
Abstract

RUSTOGI, SUDHIR KUMAR. Empirical Studies of Coordination in Decentralized

Multiagent Systems (Under the direction of Munindar P. Singh).

A decentralized multiagent system comprises agents who act autonomously based

on local knowledge. Achieving coordination in such a system is nontrivial, but is

essential in most applications where disjointed or incoherent behavior would be unde-

sirable. Coordination in decentralized systems is a richer phenomenon than previously

believed. In particular, �ve major attributes are crucial: the extent of the local knowl-

edge and choices of the member agents, the extent of their shared knowledge, the level

of their inertia, and the level of precision of the required coordination. Interestingly,

precision and inertia turn out to control the coordination process. They de�ne di�er-

ent regions within each of which the other attributes relate nicely with coordination,

but among which their relationships are altered or even reversed. Inertia together

with imprecision, are also crucial for the scalability of coordination. Based on our

study, we propose simple design rules to obtain coordinated behavior in decentralized

multiagent systems.
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Chapter 1

Introduction

Coordination is the act of choosing one's action based on the expectation of others'

actions. We need to coordinate our actions whenever we are sharing goals, resources,

or problem solving capabilities. Lack of coordination can result in di�culty or even

inability in achieving personal as well as social goals. Therefore, coordination is the

key to individual as well as group success.

The study of coordination is a multidisciplinary activity [Malone and Crowston,

1994]. In computer science, the coordination of multiple agents is crucial to the design

of multiagent systems. A particularly interesting class of coordination problems arises

in decentralized multiagent systems. Agents in such systems often act autonomously

based on incomplete (local) information that is often a�ected by uncertainties and

time delay. Further, agents in such systems may not wish to or be able to communicate

or have a common plan.

Several researchers have studied coordination in decentralized multiagent systems.
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Distributed arti�cial intelligence (DAI) researchers have primarily focussed on co-

operative distributed problem solving [Durfee, 1988, Gasser and Jr., 1990, Decker

and Lesser, 1995, Durfee, 1999] by sophisticated agents that work together to solve

problems that are beyond their individual capabilities. The Partial Global Plan-

ning (PGP) approach [Durfee, 1988] requires agents to coordinate by scheduling the

timely generation of partial results, avoiding redundant activities, shifting tasks to

idle nodes, and indicating compatibility between goals. Recognition of coordination

relationships among tasks in PGP, however, is dependent on details of a particular

task environment. Generalized Partial Global Planning (GPGP) [Decker and Lesser,

1995] generalizes the coordination relationships used in PGP, thus forming an ex-

tendable family of coordination mechanisms, any subset or all of which can be used

in response to a particular task environment. The TAEMS framework represents

the coordination problem in a way that abstracts out the details of a particular task

environment [Decker and Lesser, 1995].

The above cooperative distributed problem solving approaches incorporate coop-

eration as an integral part of the design of the system. The agents in the system are all

working towards a single goal. In a slightly di�erent approach, Liu and Sycara [1994]

present a collective problem solving framework, where problem solving is viewed as an

emergent functionality from the evolving process of a society of diverse, interacting,

well-coordinated reactive agents.

Despite many useful results, the above studies provide little domain-independent

agreement on the phenomena that a�ect coordination in decentralized multiagent sys-

tems. They do not particularly study the key features of decentralized systems and

their relationship to coordination. Further, above approaches often rely on commu-

nication for achieving coordination. Communication, though an invaluable tool, does
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not guarantee coordinated behavior [Halpern and Moses, 1990], is time-consuming,

costly and can sometimes be undesirable.

A direction of research explores the key features of decentralized systems and their

relationship to coordination. Advancing this program of research is the primary focus

of this thesis. But �rst a brief historical review of this research direction is warranted.

The early work on coordination considered knowledge as a key factor [Durfee,

1988]. Knowledge is also a key component of several abstract agent architectures,

e.g., the family of belief-desire-intention (BDI) architectures [Ingrand et al., 1992,

Singh et al., 1999]. Although decentralized systems of the kind studied here were not

always considered, the folklore in the research community is that more knowledge

leads to better coordination. It is also recognized that the locally best actions would

not always lead to the best payo� for an individual agent much less the system as a

whole.

Schaerf et al. consider multiagent reinforcement learning in the context of load bal-

ancing in distributed systems [1995]. In their framework, the agents share a number

of resources, which they autonomously select to use. When all agents are noncooper-

ative, e.g., by always selecting their most preferred resources, they all stand to lose.

However, when individuals sometimes select the less desirable resources, the entire

population bene�ts. This is analogous to the well-known prisoner's dilemma [Axel-

rod, 1985]. In Schaerf et al.'s system, agents rely on limited information to achieve

coordination without explicit communication. Here communication may not be useful

in improving the performance of the population and may in fact be detrimental.

In a simpler framework, Sen et al. also study coordination among agents sharing

resources [1994, 1996, 1998]. The agents decide locally, and coordination corresponds

to their achieving equilibrium. Sen et al. argue that, contrary to conventional wisdom,
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giving the interacting agents additional knowledge causes the coordination to slow

down. Baray uses the same framework as Sen, but applies genetic algorithms and

shows that coordination can, in fact, be speeded up by giving additional knowledge

[1998]. The study, however, does not examine the reasons behind such a reversal of

trends from Sen's results.

Huberman and Hogg [1988] study the behavior of computational ecologies which

explicitly incorporates the features of incomplete knowledge and delayed information.

Their theory gives rise to a panoply of interesting behaviors that include asymptotic

regimes characterized by �xed points, oscillations, and chaos. This study, although

rigorous, does not consider many other key attributes of decentralized systems, which

are described later in this thesis. Kephart et al. further study the asymptotic dy-

namics predicted by Huberman and Hogg and show a mechanism to damp out the

oscillatory and even chaotic behavior [1989].

This thesis advances the above program of research by bringing in additional

features of decentralized systems in order to better characterize the outcome of co-

ordination [Rustogi and Singh, 1999a,b]. In particular, the following questions that

emerge at the interface of agent theory and architecture are addressed.

� What are the main concepts involved in achieving coordination in decen-

tralized, i.e., locally autonomous, multiagent systems?

� What are the trade-o�s involved in terms of these concepts from the stand-

point of achieving coordination e�ectively?

