Trio: A System for Data, Uncertainty, and Lineage

Jennifer Widom
Stanford University

Uncertainty in Databases

- Not a new idea — proposed 20+ years ago
- Most initial (18+ years) work largely theoretical; not much systems-building until recently
- But applications weren’t ready anyway
 ➔ Are they now?

Two faculty independently proclaim uncertainty as the next major theme in Computer Science
- One old-timer, one youngster
- Proclamations not motivated by their own (or our) research

Depiction of Trio Project

Stanford News — Spring 2006
The “Trio” in Trio

1. Data
 Student #123 is majoring in Econ: \((123, \text{Econ}) \in \text{Major}\)

2. Uncertainty
 Student #123 is majoring in Econ or CS:
 \((123, \text{Econ} \parallel \text{CS}) \in \text{Major}\)
 With confidence 60% student #456 is a CS major:
 \((456, \text{CS} 0.6) \in \text{Major}\)

3. Lineage
 456 \in \text{HardWorker} derived from:
 \((456, \text{CS}) \in \text{Major}\)
 “CS is hard” \in \text{some web page}

Original Motivation for the Project

New Applications
- Many involve data that is uncertain
 (approximate, probabilistic, inexact, incomplete, imprecise, fuzzy, inaccurate, ...)
- Many of the same ones need to track the lineage of their data

Claim
The connection between uncertainty and lineage goes deeper than just a shared need by several applications
Substantiation of Connection

[technical] Lineage:
1. Enables simple and consistent representation of uncertain data
2. Correlates uncertainty in query results with uncertainty in the input data
3. Can make computation over uncertain data more efficient

[fluffy] Applications use lineage to reduce or resolve uncertainty

Sample Applications

Information extraction
- Find & label entities in unstructured text
- Often probabilistic

Information integration
- Combine data from multiple sources
- Inconsistencies

Scientific experiments
- Inexact/incomplete data
- Many levels of “derived data products”

Sample Applications

Sensor data management
- Approximate readings
- Missing readings
- Levels of data aggregation

Deduplication (“data cleaning”)
- Object linkage, entity resolution
- Often heuristic/probabilistic

Approximate query processing
- Fast but inexact answers

Pop Quiz

Why should every slide be making you squirm in your seat?
Our Goal

Develop a new kind of database management system (DBMS) in which:

1. Data
2. Uncertainty
3. Lineage

are all first-class interrelated concepts

⇒ With all the “usual” DBMS features

The “Usual” DBMS Features

(From first lecture of my *Intro. to Databases* class)

1. Efficient,
2. Convenient,
3. Safe,
4. Multi-User storage of and access to
5. Massive amounts of
6. Persistent data

In Standard Relational DBMS

Example Database: Crime-Solving

Persistent; Convenient

- All data stored in simple tables (“relations”)
- Queries and updates via simple but powerful *declarative* language (SQL)

Multi-User; Safe (from failures)

- Transactions

Massive; Efficient

- Storage and indexing structures
- Query optimization

Standard relational database

<table>
<thead>
<tr>
<th>Saw (witness, color, car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jimmy red Toyota</td>
</tr>
<tr>
<td>Betty blue Honda</td>
</tr>
<tr>
<td>Frank red Mazda</td>
</tr>
<tr>
<td>Carol green Toyota</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drives (person, color, car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jimmy red Toyota</td>
</tr>
<tr>
<td>Billy blue Honda</td>
</tr>
<tr>
<td>Frank red Mazda</td>
</tr>
<tr>
<td>Frank green Mazda</td>
</tr>
</tbody>
</table>

Create Table Suspects as
Select person From Saw, Drives
Where Saw.color = Drives.color
And Saw.car = Drives.car
Another “Trio” in Trio

1. Data Model
 Simplest extension to relational model that’s sufficiently expressive

2. Query Language
 Simple extension to SQL with well-defined semantics and intuitive behavior

3. System
 A complete open-source DBMS that people want to use

Remainder of Talk

1. Data Model
 In some detail

2. Query Language
 In somewhat less detail

3. System
 Overview + Demo

Disclaimer

We are not about machine learning or probabilistic reasoning!

