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ABSTRACT
Educational Data Mining has the capacity to tailor the edu-
cational experience to each student and to improve student
performance. This is not without issues in representing the
norms and restraints, ensuring compliance with the norms
and restraints, and assigning credit and blame. Work thus
far indicates partial solutions in representation, partial def-
inition of restraints, a requirement for multiple means of
compliance verification, and imprecise credit and blame as-
signment.

1. INTRODUCTION
Research in Educational Data Mining has led to the devel-
opment of robust models for student performance (e.g. [10]),
behavior detection (e.g. [13]), as well as content structure
(e.g. [26, 7]). These in turn have been applied to a wide
range of areas to personalize online content (e.g. [33]), gen-
erate assignments (e.g. [14]), provide data-driven tutoring
(e.g. [28]), and even guide whole courses (e.g. [1]). While
these tools have been successful they have raised a host of
new policy issues for students, parents, educators, and ed-
ucational institutions [4]. These include questions of how
to keep educational data private, or what traditional pri-
vacy or other ethical controls mean when educational data
is transferred across the cloud and shared between individ-
uals, institutions, and service providers [18]. Who is the
ultimate authority, or ‘owner,’ of the data [27]? How can we
enforce issues of fairness and transparency on opaque mod-
els [15, 8, 32], or ensure that they conform to our normative
and regulatory goals [23]? What role do institutions play in
mitigating these harms or in governing the spread of data?
And how will the rise of data-driven education fundamen-
tally change our conception of the education process or even
what liberal education means [12, 9, 31]?

Ultimately these are policy questions which must be ad-
dressed by the parties involved. In this paper we present
a short survey of prior work that focuses on three overrid-
ing questions. First, what norms should govern educational

data mining? Second, how do we implement those norms
in rules and in code and then verify that our systems com-
ply with them? And third, how do we quantify harms and
assign credit for successes particularly when multiple actors
are involved?

2. NORMS, GOALS, AND RESTRAINTS
All policy is governed by social norms which present the
overall goals of a policy, “to educate the next generation
of scientists and engineers,” or set specific limits such as
a restriction on segregation of a student or or other rules
that: “impair and inhibit his ability to study, to engage in
discussions and exchange views with other students, and,
in general, to learn his profession”1. In order to evaluate
the impact of a trained model or other data-driven edu-
cational intervention we have to assess it against existing
norms. As the field of educational data mining has grown
individual models have been evaluated based upon their per-
formance against agreed upon benchmarks of improved near-
term outcomes and self-evaluation. However as trained mod-
els become more widespread it will be necessary to consider
broader norms and more complex tradeoffs of fairness, ef-
ficiency, and equality. We therefore have to consider how
to represent these normative goals and restraints, and what
normative restrictions should be considered in our analysis.

2.1 Representing Norms
According to the U.S. Department of Education, the goal of
online education systems is to ”achieve greater learning out-
comes” while ”customizing the learning experience for each
student” [11]. While this definition is intuitive it is not one
that intelligent agents or existing ML algorithms can un-
derstand or validate. As a consequence it does not lend
itself either to automatically monitoring of educational or
a “bright line rule” rule for data mining that can be imple-
mented in real time. A number of authors have sought to
address this exact challenge by developing formal models for
implementing and evaluating norms.

Bench-Capon and Mogdil sought to draw a distinction be-
tween two classes of formal normative models which they
termed shallow and deep. Shallow models are those that re-
quire translation by a subject-matter expert, such as in the
quantification above[5]. When translating, one often has to
consider multiple laws. These laws frequently conflict. One

1Decision of Chief Justice Vinson U.S. Supreme Court in
the case: McLaurin v. Oklahoma State Regents, 339 U.S.
637 (1950)



potential solution is to prioritize norms from the laws [25].
This approach has multiple opportunities for failure in trans-
lation and prioritization, however, it can be useful so long as
the limitations of this shallow model are known and others
confirm that the model conforms to the policy goals.

More generally, Aldewereld and Vasconcelos proposed that
tasks should be tasked with formally quantifying goals in a
machine-readable way [2]. This formal representation would
identify key factors such as the individual or agent respon-
sible for an outcome or action, the individual taking the ac-
tion, and the goal of the action. These goals in turn would
need to be represented quantitatively (e.g. X% of students
must achieve Y score or students must attend all classes).
This is inline with the shallow model approach. The al-
ternative, a deep model approach, requires that norms are
embedded as intelligent agents which understand goals such
as ”achieve greater learning outcomes” [5]. While this split
framework is more extensible, however, it is also much more
resource intensive. And ultimately this representational task
remains generally unsolved.

