
Brief Industry Paper: Towards Real-Time 3D Object
Detection for Autonomous Vehicles with Pruning

Search
1Pu Zhao, 2Wei Niu, 1Geng Yuan, 1Yuxuan Cai, 3Hsin-Hsuan Sung, 4Shaoshan Liu,

5Sijia Liu, 3Xipeng Shen, 2Bin Ren, 1Yanzhi Wang, 1Xue Lin
1Northeastern University, Boston, MA
2William & Mary, Williamsburg, VA
3North Carolina State University, NC

4PerceptIn, CA
5Michigan State University, MI

Abstract—In autonomous driving, 3D object detection is es-
sential as it provides basic knowledge about the environment.
However, as deep learning based 3D detection methods are
usually computation intensive, it is challenging to support real-
time 3D object detection on edge-computing devices in self-
driving cars with limited computation and memory resources.
To facilitate this, we propose a compiler-aware pruning search
framework, to achieve real-time inference of 3D object detection
on the resource-limited mobile devices. Specifically, a generator
is applied to sample better pruning proposals in the search
space based on current proposals with their performance, and an
evaluator is adopted to evaluate the sampled pruning proposal
performance. To accelerate the search, the evaluator employs
Bayesian optimization with an ensemble of neural predictors. We
demonstrate in experiments that for the first time, the pruning
search framework can achieve real-time 3D object detection
on mobile (Samsung Galaxy S20 phone) with state-of-the-art
detection performance.

Index Terms—3D object detection, real-time, point cloud

I. INTRODUCTION

As the rapid development of autonomous vehicles to self-

drive without human intervention, object detection (especially

3D detection to deal with LiDAR data) serves as a fundamental

prerequisite for autonomous navigation. 3D detection can

extract the desirable knowledge about its environment from

3D point clouds of LiDAR sensors, thus enabling high-level

computations and optimizations for auto-driving.

Due to the instantaneously interaction requirement with the

environment in auto-driving, it is essential to implement real-

time 3D object detection on autonomous vehicles. However,

the current deep neural networks (DNNs) based 3D object

detectors usually cost tremendous memory and computation

resources, leading to difficulties for real-time implementation,

especially on autonomous vehicles with limited hardware re-

source. Though more powerful high-end GPUs can be adopted

for this task, they usually result in significant increasing price

and power consumption. Thus it is desirable to facilitate the

real-time 3D detection deployment on autonomous cars.

To reduce the DNN model size and computations, DNN

weight pruning [1], [2] has shown great advantages to re-

move redundancy in the model, therefore reducing stor-

age/computation cost and accelerating inference. There are

unstructured pruning scheme [2]–[4] to remove arbitrary

weight, coarse-grained structured pruning scheme [1], [4]–

[7] to eliminate whole filters/channels, and fine-grained struc-
tured pruning [8]–[10] to assign different pruning patterns to

convolutional (CONV) kernels. Though unstructured pruning

can achieve high accuracy, the arbitrary pruned irregular

weights limited hardware parallelism, leading to difficulties for

inference acceleration. Compared with unstructured pruning,

structured pruning can achieve higher hardware parallelism

and mobile inference acceleration, assisted by the compiler-

level code generation and optimization techniques [9], with

competitive classification/detection performance.

Though compiler optimization can support various struc-

tured pruning (sparsity) schemes with notable mobile accel-

eration performance, we found that different sparsity schemes

lead to different accuracy and acceleration performance with

compiler optimization. For the specific 3D detection problem,

it is still questionable to adopt which sparsity scheme with

which pruning rate to satisfy the accuracy and real-time re-

quirements. To find the pruning solution, motivated by the idea

of Neural Architecture Search (NAS) [11], [12], we propose

a compiler-aware pruning search framework to automatically

determine the pruning scheme and pruning rate for each

individual layer. The objective is to maximize accuracy with an

inference speed/latency constraint on the target mobile device.

Different from previous work with fixed pruning scheme for

all layers, our work can have different pruning schemes and

rates for different layers in the model. We summarize our

contribution as follows,

• We incorporate the overall DNN latency constraint into

automatic pruning search process to satisfy a predefined

real-time requirement.

• Our framework configures different pruning schemes and

pruning rates for different layers which is different from

previous works with fixed pruning scheme for all layers.
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• We adopt an ensemble of neural predictors and Bayesian

optimization (BO) to reduce the number of evaluated

pruning proposals, leading to less searching efforts.

• We can achieve (close-to) real-time (98ms) 3D detection

with PointPillars, on an off-the-shelf mobile phone with

minor (or no) accuracy loss.