We are about efficient and convenient storage, manipulation, and retrieval of large data sets (with uncertainty and lineage in them)
An uncertain database represents a set of possible instances

- Amy saw either a Honda or a Toyota
- Jimmy drives a Toyota, a Mazda, or both
- Betty saw an Acura with confidence 0.5 or a Toyota with confidence 0.3
- Hank is a suspect with confidence 0.7

1. Alternatives: uncertainty about value
2. ‘?’ (Maybe) Annotations
3. Confidences
Our Model for Uncertainty

1. Alternatives
2. ‘?’ (Maybe): uncertainty about presence
3. Confidences

<table>
<thead>
<tr>
<th>Saw (witness, color, car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
</tr>
<tr>
<td>Betty</td>
</tr>
<tr>
<td>Betty</td>
</tr>
</tbody>
</table>

Our Model for Uncertainty

1. Alternatives
2. ‘?’ (Maybe) Annotations
3. Confidences: weighted uncertainty

<table>
<thead>
<tr>
<th>Saw (witness, color, car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
</tr>
<tr>
<td>Betty</td>
</tr>
</tbody>
</table>

Models for Uncertainty

Our model (so far) is not especially new
We spent some time exploring the space of models for uncertainty

Tension between understandability and expressiveness
– Our model is understandable
– But it is not complete, or even closed under common operations

Closure and Completeness

Completeness
Can represent all sets of possible instances

Closure
Can represent results of operations

Note: Completeness ⇒ Closure
Our Model is Not Closed

Suspects = \(\pi_{\text{person}}(\text{Saw} \ \text{Drives}) \)

Suspects

Jimmy
Billy ∥ Frank
Hank

CANNOT correctly capture possible instances in the result

Example with Lineage

Suspects = \(\pi_{\text{person}}(\text{Saw} \ \text{Drives}) \)

Suspects

Jimmy
Billy ∥ Frank
Hank

\(\lambda(31) = (11,2),(21,2) \)
\(\lambda(32,1) = (11,1),(22,1); \ \lambda(32,2) = (11,1),(22,2) \)
\(\lambda(33) = (11,1), 23 \)

Correctly captures possible instances in the result

Lineage (provenance): “where data came from”

- Internal lineage
- External lineage

In Trio: A function \(\lambda \) from data elements to other data elements (or external sources)
Trio Data Model

Uncertainty-Lineage Databases (ULDBs)

1. Alternatives
2. ‘?’ (Maybe) Annotations
3. Confidences
4. Lineage

ULDBs are closed and complete

ULDBs: Interesting Problems (sample)

- Minimal representation of possible-instances
 - Data-minimal
 - Lineage-minimal
- Lineage expressiveness
 - Arbitrary sequence of queries
 - arbitrary boolean formula
- Membership questions (complexity)
 - Is tuple T in any (every) possible instance?
 - Is relation R a possible-instance?

Querying ULDBs

- Simple extension to SQL
- Formal semantics, intuitive meaning
- Query uncertainty, confidences, and lineage

Simple TriQL Example

<table>
<thead>
<tr>
<th>ID</th>
<th>Saw (witness, car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Cathy, Honda</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Drives (person, car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Jimmy, Toyota</td>
</tr>
<tr>
<td>22</td>
<td>Billy, Honda</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

Create Table Suspects as
Select person From Saw, Drives
Where Saw.car = Drives.car

<table>
<thead>
<tr>
<th>ID</th>
<th>Suspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Jimmy</td>
</tr>
<tr>
<td>32</td>
<td>Billy</td>
</tr>
<tr>
<td>33</td>
<td>Hank</td>
</tr>
</tbody>
</table>

\[\lambda(31)=(11,2),(21,2)\]
\[\lambda(32,1)=(11,1),(22,1)\]
\[\lambda(32,2)=(11,1),(22,2)\]
\[\lambda(33)=(11,1),23\]
Formal Semantics

