
Abstract

YOLUM, PINAR. Flexible Execution of E-Commerce Protocols: A Commitment-Based

Approach (Under the direction of Munindar P. Singh).

Protocols represent the allowed interactions among communicating components. Proto-

cols are essential in electronic commerce to constrain the behaviors of autonomous entities.

Traditional representations of protocols include the allowed actions, but not their content.

This prevents them from being applied in settings where autonomous entities must flexibly

interact to handle exceptions and exploit opportunities.

We develop an agent-based approach in which we model the communication protocols

via a commitment-based representation. This formalism provides a content to the proto-

cols. The content can be reasoned about, thereby enabling flexible execution. We provide

reasoning rules to capture the evolution of commitments and show how an existing protocol

can be systematically enhanced to yield a protocol that allows the given actions as well as

other legal moves. We also show how a commitment-based representation can be compiled

into a finite state machine for efficient execution.
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Chapter 1

Introduction

Commerce, electronic or otherwise, is based on communication among interacting partic-

ipants. Protocols streamline this communication. Although e-commerce promises to be

more flexible than traditional commerce, current techniques for specifying and enacting

e-commerce protocols result in more rigid protocols than traditional, human-oriented pro-

tocols. This rigidity subverts some of the motivations behind e-commerce [Kimbrough and

Lee, 1996].

Protocols for e-commerce have traditionally been modelled by the same formalisms

used to specify network protocols. Although protocols in both areas are based on the idea

of modelling communication between components, the formalisms used for network proto-

cols are not adequate to represent the interactions in e-commerce [Fisher and Wooldridge,

1997]. As a consequence of this, most e-commerce protocols suffer from unneeded rigidity

in execution, resulting in redundant interactions and unnecessary failures. In order to deal

with this problem, we first investigate the desired properties of the components and then

describe a new formalism that can accommodate them.
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1.1 Dynamic Properties

Current formalisms used in modelling networking protocols, such as finite state machines

and Petri Nets, specify protocols merely in terms of legal sequences of actions without

regard to the meanings of those actions. For this reason, traditional protocols are often

over-constrained to the level of specific sequences of actions.

However, e-commerce protocols should not only constrain the actions of the partici-

pants, but also recognize the open, dynamic nature of e-commerce interactions by accom-

modating the key aspects of autonomy, heterogeneity, opportunities, and exceptions.

� Autonomy: Enabling participants to exercise autonomy as much as they can in

the social environment in which they are situated is a crucial factor in creat-

ing effective e-commerce context. The components should be able to exercise

autonomy in deciding what actions they want to perform, who they want to in-

teract with, or how they want to carry out their tasks. Thus, in an e-commerce

setting, components must retain their autonomy and be minimally constrained

in their interactions, that is, constrained only to the extent necessary to carry

out the given protocol.

� Heterogeneity: Components can be diverse in their identity and adopt different

strategies to carry out their interactions. In current protocol specifications the

identities of the participants are not taken into account. All those playing a

given role are assumed to have identical qualities. This especially stands out in

the case of trust. In most e-commerce protocols, all participants are assumed

to be untrustworthy, and each step of the protocol ensures that appropriately

safe actions are taken by the various participants. This unrealistic assumption

degrades the performance of the protocols since the actions performed could

2



be greatly varied according to the correspondents’ identities. In particular,

participants that have established trust with each other could safely skip certain

steps in the protocol.

� Opportunities: Components should be able to take advantage of opportunities

to improve their choices or to simplify their interactions. Depending on the

situation or the specific participant, certain steps in a protocol can be skipped.

A participant may take advantage of either personal knowledge, or a conve-

nience provided by other participants, and jump to a state in a protocol without

visiting one or more intervening states.

� Exceptions: Components must be able to modify their interactions to handle

any unexpected conditions. The sort of exceptions referred to here are not

programming or networking exceptions such as loss of messages, network de-

lays, and so on, but are higher-level exceptions that result from the unexpected

behavior of the participating parties.

1.2 Semantic Analysis

We now analyze the concepts and challenges underlying communication, especially with

regard to the execution of activities. As a running example, we consider the NetBill proto-

col that has been developed to handle the buying and selling of electronic goods, such as

software and electronic documents, over the Internet [Sirbu, 1998].