The answers to the above questions are, inevitably, interleaved. Also, since multiagent

systems is a new area of investigation, we follow Simon's advice to study carefully

designed simulations to develop a clearer understanding of the theoretical concepts

[Simon, 1996, p. 15]. The experimental results indicate that in particular, �ve major
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attributes of decentralized systems are crucial:

� the extent of local knowledge and choices of member agents.

� the extent of their shared knowledge.

� the level of their inertia or patience in terms of not jumping to another

resource.

� and the level of precision of the required coordination.

Our experiments show that for a low value of inertia, coordination slows down when

the choices available to agents increase [Rustogi and Singh, 1999a]. When shared

knowledge increases, then too coordination slows down. It is shown that perfect

coordination is often inordinately more time-consuming than slightly imperfect coor-

dination [Rustogi and Singh, 1999b]. However, if the agents exhibit higher patience

or inertia, they can usually coordinate faster. Inertia is also shown to be crucial for

the scalability of coordination. Further, our experiments verify the undesirable e�ects

on coordination of uncertainty and delay in updating knowledge.

We study coordination, empirically, in the context of a decentralized resource

allocation problem. Coordination is required as agents share the resources in the

system. The concepts in our work, however, apply to other domains as well. For

example, we can use these concepts to help coordinate agents that are playing a

soccer game. Coordination is required as agents in a team share the goal of putting

the ball in opposing teams' net and of preventing the opposing team from doing the

same. Often, an agent carrying the ball gets open, and one of the opposing agents

must reach out to block it. However, if the agents in the opposing team have low

inertia, more than one agent may reach out simultaneously, which leaves another

agent open and sets up a pass.

Chapter 2 describes the simpli�ed setup used for empirical study of coordination
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in decentralized systems, including the probabilistic decision protocol used by the

agents and the key attributes studied using this setup. The relationship of these

attributes to the coordination process is studied in Chapter 3. This chapter also

studies the scalability of the various experimental results.

Chapter 4 maps the rich terrain of coordination in decentralized systems using

simple qualitative rules that yield heuristics for designing multiagent systems. Chap-

ter 5 discusses some relevant conceptual issues, mentions the pertitent literature and

concludes with a description of the future research direction.
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Chapter 2

Empirical Study of Coordination

The experimental framework used in this study generalizes over the one used by Sen

et al [1994, 1996, 1998]. The setup consists of an array, each of whose elements

is thought of as a resource. Figure 2.1 shows the array|accessed as a ring|that

captures the resources available in the experiment. A number of agents are given.

The agents use a given resource by being in the array index corresponding to that

resource. There can be multiple agents using a resource; each agent uses exactly one

resource. It is assumed that the quality of a resource received by an agent varies

inversely with the number of agents using that resource. Figure 2.2 shows the utility

accruing to an agent based on such a model. Thus each agent would like to be using

a resource that is used by as few agents as possible. Further, it is assumed that all

resources are equivalent and mutually interchangeable.

Agents in the system gradually disperse from the more crowded resources to-

wards the less crowded ones. Equilibrium is achieved when the agents are uniformly
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Figure 2.1: Resources and agents

distributed over all resources, and none move. Equilibrium corresponds to perfect co-

ordination, because it means the agents have achieved a locally and globally optimal

sharing of resources. Note that the present setting requires complementary rather

than same decisions on part of the agents. In general, complementary decisions are

more interesting, because they cannot be hardwired in some trivial mechanism.

Whereas Sen et al. considered only knowledge (which is coupled in their setup

with choice as we show later), we considered in our setup the other key concepts

that were briey mentioned in Chapter 1. These are further elaborated upon later

in this chapter. The knowledge available to an agent is measured in terms of the

number of resources whose occupancy is known to the agent. An agents' choice, on

the other hand, corresponds to the number of resources it can elect to move to. Thus,

knowledge and choice are orthogonal properties. Figure 2.3 illustrates the knowledge

and choice windows for an agent currently located at resource i. For the speci�c case

shown, the agent knows about fewer resources than it can choose to move to. Thus,

some of its potential actions are marked by uncertainty.
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Figure 2.2: Utility accruing to an agent at resource i (ni is the number of agents at

resource i and a is the average number of agents per resource in the system)

In initial experiments, the knowledge and choice windows of an agent were sym-

metrically distributed around its current location, as shown in Figure 2.3. In later

versions, we allowed for the knowledge and choice windows to be skewed with respect

to each other and the agents' current location. This, however, proved to have no

signi�cant bearing on the trends observed.

2.1 Decision Protocol

We postulate that each agent has knowledge of a limited number of the available

resources. This knowledge is in terms of the occupancy at a given resource. Using

this knowledge, each agent �res a simple rule to stochastically decide whether to move

to a new location and, if so, which one. All agents use the same probabilistic decision
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Figure 2.3: Knowledge and choice windows

function and only move to less occupied resources than their present resource. The

system as a whole stabilizes when all of the resources are equally occupied. This

convergent situation represents coordination, because it corresponds to the agents

having achieved a sharing of resources that maximizes the performance or utility for

each of them. Typically, to facilitate convergence, we set an integral ratio of agents to

resources. However, when the convergence condition is liberalized, so that the systems

stops even when an exact match is not obtained, the integral ratio requirement can

also be safely relaxed.

The expressions used by an agent to compute the probability of moving from

current resource i to another resource j in its choice window are given as follows. The

fij values are treated as weights.

fij =

8>>>>>><
>>>>>>:

1 if i = j

0 if i 6= j and ri � rj

1� 1

1+ exp(
ri�rj��

�
)

otherwise

where � , � and  are control parameters, ri the number of agents at resource i, and
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rj the number of agents at resource j. In our experiments, we set � = 5, � = 2, and

 = 1.

The weights are normalized so they are guaranteed to add to 1, and are then

treated as probabilities. Thus, the probability of moving from resource i to resource

j is given by

pij =
fijP
j fij

2.2 Key Attributes

The above simple framework provides enough structure to capture a variety of inter-

esting concepts.

2.2.1 Knowledge

Knowledge refers to a reduction in uncertainty perceived by the agent. Traditionally,

knowledge is believed to help coordination. The amount of knowledge available to an

agent in our setup, is given by the number of resources whose occupancy is known to

the agent. Thus, the knowledge of an agent increases as the agent is given information

about an increasing number of resources. The variables ri and rj, which refer to the

number of agents at resources i and j, respectively, are based on what an agent

located at resource i knows about the environment. If location j is within the agents'

knowledge window, then rj is the actual value of resource occupancy.

