block distribution analysis

to find periodic behavior and simulation points in applications. In Proceedings

of International Conference on Parallel Architectures and Compilation Techniques.

Barcelona, Spain.

Sherwood, T., S. Sair, and B. Calder. 2003. Phase tracking and prediction. InProceed-

ings of International Symposium on Computer Architecture. San Diego, CA.

Silvera, R., R. Archambault, D. Fosbury, and B. Blainey. unpublished. Branch and

value profile feedback for whole program optimization. Unpublished, no date given.

Smith, Alan J. 1978. A comparative study of set associative memory mapping algo-

rithms and their use for cache and main memory.IEEE Transactions on Software

Engineering, SE-4:121–130.

190

So, B., M. W. Hall, and P. C. Diniz. 2002. A compiler approach to fast hardware design

space exploration in FPGA-based systems. InProceedings of ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. Berlin, Germany.

Sohi, G. S., S. E. Breach, and T. N. Vijaykumar. 1995. Multiscalar processors. In

Proceedings of the International Symposium on Computer Architecture.

Srivastava, A. and A. Eustace. 1994. ATOM: A system for building customized pro-

gram analysis tools. InProceedings of ACM SIGPLAN Conference on Programming

Language Design and Implementation. Orlando, Florida.

Steffan, J. G., C. Colohan, A. Zhai, and T. C. Mowry. 2005. The STAMPede approach

to thread-level speculation.ACM Transactions on Computer Systems, 23(3):253–

300.

Strout, M. M., L. Carter, and J. Ferrante. 2003. Compile-time composition of run-time

data and iteration reorderings. InProceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation. San Diego, CA.

Sugumar, R. A. and S. G. Abraham. 1993. Efficient simulation ofcaches under optimal

replacement with applications to miss characterization. In Proceedings of the ACM

SIGMETRICS Conference on Measurement & Modeling Computer Systems. Santa

Clara, CA.

Sugumar, Rabin A. and Santosh G. Abraham. 1991. Efficient simulation of multiple

cache configurations using binomial trees. Technical ReportCSE-TR-111-91, CSE

Division, University of Michigan.

Thabit, K. O. 1981.Cache Management by the Compiler. Ph.D. thesis, Dept. of Com-

puter Science, Rice University.

191

Triolet, R., F. Irigoin, and P. Feautrier. 1986. Direct parallelization of CALL statements.

In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction. Palo

Alto, CA.

Voss, M. and R. Eigenmann. 2001. High-level adaptive programoptimization with

adapt. InProceedings of ACM Symposium on Principles and Practice of Parallel

Programming. Snowbird, Utah.

Wagner, T. A., V. Maverick, S. L. Graham, and M. A. Harrison. 1994. Accurate static

estimators for program optimization. InProceedings of the SIGPLAN Conference on

Programming Language Design and Implementation.

Wahbe, R., S. Lucco, and S. L. Graham. 1993. Practical data breakpoints: design and

implementation. InProceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation. Albuquerque, NM.

Wegman, M. and K. Zadeck. 1985. Constant propagation with conditional branches.

In Conference Record of the Twelfth Annual ACM Symposium on the Principles of

Programming Languages. New Orleans, LA.

Whaley, R. C., A. Petitet, and J. Dongarra. 2001. Automated empirical optimizations

of software and the atlas project.Parallel Computing, 27(1-2).

Wolf, M. E. and M. Lam. 1991. A data locality optimizing algorithm. In Proceedings

of the SIGPLAN ’91 Conference on Programming Language Designand Implemen-

tation. Toronto, Canada.

Zhang, Chengliang, Kirk Kelsey, Xipeng Shen, and Chen Ding. 2006. Program-level

adaptive memory management. InISMM ’04: Proceedings of the 2006 International

Symposium on Memory Management. Ottawa, Canada.

Zhang, L. 2000. Efficient Remapping Mechanism for an Adaptive Memory System.

Ph.D. thesis, Department of Computer Science, University ofUtah.

192

Zhang, L., Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B.Carter, W. C. Hsieh,

and S. A. McKee. 2001. The Impulse memory controller.IEEE Transactions on

Computers, 50(11).

Zhong, Y. 2005.Distance-based Whole-Program Data Locality Hierarchy. Ph.D. the-

sis, University of Rochester.

Zhong, Y., C. Ding, and K. Kennedy. 2002. Reuse distance analysis for scientific

programs. InProceedings of Workshop on Languages, Compilers, and Run-time

Systems for Scalable Computers. Washington DC.

Zhong, Y., S. G. Dropsho, and C. Ding. 2003a. Miss rate prediction across all program

inputs. InProceedings of the 12th International Conference on Parallel Architectures

and Compilation Techniques. New Orleans, Louisiana.

Zhong, Y, S. G. Dropsho, X. Shen, A. Studer, and C. Ding. To appear. Miss rate

prediction across program inputs and cache configurations.IEEE Transactions on

Computers (TOC).

Zhong, Y., M. Orlovich, X. Shen, and C. Ding. 2004. Array regrouping and structure

splitting using whole-program reference affinity. InProceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementation.

Zhong, Y., X. Shen, and C. Ding. 2003b. A hierarchical model ofreference affinity.

In Proceedings of the 16th International Workshop on Languages and Compilers for

Parallel Computing. College Station, Texas.

Zhou, Y., P. M. Chen, and K. Li. 2001. The multi-queue replacement algorithm for

second level buffer caches. InProceedings of USENIX Technical Conference.