Example 1 As shown in Figure 1.1, the protocol starts with a customer requesting a quote

for some desired goods, followed by the merchant sending the quote. If the customer

accepts the quote, then the merchant delivers the goods and waits for an Electronic Payment

Order (EPO). The goods delivered at this point are encrypted, that is, not usable. After
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(1)

(3)

(5)

(2)

(4)

(8)

1. Request quote
2. Present quote
3. Accept quote
4. Deliver goods
5. Send electronic payment

order (EPO)
6. Send EPO and key
7. Send receipt
8. Send receipt

Intermediation
server

Consumer Merchant

NetBill’s bank
Account
funding

(7)

(6)

Consumer’s
bank Batch

payment

Merchant’s
bank

Figure 1.1: The NetBill payment protocol

receiving the EPO, the merchant forwards the EPO and the key to the Intermediation Server,

which then contacts the bank to take care of the banking process. Once the debit-credit

operations are handled, the intermediation server sends a receipt back to the merchant.

The receipt contains the decryption key for the sold goods. As the last step, the merchant

forwards the receipt to the customer, who can successfully decrypt and use the goods.

For our present purposes, we are concerned neither about the details of the actual trans-

actions that take place among the banks nor about the underlying security and encryption

mechanisms. Therefore, we simplify the protocol to the point where we assume that once

the merchant receives an EPO, he can take care of the banking services successfully. Fig-

ure 1.2 shows this simplified version. We use this simplified version of the protocol as our

main example throughout this thesis.

The participating parties in an e-commerce protocol are self-interested and eager to

practice any of a variety of interactions that would benefit them. Thus, in an e-commerce
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MerchantCustomer (4) Deliver goods

(3) Accept quote

(6) Send receipt

(5) Send EPO

(2) Present quote

(1) Request quote

Figure 1.2: Simplified version of the NetBill protocol

setting, parties should be permitted a choice of actions, and be able to select the actions

that benefit them the most.

Example 2 The rigid specification in Figure 1.2 cannot handle some of the natural situa-

tions that arise in e-commerce:

� Instead of waiting for a customer to request a quote, a merchant may proac-

tively send a quote, mimicking the idea of advertising.

� The customer may send an ”accept” message without first exchanging explicit

messages about a price. This could very well reflect the level of trust between

the parties. That is, the customer (who trusts the merchant to give him the best

quote) may accept the price without a prior announcement or quote. Alterna-

tively, this action could result from the customer’s lack of interest in the price,

the emergency of the transaction, the insignificance of money to the customer,

and so on. This scenario is shown in Figure 1.3.

� As shown in Figure 1.4, a merchant may send the goods without an explicit

price quote. Such goods could represent the trial versions in the software in-

dustry, where after a certain period of time the customer is expected to pay to

continue using the software.
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(1)
Accept

(2)
Send goods

(3)
Send EPO

(4)
Send receipt

MerchantCustomer

Figure 1.3: Alternative execution where the customer accepts any price first

(3)
Send receipt

(2)
Send EPO

MerchantCustomer

(1)
Send goods

Figure 1.4: Alternative execution where the merchant sends the goods first

� After receiving the goods, the customer may send the EPO to the bank instead

of the merchant. By delegating the payment to the bank, the customer makes

the bank responsible for ensuring that the money gets to the merchant.

1.3 Approach

In order to handle the aforementioned dynamic aspects of e-commerce, we develop an

agent-based approach that incorporates the key abstraction of commitments. Agents are

persistent computations that can perceive, reason, act, and communicate. Agents can be
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autonomous and heterogeneous, and can represent different interacting components. The

agents’ communications affect, and are affected by, their commitments. In turn, the agents’

commitments reflect the protocols they are following and the communications they have

already made.

In what follows, we propose a new formalism, the commitment machine (CM), to be

used in the formal specification and execution of protocols. Instead of specifying proto-

cols merely in terms of legal sequences of actions, we attach specific meanings, based on

commitments of the participating agents, to states and actions. When states and actions are

formally defined in terms of valid meanings, the possible paths between the states can be

logically inferred. This permits an enhanced protocol with additional transitions, allowing

a broader range of interactions. This, in turn, enables agents to exercise their autonomy,

and to exploit opportunities and handle exceptions.

We provide reasoning rules that formalize the evolution of commitments. These rules,

and the operations to create and to manipulate commitments are all formalized in event

calculus. By stepping through a running example, we show how an e-commerce protocol

can be specified using a CM and how it can be executed flexibly to yield an enhanced

protocol.

1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 explains the technical background

dealing with communications. Chapter 3 introduces commitment-based finite state ma-

chines and discusses its applicability. Chapter 4 formalizes the reasoning rules and oper-

ations on commitments. Chapter 5 describes our contributions with respect to the most

relevant literature, and the future directions.
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Chapter 2

Technical Framework

Our approach to accommodating flexible execution of e-commerce protocols is based on

the key abstraction of social commitments. In what follows, we first introduce social com-

mitments, and then explain the concepts of finite state machines and the event calculus on

which we build our approach.