2.2.2 Choice

Choice has to do with the number of actions among which an agent is allowed to

choose. In other words, by choice, we mean raw physical choice. Intuitively, too
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many choices would more likely disrupt rather than help coordination. Note that a

rational agent may �nd it has fewer realistic choices when it comes to know more

facts, but that aspect is not directly measured here. If resource j is not in the choice

window, then rj is not used, and pij = 0, even if the resource j is within its knowledge

window.

If, however, resource j is in the choice window of an agent, but not in its knowledge

window, rj is estimated based on the total number of agents and the occupancy of

the known part of the world.

rj =

8><
>:

occupancy of j if j is in knowledge window

(N �K)=u otherwise

where N is the total number of agents, K is the number of agents in the knowledge

window, and u is the number of resources that are not known about. Thus, N

and u are a form of global knowledge in the system. Since eliminating them would

complicate the present experiment considerably, that aspect is deferred to future

work.

2.2.3 Sharing of Knowledge

The amount of shared knowledge among the agents corresponds to overlapping knowl-

edge windows, as shown in Figure 2.4. If the agents follow a homogeneous strategy,

shared knowledge would tend to lead to similar decisions by all. Similar decisions

could lead to more or less e�ective coordination depending on whether the setting

requires the same or complementary decisions.
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Figure 2.4: Knowledge (Kn), choice (Ch), and knowledge sharing of agents at

resources i and j

2.2.4 Inertia

Inertia refers to the reluctance that agents exhibit in updating their decisions in

response to changes in the state of the world brought about by others' actions. A

system whose agents have low inertia may never achieve coordination. In current

setup, inertia is captured using probability pii, which reects the tendency of an

agent to stay in its resource even if better alternatives are known to it.

It turns out that the above protocol maximizes an agents' inertia for problems

of small dimensions, i.e., when few resources are involved. With small dimensions,

especially when the choices are limited, the agent typically has only a few good

alternatives. Each good alternative gets a small positive weight; each undesirable

alternative gets a weight of 0. Thus, the value of pii comes out fairly high. As the

distribution of the agents becomes more uniform, the inertia of each of them goes

even further up, resulting in an inertia of 1 at equilibrium. An inertia of 1 for all

agents denotes convergence, because then none of them move.

We control inertia in our experiments using the parameter �. Inertia, as our

experiments show, can facilitate coordination. A system whose agents have low inertia

may exhibit chaotic behavior, and may never achieve coordination. On the other
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extreme, a very high inertia would lead to an inactive system.

2.2.5 Precision

Instead of de�ning convergence as precise convergence, we found it convenient to

allow some imprecision. Imprecision is the distance from a perfectly coordinated

state, i.e., the minimum number of agent relocations required to coordinate. Thus, a

state would be deemed acceptable (and the simulation would halt) if the number of

agents occupying each resource were within an acceptable level of imprecision.

Introducing imprecision into the experimental framework had important conse-

quences. First, because coordination is achieved much faster when imprecision is al-

lowed, we could simulate much larger con�gurations than otherwise possible. Second,

allowing some imprecision made the trends more robust by reducing the likelihood

of pathological states in which the system may get stuck, e.g., if almost all of the

resources were being used optimally, but say one of the resources was under-used and

another, faraway resource was over-used. Third, imprecision helps us study the above

pathological situations, which are interesting in their own right. This is the basis for

some technical results presented later.

2.2.6 Delay in Updating Knowledge

Delay is introduced when each agent has access to the relevant state of the system,

but only from earlier times. Such delays can have an undesirable e�ect on coor-

dination. We introduce a delay � in our system, quite like Huberman and Hogg's

approach [1988], by allowing agents the knowledge about occupancy of resources in

their knowledge window that is � time steps old or outdated.
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2.2.7 Scalability

Scalability of our setup can be viewed in terms of the total number of resources in

the system and the average number of agents per resource. We study the role of

the various attributes described above in enhancing the scalability of coordination in

decentralized multiagent systems.
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Chapter 3

Experimental Results

This chapter presents and analyses the results from our experiments. As mentioned

in Chapter 2, our experimental framework generalizes over the one used by Sen et

al. Whereas they consider only knowledge (which we �nd is coupled in their setup

with choice), we consider several other key attributes. When these enhancements are

eliminated, we do indeed achieve results similar to those of Sen et al., but in light of

our more extensive exploration, are forced to di�erent conclusions.

3.1 Choice and Knowledge

Some of our experimental results are displayed in Tables 3.1 and 3.2. The tuple in

each caption indicates, respectively, the number of resources, the number of agents,

the initial deviation (the distance of agent distribution from a coordinated state),

and the imprecision tolerated. Each result entry shown in the tables represents an

average of 20 simulation runs.
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Know- Choice

ledge 2 3 4 5 6 7 8 9 10

2 76 73 189 250 778 1060 2341 3793 12749

3 55 106 232 839 1020 2075 4684 9006

4 105 246 884 2321 4444 10658 12818

5 297 1006 1363 6375 8763 18616

6 1234 2403 5051 11036 16381

7 2061 5409 9056 38603

8 7491 14387 32242

9 18041 35064

10 45262

Table 3.1: Number of steps to coordination h10; 30;�15;�0i

We always average the results over several runs, but it takes more runs for the

results to be reliably duplicated if the imprecision is set low, especially for a problem

of larger size. However, the interesting aspect of the trends is not the exact number

of steps taken to converge, but the qualitative relationships among them, such as

whether the number of steps is increasing or decreasing and if so at what polynomial

order. Further, the results based on larger (tolerated) imprecision are generally more

robust. This is because, as our experiments showed, in going from almost coordinated

state to perfectly coordinated state, the system exhibits sustained oscillations for long

periods of time. This point is elaborated upon below.

We compute the tables only for the upper triangular submatrix, because the lower

triangular submatrix is readily determined from it. The lower triangular submatrix

corresponds to the knowledge window being a superset of the choice window. In our

reasoning protocol, this extra knowledge is useless and harmless, because it does not

a�ect the agent's decisions. Thus, the values are essentially constant along each col-

umn below the principal diagonal. (In an actual simulation, they would not be exactly

constant because of randomization, but they are reliably approximately equal.)
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Know- Choice

ledge 2 4 6 8 10 12 14 16

2 64 21 22 31 44 110 127 74

4 17 20 20 59 115 139 174

6 17 31 103 180 254 366

8 51 142 194 518 931

10 339 710 1007 1464

12 1096 2464 7270

14 5257 10550

16 21069

Table 3.2: Number of steps to coordination h16; 48;�24;�4i

As seen from the tables, the trends shown by the diagonal elements duplicate those

achieved by Sen el al. However, for each of these elements, imparting more knowledge

also implies imparting greater choice. Sen el al. attribute this trend (increasing the

choice and knowledge simultaneously increases the time to coordinate) to knowledge

alone, as knowledge and choice are tied together as a single variable in their setting.