2.2 Key Restraints
Correcting misconceptions is nontrivial, repeating individ-
ual lessons takes time, and repeating a school year takes
a permanent toll on a child’s development and their career
prospects. Therefore as autonomous trained agents take a
greater role in education we have to consider not just the
goals that they are designed to achieve but the restraints
that should limit their actions to avoid harm. These harms
can arise from giving incorrect or unfair advice, using incor-
rect resources, or sharing protected information. Some of
the strongest opposition to educational data mining arises
from a, not invalid, concern that existing systems will not
be subject to restraints and will cause real harm due to vi-
olations of existing norms, or simple system error. Or that
these systems will serve to entrench biased policies or overly
rigid structures in ways that are difficult to track [34, 27].

2.2.1 Privacy
As in many countries, U.S. Federal laws on educational data,
the “Family Educational Rights and Privacy Act” (FERPA)
restricts how the personally identifying information (PII) of
students is used [11]. It cannot be used for any purpose other
than that which it was shared. However exactly how this
restriction is interpreted in different contexts varies varies
however. Use of student data to advertise goods and ser-
vices is generally restricted as is linking data to third-party
profiles for marketing. Use of data for research generally re-
quires that it be anonymized prior to use. However whether
such data can be used to guide commercial data-driven ap-
plications, or whether the logfiles and cloud data collected
by third parties should be protected is still subject to debate.

In essence this raises important questions both about the
control of data and the extent to which involved parties can
set limits. If, for example, we view data as property then
who owns it? Is it the students who generated it as part
of a compulsory exercise, or their legal guardians?; Is it the
instructor who guided the classroom activities that are be-
ing monitored?; Is it the institution who commissioned it?;
or is it the service or infrastructure providers who built the
systems that are being used? [27]. These questions matter

because data has high value for students, instructors, and in-
stitutions who may learn from it or be judged, possibly even
fired, because of it. It also has extreme commercial value
to service providers who can use it to build advanced sys-
tems and to guarantee monopolies. All of these parties have
different interests in controlling the spread of data and in
verifying its’ accuracy, especially when it is used by others.
Even anonymized data can raise serious privacy concerns
[16]. It is possible to deanonymize data, thus bringing po-
tentials harms to the students, educators, and more. Even
if not able to link data to a specific individual, it is possi-
ble to create unique profiles which can be used for tracking.
Some policy proposals have been made to mitigate poten-
tial harms caused by amassing educational data. But this
debate is ongoing and gets reset with each new use.

2.2.2 Discrimination and Fairness
Just as school systems, teachers, and volunteers can all dis-
criminate against individuals, so too can algorithms, partic-
ularly trained models which can entrench the consequences
of prior biases into a seemingly infallible form. It is there-
fore important for educational data miners to consider the
role that biases may play in determining their results. One
näıve approach to avoid discrimination would be to mandate
transparency for code or decisions. If, for example, code and
decisions can be audited then evidence of discrimination can
be identified. Such exposure, however, would necessitate the
disclosure of trade secrets and it would fail to address the
potential of biases within the model or training data [3].
Exposing either one risks violating individual privacy and
it still begs the development of a public standard for such
biases and the fact that post-hoc auditing still requires that
someone face harm.

Kroll et al. proposed one avenue to address this via inde-
pendently verifiable proofs, which do not require access to
source code could verify that some restraint was followed,
such as that a teaching agent did not use race or gender as
a qualifier. These could in theory be implemented as a form
of cryptographic commitment which allows for the system
to be audited without exposure of individual or proprietary
data via a zero-knowledge proof [23].

There are additional challenges however when dealing with
something as broad as discrimination. First, it is not pos-
sible or always appropriate to simply ignore discriminatory
features such as gender or ethnicity. Indeed in order to eval-
uate any potential bias or to implement policies such as af-
firmative action these features are necessary. Second, even
if such hot button features are eliminated bias can still be
encoded through secondary proxies such as zip code which
correlate to race and economic status. One approach to ad-
dressing this, proposed by Kroll et al. is “fair affirmative
action” which would normalize the data to ensure equal re-
sults across well-defined groups [23].