Query Q on ULDB D

```
possible instances
```

D_1, D_2, \ldots, D_n

```
representation of instances
```

$Q(D_1), Q(D_2), \ldots, Q(D_n)$

```
implementation of $Q$
```

$D + Result$

TriQL

SQL over uncertain data with lineage

+ New constructs for querying alternatives, ?’s, confidences, and lineage

- $Conf()$, $Maybe()$, $Lineage()$
- “Horizontal” subqueries
- Query-defined result confidences
- Aggregations: low, high, expected

Confidences

Confidences supplied with base data

Trio computes confidences on query results

- Default probabilistic interpretation
- Can choose to plug in different arithmetic

One More Example Query

List suspects with conf values based on accuser credibility

- **PrimeSuspect (crime#, suspect, accuser)**
 - 1: Jimmy, Amy || Billy, Betty || Hank, Cathy
 - 2: Frank, Cathy || Freddy, Betty

- **Credibility (person, score)**
 - Amy: 10
 - Betty: 15
 - Cathy: 5

- **Drives (person, car)**
 - Jimmy 0.3 || Billy 0.6 || Mazda
 - Hank 1.0 || Honda

- **Suspects**
 - Jimmy 0.33 || Billy 0.5 || Hank 0.166
 - Frank 0.25 || Freddy 0.75
One More Example Query

PrimeSuspect (crime#, suspect, accuser)
1 Jimmy, Amy ∥ Billy, Betty ∥ Hank, Cathy
2 Frank, Cathy ∥ Freddy, Betty

Credibility (person, score)
Amy 10
Betty 15
Cathy 5

SELECT suspect, score/\[sum(score)\] as conf
FROM (SELECT suspect,
(SELECT score FROM Credibility C
WHERE C.person = P.accuser)
FROM PrimeSuspect P)

Suspects
Jimmy 0.33 ∥ Billy 0.5 ∥ Hank 0.166
Frank 0.25 ∥ Freddy 0.75

Trio System: Version 1

TrioAPI and translator (Python)

TrioExplorer (GUI client)

• Partition and “verticalize”
• Shared IDs for alternatives
• Columns for confidence, “?”
• One per result table
• Uses unique IDs
• Encodes formulas

• DDL commands
• TrIQL queries
• Schema browsing
• Table browsing
• Explore lineage
• On-demand confidence computation

System Issue: Confidence Computation

Previous approach (probabilistic databases)
• Each operator computes confidences during query execution
• Restricts allowable query execution strategies

In Trio
Confidence of data element \(d\) is function of confidences in \(\lambda^*(d)\)

Our approach
• Use any query execution strategy
• Compute confidences on-demand based on lineage
• Some optimizations
 – “Independent lineage subtrees”
 – Memoization
 – Batch computation
More forms of uncertainty
- Continuous uncertainty (intervals, Gaussians)
- Correlated uncertainty
- Incomplete relations

More forms of lineage
- External lineage
- Update lineage

Confidence-based queries
- Threshold; “Top-K”

Design theory
- Dependencies, normal forms, decomposition
- New definitions, twists, and challenges

System
- Version 2: Go native?
 - Storage and indexing structures
 - Statistics
 - Query optimization

Students...

Don’t be afraid to build systems
- Time-consuming
- Frustrating
- Where’s the paper?
+ Rewarding
+ Visible
+ Long-term impact
+ Here’s the demo! (and the papers)

Search “stanford trio”

Trio contributors, past and present
Parag Agrawal, Omar Benjelloun, Ashok Chandra, Anish Das Sarma, Alon Halevy, Chris Hayworth, Ander de Keijzer, Ragotham Murthy, Michi Mutsuzaki, Shubha Nabar, Tomoe Sugihara, Martin Theobald