However, knowledge and choice are orthogonal concepts. Thus, we do not support

their conclusion that increasing knowledge alone causes a loss of the e�ectiveness of

coordination.

When we increased the choices available to an agent independently of its knowl-

edge, we found as we had suspected that it took longer and longer to converge. More

choices lead the agents to coordinate slowly. However, we found that holding the ex-

tent of the choices constant and increasing the knowledge also led to increased times

for convergence. This was a big surprise. But it was still good news, because sur-

prises are what make empirical research, especially simulations, worthwhile [Simon,

1996, p. 14]. We conjectured that the inherent symmetry in our problem might be

causing this. When we tried to break this symmetry by o�setting the agents' choices

and knowledge, however, it had no substantial e�ect on the above behavior. So we

18



discarded that conjecture. We probe the reasons for this surprising behavior in the

next section.

Observant readers would notice that the trends shown by the diagonal or even �rst

row in Tables 3.1 and 3.2 are not monotonously increasing. Though such a behavior

can occur because of randomizations, we found that this behavior was common to

many more results than we show here. On further investigation, we found that

one of the key attributes in our framework, inertia, caused this behavior. Inertia

is controlled by parameter � as described in Chapter 2. We discuss inertia in detail

later but su�ce it to say here that a lower value of inertia produces the monotonously

increasing trends that we expected, though, the values of individual elements in the

tables increase considerably.

3.2 Sharing of Knowledge

When the local knowledge of agents is increased, an interesting hidden e�ect occurs.

This is the amount of sharing that an agent has with other agents. Intuitively, as the

agents share more and more knowledge, their decisions can become more and more

similar, resulting in greater instability in the system. Once the sharing is factored in,

we can explain the decreased e�ectiveness of coordination when we hold constant the

extent of choices available to each agent.

We de�ne a metric to estimate the extent of sharing of knowledge among the

agents. This metric estimates the \amount" of knowledge of a given agent that is

also available to others. This metric obviously depends on the size of the knowledge

window. As the windows for the agents increase, the windows overlap to a greater

degree with more agents, resulting in higher e�ective sharing.
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To de�ne our metric, let the window size available to all agents be k. The given

agent's window overlaps to the extent of (k � 1) with agents one slot to the right or

left of it, (k � 2) with those two slots away, and so on. Thus each agent has a total

sharing of �(k2). The sharing in the entire system is �(Nk2), for a total of N agents.

When k is large, we can treat this as �(k3). This result leads us to the following

hypothesis.

H1. Increasing the knowledge while holding the choice constant increases the con-

vergence time proportional to the cube of the size of the knowledge window.

� � Choice = 16
� � Poly.  Choice = 16
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Figure 3.1: E�ect of sharing of knowledge h16; 48;�24;�4i

Figure 3.1 which is based on the last column of Table 3.2, shows that the time

to convergence indeed has the same order as the sharing metric. To reduce clutter,

we only show the graphs for a cubic polynomial that was �t to the data, and data

corresponding to the last column (constant, maximal choice) of Table 3.2. This
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�gure indicates that sharing of knowledge may have a signi�cant role to play in the

�nal understanding of coordination in decentralized systems where the agents are

homogeneous and coordination calls for complementary decisions, as here.

Sharing and choice, however, are not the only reasons that slow down the co-

ordination. Other attributes, especially inertia and imprecision act in concert, as

demonstrated in the following sections. This is also evident from the last column of

Table 3.1. The time to convergence, in this case, is an order or two lower than the

sharing metric. This, however, is easily explained when we compare the problem sizes

represented in Tables 3.1 and 3.2. Given the same values of parameters (�, �, and )

for both sets of results, the inertia neutralizes the e�ects of sharing to a much lesser

degree in the larger problem than it does in the smaller problem.

The inertia also has a bearing on the results of Table 3.2. Although, the time to

convergence for the outer three columns has the same order as the sharing metric, it

has a lower order than the sharing metric for the inner columns. This, however, is

not surprising. Agents, in the case of inner columns, have lower choice and therefore

higher inertia that neutralizes the e�ect of sharing to a greater extent than in the case

of outer columns. The role of inertia in achieving coordination is studied in greater

detail in Section 3.4.

3.3 Precision

In Chapter 2 we de�ned imprecision as the distance from a perfectly coordinated

state, i.e., the minimum number of agent relocations necessary to lead the system

from a given state to a perfectly coordinated state. Reducing the required precision

in this manner, enhances the scalability of coordination. In other words, as the
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required quality of the coordination increases, the cost in time to coordinate becomes

extremely high. We studied this observation further by delineating the e�ect of the

deviation from coordination at the start of each simulation run. For a system with

30 agents and 10 resources, the deviation ranges from 1 (almost coordinated) to 15

(maximally uncoordinated).

� � Initial Deviation = 1
� � Initial Deviation = 15
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Figure 3.2: E�ect of initial deviation h10; 30;�0i

Figure 3.2 demonstrates that it takes far fewer steps to progress from maximal

uncoordination to almost perfect coordination than to go from almost perfect coordi-

nation to perfect coordination. In other words, the last little bit of precision consumes

almost all of the e�ort.

The previous result suggests that the time to coordinate increases exponentially

as the allowed imprecision is reduced to zero. Figure 3.3 supports this claim. The

exponential variation occurs, because during the last little bit of precision, the sys-

tem begins to exhibit divergent properties (i.e., becomes increasingly unstable). We
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� � Exponential Fit
� � Simulation
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Figure 3.3: E�ect of imprecision h10; 30;�15i

explore the reasons behind such a behavior in Section 3.6. The exponential variation

described above, however, does not manifest itself when the agents have little choice,

because in such scenarios, the agents cannot move around much anyway. Instead, as

Figures 3.4 and 3.5 demonstrate, for small choice windows, the time for coordination

increases only polynomially with reducing allowed imprecision. In these �gures, to

help visualize the trends better, each curve is normalized to 1 with respect to its

maximum value. It should be obvious, however, that for low values of imprecision

(including 0), the actual time to coordinate increases with choice. For higher values,

the time to coordinate is practically independent of the choices available to the agents

or the knowledge possessed by them.
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� � Choice = 2
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Figure 3.4: E�ect of choice relative to imprecision h10; 30;�15i (each curve is nor-

malized to 1)

3.4 Inertia

Recall that inertia refers to the tendency of an agent to stay in its present resource

even if it knows of better resources. From the probability calculations of section 2.1 in

Chapter 2, it should be clear that, in general, as the number of choices increases,
P

j fij

increases, and consequently the inertia (i.e., pii) decreases. This reason, especially

when coupled with an imprecision of 0, can prevent coordination even for moderately

large dimensions.