II. BACKGROUND AND RELATED WORK

A. 3D Object Detection

3D object detection detects objects with point clouds from

LiDAR sensors. PointPillars [13] is a popular 3D detection

method with three main stages: (1) A feature encoder network

to convert a point cloud to a sparse pseudo-image; (2) a 2D

CONV backbone to transform the pseudo-image into high-

level representation; and (3) a detection head to regress 3D

boxes. Besides PointPillars, there are various 3D detection

methods such as SECOND [14] and Point-GNN [15]. We

mainly focus on PointPillars as we found that PointPillars is

the only one whihc can run on mobile while others are not

available on mobile since their special structures to deal with

sparse data are not supported by mobile compiler. Besides,

PointPillars costs less computations than others with faster

inference speed on server GPUs (e.g., 25ms for PointPillars

v.s. 600ms for Point-GNN).

B. Weight Pruning Schemes

Previous weight pruning work can be categorized according

to pruning scheme: unstructured pruning [2], [3], [16], coarse-

grained structured pruning [1], [4]–[6], and fine-grained struc-

tured pruning including pattern [8] and block [10] pruning.

Unstructured pruning [3], [16] removes weights at arbi-

trary positions, leading to irregular sparse weight matrix with

indices, incurring damages to the parallel implementations

and acceleration performance on hardware. Different from un-

structured pruning, coarse-grained structured pruning [4], [5]

removes the whole filters/channels to maintain model structure

with high regularity for efficient hardware parallel implemen-

tation, at the cost of certain obvious accuracy degradation. To

overcome the disadvantages, fine-grained structured pruning

[8], [9] follows a pruning pattern (chosen from a predefined

library) to prune each CONV kernel, where the predefined

patterns have been optimized with compiler optimizations

for mobile acceleration. Fine-grained structured pruning can

achieve high accuracy due to the flexibility with different pat-

terns, and high hardware parallelism (and mobile acceleration)

with compiler-based code generation and optimization.

III. AUTOMATIC NEURAL PRUNING SEARCH

We show the framework in Fig. 1, consisting of two

basic components: a generator and an evaluator. Given the

search space, the generator first generates or samples various

pruning proposals. Then the evaluator evaluates their detection

accuracy and speed performance, and feeds them back to the

generator. Next the generator samples new pruning proposals

based on existing proposals’ performance. After iterations,

Generator Evaluator

Provide multiple 

pruning proposals

Evaluate and feedback 

their perforamnce

Train an ensemble of 

neural predictors

Evaluate the selected 

proposals

Select proposals  based 

on Acquisition function

Fig. 1. Automatic network pruning search framework
TABLE I

SEARCH SPACE FOR EACH DNN LAYER

Pruning scheme {Filter [18], Pattern-based [9], Block-based [10]}
Pruning rate { 1×, 2×, 3×, 5×, 7×, 10×, 15× }

the framework can obtain the final pruning proposal with

satisfying detection accuracy and speed performance.

In each iteration, the evaluator first trains an ensemble of

neural predictors and then selects proposals based on their

acquisition function values enabled by the predictor ensemble.

Next the selected proposals are evaluated to obtain their per-

formance while the rest unselected proposals are not evaluated,

thus reducing evaluation time and efforts.

After the framework finishes and outputs a final pruning

proposal, we further apply ADMM pruning [17] to perform

an enhanced pruning following the best proposal. Compared

with the simple magnitude pruning [3] method applied dur-

ing evaluation for time-saving, ADMM usually outperforms

magnitude pruning in terms of accuracy with an increased

complexity, that is why we only adopt it for the final proposal.

A. Generator

The generator samples pruning proposals from the search

space. Each pruning proposal is a directed graph consisting

of the layer-wise pruning scheme and layer-wise pruning rate.

For example, it has 20 nodes for a 10-layer DNN model.

1) Proposal Formulation (Search Space): Each pruning

proposal contains the pruning scheme and pruning rate for

each layer of the model, as shown in Tab. I.

Per-layer pruning schemes: The generator can choose

from filter (channel) pruning [18], pattern-based pruning [8]

and block-based pruning [10] for each layer. As different

layers may have different best-suited pruning schemes, the

generator can choose different pruning schemes for different

layers, also supported by our compiler code generation.

Per-layer pruning rate: The pruning rate is the rate

between the number of original parameters and that of

left parameters after pruning. We can choose from the list

{1×, 2×, 3×, 5×, 7×, 10×, 15×}, where 1× means the layer

is not pruned (i.e., bypassing this layer).