3. COMPLIANCE VERIFICATION
If we can identify the specific normative goals and restric-
tions which a model must adhere to, and set standards for
their performance, it is is still necessary to verify that al-
gorithms comply with them. There are three general ap-
proaches that can be taken to compliance verification. We
can set strict standards for development and implementation



that guarantee the resulting system will comply (a-priori
verification). We can observe the behavior of a system as
it is used to judge its’ actions (runtime verification). And
we can analyze the results once they are obtained, some-
times over years (post-hoc verification). Each approach has
strengths and inherent limitations.

3.1 A Priori Compliance Proof
Kamiran, Calders, and Pechnizkiy describe the creation of
a decision tree based model that has bounded discrimina-
tion [20]. Here potentially-discriminatory traits of the type
discussed above are used when training a model. However
the outcome of the trained model is strictly limited to en-
sure that each group is represented fairly. Thus we enforce
a mathematical definition of unfairness at the expense of
additional training time and a loss of accuracy in represent-
ing our underlying data. This approach is generalizable to
other quantifiable constraints. Similar discrimination aware
approaches have been taken by others in related contexts [6,
35]

Dwork et al proposed a variation of this model that both lim-
its discrimination and minimizes the loss in fairness called
”fair affirmative action.” Here ‘fairness’ refers to an individ-
ual receiving minimal loss or gain due to normalization. By
normalizing data ahead of time through a Lipschitz classifier,
which is a mapping of individuals to outcomes such that any
2 individuals who are similar in a task should achieve similar
outcomes [15], statistical parity between groups is achieved
while the loss to fairness is minimized. While such a clas-
sifier is less common within the context of an autonomous
educator, a fair affirmative action based classifier could be
used in the college admittance process in order to achieve
both fairness and equality [15].

A-priori rules of fairness depend upon us having a clear
standard for construction and a formal guarantee that our
changes will lead to good outcomes. This approach, how-
ever, is ill-suited to cases where the standards are not clear
in advance or where we do not have the option to implement
them. For that it is necessary to consider runtime verifica-
tion.

3.2 Runtime Verification
The medical field tackles similar issues to those in educa-
tional data mining and modeling. In medicine the inter-
actions between factors are often poorly understood, and
creating systems that make formal guarantees also means
making strong tradeoffs between privacy and accountabil-
ity. These tradeoffs become more difficult when we must
work with anonymized data or data where each individual
piece may be anonymous but larger or more rich collections
may violate privacy [27]. One approach that has been taken
to handle these issues is a ”query and response” type system
which enforces restrictions on data as it is requested. Here
raw even rich datasets may be available for use but as a given
model requests more and more data or makes requests that
may be combined to violate some privacy threshold their
access will be cut off [17]. In mechanisms like this we im-
plement passive external monitors that enforce pre-specified
constraints.

Lashey and Beasley, by contrast, describe an active experi-
mental form of auditing in a series of studies conducted to
audit hiring practices [24]. Here they evaluated the decisions
made by a series of automated review systems by submit-
ting real resumes that matched but for race or other factors.
This approach allowed them to sample the systems to assess
potential harm. However it required that such harm be clear
and that such online experimentation is possible.

Both of these approaches can be used to evaluate models as
they work or as they exist in the field. This is particularly
important for self-training systems which may be built to
predefined standards but which accumulate additional rein-
forcement over time. In such cases an advance certification
is not possible. However both systems also assume that the
essential limits, either privacy thresholds or bias, can be de-
tected in the immediate term or occur on an individual basis.
When dealing with more complex problems like persistent
unfairness or bias, or where decisions take place over weeks
or years, these approaches may not be viable, hence the need
for post-hoc audits.

3.3 Post-Hoc Audits
Unfortunately, in many cases the only option to detect harm
is on a group scale well after the fact. For cases like per-
sistent, albeit subtle unfairness our only option will be to
collect cases and outcomes and then to evaluate their re-
sults. This evaluation can be done by applying similar a-
priori mining methods to those discussed above [6]. Or by
establishing set thresholds for violation that would trigger
later analysis. Others have proposed that we focus not on
the outcomes but the decisionmaking that led to them [21].
Thus in addition to a decision we also require that models,
or system developers, offer justifications that can be used to
explain the apparent implicit discrimination. Thus if more
female students apply to a competitive program at a uni-
versity while more males apply to a less competitive pro-
gram, a purely outcome-based measure would present the
appearance of gender bias. By accounting for the condi-
tional probabilities of the variables or their likelihoods we
can account for the apparent discrimination and thus show
a lack of harm.