In our setup, inertia is characterized by the parameter �. The preceding results

were based on � = 5; now we vary � above and below this value. Figure 3.6 shows

that increasing the inertia facilitates coordination. This is because when the agents

are less likely to move, a low occupancy resource will not suddenly be occupied by
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Figure 3.5: E�ect of choice relative to imprecision h16; 48;�24i (each curve is nor-

malized to 1)

several agents. Conversely, decreasing the inertia to a low value can make coordination

extremely slow. The agents appear to jump about too much and system takes longer

and longer to converge. For such cases, the detrimental e�ect of shared knowledge

still applies; thus adding knowledge slows coordination.

Interestingly, for high inertia, an increase in knowledge or choice further improves

the coordination. This relationship is a reversal from when the inertia is low. It

appears that the trend changes, because higher inertia limits agent movement to

such an extent that the bene�ts of additional local knowledge in decision-making

overshadow the usual ill e�ects of increased sharing of knowledge.

The improvement of coordination due to increasing inertia is observed only if

the inertia is not too high. Increasing the inertia to a very high value results in slow

coordination. This is because very high inertia causes the agents to freeze in whatever
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Figure 3.6: E�ect of inertia (�) h10; 30;�15;�0i

resources they occupy.

3.5 Delay in Updating Knowledge

Delay (�) is introduced by allowing agents the knowledge about occupancy of re-

sources in their knowledge window that is � time steps old or outdated. The results

obtained from our simulations with the introduction of delay in updating knowledge

are summarized in Tables 3.3-3.5. These results show that for a given inertia (here

� = 9), delay in information access causes the coordination to slow down due to

sustained oscillations in the system. This veri�es a similar theoretical result obtained

by Huberman and Hogg [1988].

Unlike Huberman and Hogg who show that oscillations (and hence a slowdown in
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choice

knowledge 2 3 4 5 6 7 8 9 10

2 303 209 132 81 89 114 88 84 127

3 196 119 101 76 62 104 215 103

4 87 74 79 67 80 141 114

5 68 41 47 107 71 106

6 55 48 50 66 84

7 46 59 54 86

8 36 46 60

9 41 46

10 35

Table 3.3: E�ect of delay, � = 0 h10; 30;�15;�0i

choice

knowledge 2 3 4 5 6 7 8 9 10

2 309 227 158 213 286 301 523 526 1631

3 198 169 158 195 346 577 478 1213

4 95 173 217 289 500 763 1186

5 89 228 209 303 424 825

6 90 160 319 435 878

7 206 312 378 763

8 288 373 562

9 559 751

10 446

Table 3.4: E�ect of delay, � = 2 h10; 30;�15;�0i

coordination) occurs due to delays alone, we have shown earlier that such slowdown

can also occur despite complete knowledge and no delays provided inertia is set to a

low value. This behavior was not observed by Huberman and Hogg as they selected

a high enough inertia in their formulation by setting the value of time interval to

a su�ciently small value such that at most one agent changed its strategy in any

timestep.

Conversely, Kephart et al. [1989] selected a low enough inertia through a param-

eter �, which in fact combines the e�ects of inertia with delay. However, as inertia is
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choice

knowledge 2 3 4 5 6 7 8 9 10

2 320 234 365 354 706 1603 3637 5388 10105

3 303 243 351 875 1683 3200 5220 10129

4 162 430 663 1395 3023 10310 13690

5 449 809 1893 3135 8332 8288

6 907 1757 4451 8344 16041

7 5575 8312 14589 38881

8 15917 33174 47620

9 81961 72640

10 84863

Table 3.5: E�ect of delay, � = 4 h10; 30;�15;�0i

coupled with delay in their formulation, they do not explicitly study the above case.

Tables 3.3-3.5 show that apart from slowing down the coordination, delay also

reverses the trends of their columns. Thus delay has an e�ect that in many ways is

quite opposite to that of inertia. This intuition is captured by Kephart et al. through

their parameter � in which delay and inertia are invertly related.

3.6 Scalability

Recall that reducing the required precision enhances the scalability of coordination,

especially when a low value of inertia is used. Almost all the e�ort is consumed in

progressing from a deviation of 1 (almost coordinated) to 0 (perfectly coordinated)

as explained earlier based on Figure 3.2. Using a moderately high value of inertia

also enhances the scalability of coordination. In this section, we explore the reasons

for these behaviors, both analytically as well as empirically.

Given that most of the coordination e�ort is consumed in the last bit of coordi-

nation, we study analytically the setup shown in Figure 3.7 for the case where all the

agents in the system have global knowledge. For a system with n resources and a � n
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a

Figure 3.7: System setup used to explore scalability

agents, a being the average number of agents per resource, the sizes of knowledge and

choice windows are �xed at n. The convergence characteristics of this system can

be studied in terms of the expected number of agents in the various resources at the

next timestep.

Based on our decision protocol, the a(n � 2) agents occupying (n � 2) resources

in Figure 3.7 either stay at their current location or move to the resource x. The

weights for these actions are given as

fii = 1

fix = 1�
1

1 + exp(1��
2
)
; 8i : i 6= x; i 6= y

and the probability of moving from resource i to resource x is given by

pix =
fix

1 + fix

Resource x is occupied by (a � 1) agents who, due to our protocol, do not move in

the next time step. The (a+ 1) agents occupying resource y can either stay at their

current location or move to any other resource. The weights for these agents are

fyy = 1
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fyx = 1�
1

1 + exp(1� �
2
)

fyi = 1�
1

1 + exp(1��
2
)
; 8i : i 6= x; i 6= y

and the resulting probabilities are given by

pyy =
1

1 + fyx + (n� 2)fyi

pyx =
fyx

1 + fyx + (n� 2)fyi

The expected number of agents at resource x at the next time step is computed

as follows. Let numx be a random variable corresponding to the number of agents

at resource x in the next time step. As numx follows a binomial distribution, the

expected value of numx is computed as given below.