2) Proposal Updating: The generator keeps a record of all

evaluated pruning proposals with their evaluation performance.

To generate new pruning proposals, it mutate the proposals

with the best evaluation performance in the records by ran-

domly changing one pruning scheme or one pruning rate of

one layer. More specifically, it first selects K proposals with
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Algorithm 1 Evaluation with predictor ensemble & BO

Input: Observation data D, BO batch size B, BO acquisition
function φ(·)
Output: The best pruning proposal g
for steps do

Generate a pool of candidate pruning proposals Gc;
Train an ensemble of neural predictors with D;
Select {ĝi}Bi=1 = argmaxg∈Gc φ(g);
Evaluate the proposal and obtain reward {ri}Bi=1 of {ĝi}Bi=1;
D ← D ∪ ({ĝi}Bi=1, {ri}Bi=1);

end for

the highest evaluation performance, and mutates each of them

iteratively until it gets C new proposals.

3) Proposal encoding: As pruning proposals are basically

graphs, special attention is required for the proposal repre-

sentation. Different from traditional representations with an

adjacency matrix for graphs, we adopt the pruning encoding to

encode each proposal with a vector of binary values. There is

a binary feature for each possible node in each layer, denoting

whether the node (pruning scheme or pruning rate of certain

layer) is adopted or not. To encode a proposal, we simply

check which pruning scheme or rate for each layer is applied,

and set the corresponding features to 1s. This simple proposal

encoding can help with proposal evaluation.

B. Evaluator
The evaluator needs to evaluate pruning proposal perfor-

mance. We define the performance measurement (reward) as:

m = V − α ·max(0, r −R), (1)

where V is the validation mean average precision (mAP)

of the model, r is the model inference latency, which is

actually measured on a mobile device with compiler code

optimization and generation for inference acceleration. R is

the real-time requirement threshold. Generally, satisfying real-

time requirement (r < R) with high mAP leads to high m.

Otherwise if the real-time requirement is violated, m is small.

1) Fast Evaluation with BO: As it incurs large time cost to

evaluate the performance of each pruning proposal (including

pruning and retraining the model with multiple epochs), we

adopt Bayesian optimization (BO) [19] to accelerate evalu-

ation. The generator provides C pruning proposals, and the

evaluator first use BO to select B proposal with potentially

better performance. Next the evaluator measure the accurate

accuracy and speed performance of the selected proposals

while the rest unselected proposals are not evaluated. Thus,

the number of actual evaluated proposals is reduced.

In general, there are two main components in BO includ-

ing training an ensemble of neural predictors and selecting

proposal based on acquisition function values enabled by

the predictor ensemble. To make use of BO, the ensemble

of neural predictors provides an accuracy prediction with

its corresponding uncertainty estimate for an unseen pruning

proposal. Then BO is able to choose the proposal which max-

imizes the acquisition function. We show the full algorithm in

Algorithm 1 and specify the two components in the following.

2) Ensemble of Neural Predictors: We use a neural network

repeatedly trained on the current set of evaluated pruning pro-

posals with their evaluation performance as a neural predictor

to predict the reward (incorporating the accuracy and speed

performance) of unseen pruning proposals. The neural network

is a sequential fully-connected network with 8 layers of width

30 trained by the Adam optimizer with a learning rate of 0.01.

Note that it does not cost much predictor training efforts due

to their simple architectures and parallel training.
For the loss function in neural predictors, mean absolute per-

centage error (MAPE) is adopted as it can give a higher weight
to pruning proposals with higher evaluation performance:

L(mpred,mtrue) =
1

n

n∑
i=1

∣∣∣∣∣m
(i)
pred −mUB

m
(i)
true −mUB

− 1

∣∣∣∣∣ , (2)

where m
(i)
pred and m

(i)
true are the predicted and true values of the

reward for the i-th proposal in a batch, and mUB is a global

upper bound on the maximum true reward.
To incorporate BO, it also needs an uncertainty estimate for

the prediction. So we adopt an ensemble of neural predictors to
provide the uncertainty estimate. More specifically, we train P
neural predictors using different random weight initializations
and training data orders. Then for any proposal, we can obtain
the mean and standard deviation of these P predictions. More
specifically, we train an ensemble of P predictive models,
{fp}Pp=1, where fp : A → R with a pruning proposal g as
input and the predicted reward as output. The mean prediction
and its deviation are given by,

f̂(g) =
1

P

P∑
p=1

fp(g), and σ̂(g) =

√∑P
p=1(fp(g)− f̂(g))2

P − 1
. (3)