The problem with post-hoc audits is, as noted above, they
can only be conducted well after the fact once actual harm
has taken place. For many problems the individual conse-
quences (i.e. lost opportunities or poor educational perfor-
mance) will already be set and will not be rectified. Addi-
tionally many such harms may be subtle or due to a number
of factors that makes any correction a challenge.

4. HARMS AND CREDITS
In order to conduct any feasible audits or even to evaluate
the impact of a system on an otherwise complex educational
environment we must face two other related issues. First,
how do we quantify the amount of harm done by a system.
How costly is individual bias especially if we are focusing on
small-scale decisions like problem assignment? And second,
to whom do we give credit for successes or failures, particu-
larly as models are used in concert?

4.1 Harm Quantification



When we identify cases of discrimination or poor decision-
making it can often be difficult to quantify the impact. If,
for example, an adaptive tutorial system persistently assigns
newarly-non-optimal problems to a student which just ex-
ceeds their zone of proximal development, how much harm
does that cause? And what form does it take? If a student
simply gets more frustrated but otherwise passes a class, or
does so with a lower grade (a B rather than an A) how do
we account for that? Can we even detect when an education
is poorer but still comparable over the long-term?

One approach to this is to set a-priori bounds on acceptable
harm harm ahead of time. Thus we use the same method-
ology as those for a-priori compliance to set a limit on how
much randomness we will tolerate or how far down we will
assign a student [20, 15]. This approach however falls back
on having a set limit to work with.

Often it is more practical to measure harm after the fact.
This can be measured at a gestalt level. It can also be
measured in subsets - within the context of college admis-
sion, discrimination can be measured by comparing what
percentage of African Americans were admitted to a uni-
versity compared to the overall percentage of admittance
[29, 21]. In these cases, however, it is important to con-
sider context when measuring progress towards a goal. A
marginalized group doing worse on a test does not necessar-
ily mean the test itself was discriminatory - circumstances
and environmental factors can also impact this [22].

4.2 Credit Assignment
The second and far more challenging problem is one of credit
assignment. This is a general problem in AI, organizational
administration, and in public policy. Education is, by na-
ture, a multi-agent environment in which effects play out
over the long-term. It is therefore supremely difficult to as-
sign individual credit or blame for a student’s success or
failure, much less the performance of an entire class. This
problem is only exacerbated by the fact that standards for
performance are defined based upon year level learning and
long-term knowledge which is affected by every system.

Aldewereld and Vasconcelos propose to address this by a
form of micro-assessment [2]. Here we focus on setting stan-
dards for each individual task and specifying responsible
parties (e.g. parents are solely responsible for attendance).
And then we evaluate each involved agent within that box.
That approach can work well when we consider isolated tasks
(like individual assignments) and where we can conduct the
necessary pre-assessments and post-assessments to validate
them. This approach is problematic however in that it re-
quires such constant assessments and it ignores the problems
of long-term consequences, potential inconsistencies between
materials, and the increasingly complex nature of many in-
telligent agents which have moved from well-contained tu-
toring systems to more general class monitors and pervasive
individual coaches. It also ignores the essential problem of
long-term credit assignment and transfer both of which are
core features of education.

5. CONCLUSION
Educational data mining, adaptive educational systems, and
personalized learning have all become a part of our edu-

cational landscape. This rise in adaptive systems and the
corresponding rise in data collection raises a number of im-
portant policy and technical questions. How do re represent
the constraints that these systems must meet? How do we
evaluate them? And where do we assign blame when some-
thing goes wrong.

While there has been a great deal of prior research in all of
these areas far more remains to be done. Proposed models
for the representation and evaluation of norms are as yet
limited. And there is not always a clear consensus on what
the limits should be or whom should decide how to set them.
Moreover even if clear standards can be set it is challenging
to evaluate against them. For some potential harms (e.g.
improper use of protected information) it may be possible
to limit harms in advance through restrictions on data usage
and advance audits. For others, (e.g. frustration-inducing
bad advice) it may be possible to detect the problems as
they occur on an individual basis and to bound them if not
eliminate them. But for other problems (e.g. embedded
bias) there may be no alternative but to check for harms
after the fact. In which case mitigation may not be possible.
And finally, where we can see success or failure, we face the
basic problem of assigning credit or blame.

In this paper we have presented an overview of some of these
issues and have highlighted relevant research. Far more re-
mains to be done both to identify the issues that we must
address as EDM becomes more mainstream, and to develop
robust mechanisms to address it. In this case, as in others,
our ability to develop novel adaptive models, has exceeded
our ability to really evaluate them in context which poses
important challenges for the future.
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