E[numx] = (a� 1) + a(n� 2)pix + (a + 1)pyx

Similarly, the expected number of agents at resource y at the next time step is given

by

E[numy] = (a+ 1)pyy

The expected number of agents at resource x, computed using the above equation

with � equal to 4 and 10 are summarized in Tables 3.6 and 3.7, respectively. Table 3.6

shows that for low values of inertia (characterized by � = 4), the expected occupancy

of the least occupied resource x (with an occupancy of a�1 at the current time step)

increases well beyond the average occupancy a. Further, the higher the values of a

and n, the higher is the expected occupancy. These results indicate that a low inertia

has negative implications for scalability. The argument in favor of high inertia for

improved scalability is well supported by Table 3.7. Later in this section, we verify

these conclusions, using empirical results obtained from our simulations.
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n

a 10 16 20

2 3.7642 5.5309 6.7313

3 6.0970 8.7612 10.5675

4 8.4299 11.9915 14.4036

Table 3.6: Expected number of agents at resource x (� = 4)

n

a 10 16 20

2 1.2227 1.3503 1.4356

3 2.3259 2.5178 2.6460

4 3.4291 3.6853 3.8564

Table 3.7: Expected number of agents at resource x (� = 10)

Similarly, Tables 3.8 and 3.9 show the expected number of agents at resource y

for � values of 4 and 10, respectively. However, these tables show that the expected

occupancy of the most occupied resource y (with an occupancy of a+1 at the current

time step) doesn't have negative implications for scalability with low or high inertia.

n

a 10 16 20

2 1.0996 2.1411 2.5192

3 1.4661 2.8547 3.3589

4 1.8326 3.5684 4.1986

Table 3.8: Expected number of agents at resource y (� = 4)

We verify the above conclusions (drawn analytically), using the empirical results

obtained from our simulations and shown in Tables 3.10-3.13. The results in these

tables are based on a tolerated imprecision of 0. Given a value of �, the number of

steps to coordination increase as the problem size increases (Tables 3.11 and 3.12).

Further, as Tables 3.10-3.13 show, the number of steps to coordination decrease as �

increases for each problem size.
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n

a 10 16 20

2 2.7128 2.8312 2.8916

3 3.6170 3.7750 3.8554

4 4.5213 4.7187 4.8193

Table 3.9: Expected number of agents at resource y (� = 10)

knowledge/ a

choice 2 3 4

2 85 84 79

3 81 68 58

4 62 38 91

5 57 70 127

6 49 152 540

7 76 192 1366

8 73 445 3821

9 99 834 13885

10 132 1632 27961

Table 3.10: E�ect of scalability (n = 10; � = 6)

3.7 Other Variants Considered

Our interest is in understanding the phenomenon of coordination in general, not

analyzing the speci�c setup used in our experiments. Thus we emphasize the trends

observed in the simulations, and the qualitative relationships among the trends, such

as whether the number of steps is increasing or decreasing and if so at what polynomial

order. Our experiments included complex scenarios, but which also yield the same

trends as the simple scenarios on which the above results are directly based.

� Our results hold for several decision functions, but we present only the

simple decision function used by Sen et al.

� We observed that keeping the knowledge and choice windows of an agent

symmetrically distributed around its current resource yield the same trends
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knowledge/ a

choice 2 3 4

2 210 184 166

3 169 130 116

4 60 63 61

5 59 53 50

6 39 68 40

7 34 54 75

8 42 57 57

9 41 55 135

10 33 44 113

Table 3.11: E�ect of scalability (n = 10; � = 8)

as when the windows are skewed with respect to each other; therefore, we

focus on the simpler situation.

� To enable convergence, we set an integral ratio of agents to resources.

This is not strictly necessary when imprecise coordination is allowed, but

changing the ratio has no e�ect on the trends, so we report only the

integral situations here.

� Except when precision itself is a variable, we can make do with lower preci-

sion, because it yields faster convergence without a�ecting the qualitative

nature of the trends.

� We studied the role of inertia and its interplay with knowledge and choice,

by altering the control parameters (�, �, and ) in our protocol. The

results highlighted an interesting interplay among the various bases of

coordination. Varying � alone, however, provides representative results.

� We also calculated the average system utility based on Figure 2.2 of Chap-

ter 2, for each of our runs. It was observed that the longer agents took

to converge the lower the corresponding system utility was. Table 3.14,
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knowledge/ a

choice 2 3 4

2 410 384 367

3 430 404 321

4 150 169 148

5 124 145 142

6 85 89 199

7 103 181 308

8 131 232 407

9 129 324 802

10 180 481 1520

11 189 574 3082

12 188 753 3808

13 205 1626 14571

14 231 1755 23855

15 374 2851 50523

16 618 4369 96834

Table 3.12: E�ect of scalability (n = 16; � = 8)

which corresponds to the results of Table 3.2 of Section 3.1, illustrates this

observation in ample measure. This, however, was no surprise. Therefore,

we did not always present those results and relied only upon the time to

convergence to make our claims related to system performance.
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knowledge/ a

choice 2 3 4

2 1090 987 880

3 1250 899 778

4 415 245 281

5 285 191 170

6 191 198 138

7 137 174 99

8 152 102 138

9 97 140 110

10 87 114 117

11 87 87 145

12 112 118 135

13 69 125 253

14 106 102 249

15 66 147 258

16 111 113 319

Table 3.13: E�ect of scalability (n = 16; � = 10)

Know- Choice

ledge 2 4 6 8 10 12 14 16

2 0.768 0.771 0.809 0.822 0.828 0.821 0.824 0.814

4 0.795 0.815 0.828 0.822 0.819 0.813 0.810

6 0.816 0.826 0.820 0.814 0.804 0.801

8 0.813 0.806 0.802 0.793 0.787

10 0.787 0.782 0.779 0.773

12 0.761 0.759 0.756

14 0.745 0.739

16 0.732

Table 3.14: Average system utility based Figure 2.2 h16; 48;�24;�4i

35



Chapter 4

Rules for E�ective Coordination

Our experimental study of decentralized multiagent systems brought out a number

of important factors that a�ect coordination. Some of these factors|inertia and

precision|have not previously been empirically studied in such systems. Others|

knowledge and choice|have been studied but, as our analysis showed, the relation-

ships involved are richer than believed. Trends due to inertia and precision can

dominate and sometimes reverse the simpler trends due to knowledge and choice.