3) Selection with Acquisition Function: After training an
ensemble of neural predictors, we can obtain the acquisi-
tion function value for proposals and select a small part of
proposals with largest acquisition values. We choose upper
confidence bound (UCB) [20] as the acquisition function,

φUCB(g) = f̂(g) + βσ̂(g) (4)

where the tradeoff parameter β is set to 0.5.
4) Evaluation with Magnitude Pruning: After selecting the

pruning proposal from the pool, the evaluator uses magni-

tude based pruning framework [3] (with two steps including

pruning and retraining) to perform the actual pruning and

obtain its evaluation performance for the proposal. Note that

it can evaluate the proposals in parallel. Besides, the speed

measurement on a mobile device can be performed in parallel

with the accuracy measurement.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup
We focus on 3D detection and employ the PointPillars

[13] as starting point and test on KITTI dataset [21]. We

use 40 GPUs for parallel training and pruning search and

it takes about 6 days to find the best pruning proposal in

each experiment. In Eq. (1), we set α to 0.01 and the mobile

inference time is measured in milliseconds. The pool size C
is set to 50 and the Bayesian batch size B is set to 10. We

test the speed performance on the mobile GPU (Qualcomm

Adreno 640) of a Samsung Galaxy S20 smartphone.
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TABLE II
COMPARISON OF VARIOUS PRUNING METHODS FOR POINTPILLARS

Methods
(grid size)

Para.
#

Comp. #
(MACs)

Speed
(ms)

Car 3D detection
Easy Moderate Hard

PointPillars (0.16) 5.8M 60G 553 85.16 74.39 69.42
Filter [22] (0.16) 1.1M 10.8G 178 80.63 67.51 65.28
Pattern [8] (0.16) 1.1M 10.7G 225 83.64 74.30 68.42
Block [10] (0.16) 1.1M 10.7G 268 82.86 75.43 69.71

Ours (0.16) 1.1M 10.7G 193 85.52 76.69 70.10

PointPillars (0.24) 5.4M 28G 253 84.24 75.28 68.46
Filter [22] (0.24) 0.8M 4.0G 82 81.36 68.06 65.77
Pattern [8] (0.24) 0.8M 3.9G 116 82.16 73.93 68.25
Block [10] (0.24) 0.8M 4.0G 140 83.69 74.09 68.06

Ours (0.24) 0.8M 3.9G 98 85.38 75.72 68.53

B. Performance on 3D Object Detection

As shown in Tab. II and Fig. 2, we compare the perfor-

mance of the original unpruned PointPillars model and the

model derived by our method and other pruning methods with

different grid sizes (0.16m and 0.24m). We set the threshold

of the real-time requirements to 200ms for 0.16m and 100ms

for 0.24m. For the grid size, as large grid size leads to small

pseudo-image input size for the model, the 0.24m grid size has

a smaller parameter and computation numbers, and a faster

inference speed on mobile GPUs, compared with 0.16m.

For the same grid size, compared with the original unpruned

PointPillars model, we observe that our method can signif-

icantly reduce the number of parameters and computations,

achieving state-of-the-art detection performance while satisfy-

ing the real-time requirement. The accuracy of our method is

even higher than the unpruned model, demonstrating that the

unpruned model may suffer from the over-fitting problem and

removing the redundancy can help with its accuracy.

We also compare with other pruning methods for the same

grid size. For other pruning methods, the same pruning scheme

is applied to all layers and the pruning rate is set to the same

with the overall pruning ratio of our pruned model (80%

for grid size 0.16m and 86% for 0.24m). As observed, the

proposed method achieves the best detection performance with

highest accuracy compared with other methods with the same

pruning scheme for every layer, demonstrating the advantages

of different pruning scheme for different layers. We notice that

although filter pruning can be faster than our method, it suffers

from an obvious degradation on the detection performance.

For the speed, we notice that for grid size 0.24m, the pro-

posed method only needs 98ms to process one LiDAR image

on mobile devices with the highest accuracy, demonstrating its

superior performance to achieve (close-to) real-time inference

on mobile with state-of-the-art detection performance.

V. CONCLUSION

We propose pruning search to flexibly configure the pruning

scheme and rate for each layer in the model with real-time

inference requirement. Our experiments demonstrate that the

proposed method achieves (close-to) real-time (98ms) 3D

object detection based on PointPillars, on an off-the-shelf

mobile phone with minor (or no) accuracy loss.
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Fig. 2. Comparison with other methods
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