4.1 Mapping the Terrain

The following simple rules summarize our qualitative results.

R1. Low inertia & low imprecision =) knowledge sharing governs behavior =)

local knowledge & limited choice perform better

R2a. Moderately high inertia =) extent of knowledge or choice is less important
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R2b. High imprecision =) extent of knowledge or choice is less important

R3. Very high inertia =) system inactivity

The above rules demarcate the most important regions of our terrain. Figure 4.1

illustrates the corresponding regions. Rule R1, supported by Figure 3.1, is mapped to

Region I in Figure 4.1. To achieve e�ective coordination in this region, agents must

limit their knowledge as well as choice. The results of Sen et al. lie within this region.

Figures 3.4-3.5 and 3.6 support the rules R2b and R2a, respectively. The results of

Baray lie within this region|this is the reason he obtains much faster coordination

than Sen et al. These rules, mapped to region II of Figure 4.1, imply that knowledge

and choice are less relevant for coordination. Rule R3 is intuitively obvious and is

represented by region III in Figure 4.1.

The value used for inertia in the di�erent regions of Figure 4.1 must be adjusted to

account for delay in updating knowledge. As pointed out in Chapter 3, the higher the

delay the higher must be the corresponding value of inertia at each of the boundaries

separating regions I , IIa, and III . The values of inertia and imprecision at each of

the region boundaries in Figure 4.1 must also account for the problem size measured

in terms of number of agents and resources in the system. The larger the problem

size the larger should be the inertia and imprecision.

The study of coordination is interesting from a practical engineering standpoint.

The above rules yield heuristics to aid in the engineering of a multiagent system. Our

�rst conclusion is that for maximal scalability, we should allow some imperfection in

coordination. Even a slight tolerance for imperfection improves performance consid-

erably. A moderately high value of inertia is desirable. Selecting the right value is

nontrivial, especially because it will change in a dynamic system. An open problem
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Figure 4.1: Mapping the terrain of decentralized systems

is to devise online learning techniques to adapt to the right inertia during execution.

Interestingly, for most of the situations in our setup, local information performs

better than global information. Even when local information gives suboptimal results,

for many applications, it can provide a reasonable tradeo� with the cost incurred in

acquiring the global information.
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Chapter 5

Conclusions

We explore the key features of decentralized systems and their relationship to coordi-

nation. For this purpose, we use an experimental framework that generalizes over the

one used by Sen et al. The experimental results indicate that in particular �ve major

attributes of decentralized systems are crucial: the extent of the local knowledge and

choices of the member agents, the extent of their shared knowledge, the level of their

inertia, and the level of precision of the required coordination. The subtle interplay

of above attributes, not all of which were considered in most previous studies, makes

coordination in decentralized multiagent systems a richer phenomena than previously

believed.

The experiments show that for a low value of inertia, coordination slows down (due

to sustained oscillations in the system) when the choices available to agents increase.

When shared knowledge increases, then too coordination slows down. For a higher

inertia, however, the above trends are seen to reverse. Inertia or higher patience by

the agents tends to damp out the oscillations that cause the system to slow down.
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It is also shown that perfect coordination is often inordinately more time-consuming

than slightly imperfect coordination. Inertia together with imprecision, are shown

to be crucial for the scalability of coordination. We verify this conclusion this both

analytically and empirically.

Our experiments also verify the well-known but undesirable e�ects of uncertainty

and delay in updating knowledge, on the coordination process. We show that for

a given inertia, delay in updating knowledge causes the coordination to slow down.

We, however, show that delay alone does not cause the oscillations and resulting slow

down, as often believed. The chief culprit is a low value of inertia used by agents in

their decision process.

Our experiments show that precision and inertia, primarily, control the coordina-

tion process. They de�ne di�erent regions within each of which the other attributes

relate nicely with coordination, but among which their relationships are altered or

even reversed. Based on our study, we propose simple design rules to obtain coordi-

nated behavior in decentralized multiagent systems.

5.1 Discussion

In this study, we developed empirical results about coordination in a simple setting

involving multiple, potentially conicting, autonomous agents. Despite its simplicity,

our setup led to nontrivial and surprising results. By using an experimental framework

more general than that of Sen et al., we were able to reproduce their numeric results

as a special case, yet also show how their conceptual conclusions were not supported.

Unlike Sen et al. and Huberman and Hogg [1988], we allow agents to choose among

actions that are not necessarily rational (dictated by their knowledge). Further,
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Huberman and Hogg model knowledge di�erently from us as well as Sen et al. in

that knowledge in their setup measures the accuracy with which an agent perceives

(knows) its payo�s. This implies an assumption that agents are able to perceive their

payo�s and are able to evaluate the payo�s for di�erent strategies. We, like Sen et

al., model knowledge using a more direct, simpler approach.

We also capture the interplay of delay and inertia in our setup. Unlike Huberman

and Hogg [1988] who show that oscillations and hence slowdown of coordination

occurs due to delays alone, we have shown that such slowdown also occurs despite

complete knowledge and no delays provided inertia is set to a low value. Kephart et

al. [1989] select a low enough inertia in one of their parameters. However, as inertia is

coupled with delay in their formulation, they do not explicitly study the above case.

There are some limitations of the present experimental setup. It focuses on cases

where the resource conicts are direct and immediately perceived, the resources are

homogeneous, the agents all use the same decision-making protocol, and the agents

do not communicate directly. Further, the agents are non-adaptive in their decision-

making protocol. Given the well-known limitations of reinforcement learning, the

present experiments leave open the possibility that more sophisticated agents in more

exible environments, where their learning is supervised in certain ways might dis-

cover better ways of coordination. Further, these may turn out to have di�erent

characteristics in terms of the inuence of knowledge and choice.

Our contribution, however, is not only in developing the results we presented,

but in identifying some of the several factors that play a role in determining the

coordination of autonomous agents. We also made some progress in delineating the

trade-o�s among these factors. In general, in making claims about an intuitively

interesting concept, we must avoid the risk that other factors may intrude into our
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representation, processing, or measurement and collation. This is a di�cult task

where theoretical development must be interleaved with controlled experimentation

or simulation. We have only taken the initial steps of such a systematic study.

Given the simplicity of setup used, our results should not be taken as etched

in stone. However, it is essential to report and discuss them. This is because of

two major reasons. One, the problem of learning to coordinate and its relationship

to other concepts is crucial to theories and architectures of agents and multiagent

systems. Two, the present kinds of studies are of the category of exploratory research,

which Cohen [1995] eloquently argues is key to empirical research and must occur

prior to the formulation of more precise questions and experimental protocols that

are ultimately the core of experimental science.

5.2 Literature

In addition to the works mentioned before, some interesting relevant approaches are

known in the literature. For instance, Kuwabara et al. present a market-based

approach in which agents controlling di�erent resources set their prices based on

previous usage, and buyer agents choose which resources to use [1996]. The buyer

agent can use more than one resource concurrently, and seeks to minimize its total

spending. As in our approach, the buyer's decision-making is probabilistic. Although

their model is similar to ours, they do not study the reasons for achieving e�ective

coordination. To achieve e�ective coordination in their system, one of the system

parameters (�) is set to a very high value initially and subsequently reduced to a

much lower value. In our setup this amounts to selecting a low inertia early on, which

is then increased to a higher value later in the simulation, to facilitate convergence.
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Chavez et al. [1997] introduce Challenger, a multiagent system that performs

distributed resource allocation with each agent individually managing a local resource

and relying only on locally available information. Challenger is similar to market-

based system of Kuwabara et al., in that the agents act as buyers and sellers in a

marketplace, always trying to maximize their own utility. A key di�erence is in the

addition of a learning behavior to Challenger's agents for allowing better performance

under a wide range of conditions.

Results by Hogg & Huberman indicate the potential bene�ts of introducing hetero-

geneity of di�erent forms [1991]. These agree with the intuition that in homogeneous

settings, the sharing of knowledge may have an undesirable e�ect on coordination.

This is especially so when the agents must make complementary decisions so as to

coordinate, i.e., move to di�erent locations.

Knowledge has long been recognized as a key factor in AI planning and is often

characterized as either domain knowledge or control knowledge. Domain knowledge

describes the world and the actions that are available to the planner. Control knowl-

edge indicates how the planner controls its search for a plan. Minton [1988] describes

an explaination-based approach to learn search control knowledge in the planning

system, PRODIGY. He observes that PRODIGY can sometimes learn search con-

trol rules that degrade rather than improve the system's performance. PRODIGY

discards such useless even harmful rules, though the problem of discarding harmful

knowledge is not trivial. This is yet another instance of how additional knowledge

can sometimes be detrimental.

Although we introduced some interesting considerations, a lot remains to be done.

Choice and inertia bear an interesting relationship to the notion of commitments. It

appears that the two are complementary in that the greater the agent's choice the
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lower its commitment to a particular decision. Previous experimental work appears

especially relevant. Kinny & George� empirically investigate how the agents' commit-

ment to their current plan contributes to their e�ective behavior [1991]. The agents

in their work are characterized as bold, normal, or cautious based on the extent of

their commitment (akin to inertia here), ranging from high to low, in that order.

The cautious agents continually reconsider their plan at every step, in the face of

a dynamic environment, and therefore exhibit the least commitment. For the most

part, bold agents, despite their higher degree of blind commitment, perform better

than normal and cautious agents except when the rate of change is very high. Kinny

& George�, however, do not study the e�ectiveness of behavior when the degree of

commitment is very high.

When agents are loosely coupled, communication is often expensive relative to

computation [Bond and Gasser, 1988]. This has led to active exploration of coordina-

tion techniques requiring little or no communication. Fenster et al. [1995] draw upon

the intuition of communication-free human interactions to develop a focal point algo-

rithm and simulate its applicability in randomly generated, albeit, simpli�ed problem

domains. The focal point algorithm applies to any world consisting of several objects

each having various properties (measured using predicates) and in which the agents

want to choose a common (same) object without communicating with each other. For

each agent to select the same focal points, the authors make use of intuitive proper-

ties such as uniqueness (rarity), symmetry, and extremeness. This technique assumes

complete and perfect knowledge of the world on part of the various agents though it

allows local (independent) representation of this knowledge in each agent.

Rachlin et al. also show how agents can achieve coordination without explicit com-

munication using their A-Team architecture [1998]. An A-Team is an asynchronous
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team of agents that shares a population of solutions that evolve over time into an

optimal set of solutions. Through sharing of the solution population, cooperative

behavior between agents may emerge leading to better solutions than any one agent

could produce. Often, however, a human agent may be necessary to help achieve

coordination by imparting domain-speci�c knowledge.

Shehory et al. present an approach to load balancing based on agent cloning

[1998]. They treat load balancing problems by considering that agents are overloaded

with tasks while the resources that the agents use may be idle. They implement

agent cloning mechanism in their RETSINA infrastructure to remedy local agent

overloads. Overloaded agents create new agents or clones to perform excess tasks

using the unused resources on the system. To decide when to clone, a stochastic

model of decision making based on dynamic programming is used.

5.3 Future Work

In closing, we mention several directions into which this work can be further ex-

panded. To apply the gains of this work to a real-life setting requiring decentralized

coordination, there is a need to develop adaptive approaches for proper selection of

some of the key attributes discussed earlier. To this end, an approach such as one in

which multiagent learning is supervised in certain ways, may be used.

The present work can be expanded to consider communication among agents|

explicit or implicit|and to better characterize the circumstances under which it helps

or disrupts coordination. Further, there is a need to consider dynamic systems in

which both agents and resources are being removed and added back. Such a dynamic

system is likely to further emphasize the role of inertia and imprecision.
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The concepts in this work are illustrated using a decentralized resource allocation

problem. While we do not investigate multiagent planning here, as su�cient pertinent

literature exists, a future direction could extend the notions developed in this study

to distributed problem solving and distributed constraint satisfaction problems in

cooperative multiagent systems, to further test their applicability. The mapping of

the various attributes from our work, to the above domain may be obtained as given

below.

� Knowledge: the number of constraints exchanged among agents; the num-

ber of agents with whom an agent exchanges information determine its

neighbourhood or the locality of its knowledge.

� Choice: corresponds to selection of constraints an agent chooses to satisfy

(or adjust in concert with other agents or on its own).

� Inertia: corresponds to how much resistance agents have to satisfy (or

adjust) constraints.

� Imprecision: the degree to which the global constraints are met (based on

the number of unsatis�ed constraints or a similar metric).
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