2.1 Social Commitments

Starting with the rationalistic approaches, language has been thought to be a tool to re-

late the internal world of a being to the external world. As a counter to the language-

as-description model, the language-as-action model emerged where each utterance in a

language is considered not just a description but an action. More specifically, by making an

utterance, an agent does not just describe the current state of the world, but also changes it.

We capture this change in terms of modifications to the participants’ commitments. Each

utterance results in the creation, acceptance or declination of one or more commitments.

The commitments associated with the language are social (as is the language itself), in that

they affect all the parties that engage in communication [Winograd and Flores, 1986].
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Social commitments are different from both internal and collective commitments. An

internal commitment refers to the relation between an agent and a particular action, and a

collective commitment refers to the relation between a group of agents committing to bring

about a particular condition [Castelfranchi, 1995]. Social commitments, on the other hand,

are commitments made from one agent to another agent to carry out a certain course of

action [Singh, 1999].

Definition 1 A social commitment C(x, y, G, p) relates a debtor x, a creditor y, and a

condition p, in the scope of a context group G [Singh, 1999].

When a social commitment of this form is created, x becomes responsible to y for

satisfying p. In addition, there is an emergence of right [Conte and Castelfranchi, 1995]: y

now has the right to make sure x carries out what he promised, and to protest if he doesn’t.

The context group G is the organization within which the commitment exists. Making

the context explicit enables us to control the evolution of the commitments and to accom-

modate compliance and resolution of disputes.

The condition p may involve relevant predicates and commitments, allowing the com-

mitments to be nested or conditional. Contrary to commitments in databases, here the

commitments are flexible, and can be revoked or modified. Almost always, the revocation

or modification is constrained through metacommitments.

Definition 2 A commitment � = C(x, y, G, p) is base-level if � does not refer to any other

commitments; � is a metacommitment if � refers to a base-level commitment.

Viewing a commitment as an abstract data type, the creation and the manipulation of the

commitments can be described using the following operations [Singh, 1999, Venkatraman

and Singh, 1999]. Here, � , � , � denote agents, and � and ��� denote commitments of the

form C(x, y, G, p).
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1. Create(x, c) establishes the commitment � . The create operation can only be per-

formed by the debtor of the commitment.

2. Discharge(x, c) resolves the commitment � . Again, the discharge operation can only

be performed by the debtor of the commitment to mean that the commitment has

successfully been carried out. Thus, after the discharge operation the condition �

starts to hold.

3. Cancel(x, c) cancels the commitment � . Generally, cancellation of a commitment is

followed by the creation of another commitment to compensate for the former one.

4. Release(y, c) or Release(G, c) releases the debtor from the commitment � . It can be

performed either by the creditor or the context group, to mean that the debtor is no

longer obliged to carry out his commitment.

5. Assign(y, z, c) eliminates the commitment � , and creates a new commitment � � for

which � is appointed as the new creditor.

6. Delegate(x, z, c) eliminates the commitment � , and creates a new commitment � � in

which the role of the debtor is transferred to � .

2.2 Event Calculus

The event calculus (EC), introduced by Kowalski and Sergot [1986], is a formalism to

reason about events. Events in EC initiate and terminate fluents. Fluents are properties that

are allowed to have different values at different time points. Their value is manipulated by

the occurrence of events. A fluent starts to hold after an event that can initiate it occurs.

Similarly, it ceases to hold when an event that can terminate it occurs.
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Over the years, several variants of the event calculus have been proposed. The ver-

sion of event calculus used here is the Simple Event Calculus (SEC), developed by Shana-

han [1997]. It is based on first-order predicate calculus, with the addition of nine predicates

to reason about the events. We now introduce these predicates and the axioms with which

to integrate the predicates.

In the following, ��� � ������� refer to events, ���	�����
��� refer to fluents; and ���	����	���������
� refer

to time points. The variables that are not explicitly quantified are assumed to be universally

quantified. � denotes implication and � denotes conjunction. The time points are ordered

by the � relation, which is defined to be transitive and asymmetric.

1. Initiates( �������	� ) means that fluent � holds after event � at time � .

2. Terminates( �������	� ) means that fluent � does not hold after event � at time � .

3. Releases( �������	� ) means that fluent � is not known to hold after event � at time � .

4. Initially � ( � ) means that fluent � holds from time 0.

5. Initially � ( � ) means that fluent � does not hold from time 0.

6. Happens( ��������	��� ) means that event � starts at time �� and ends at ��� .

7. HoldsAt( ���	� ) means that the fluent � holds at time � .

8. Clipped( ��������	��� ) means that the fluent � is terminated between �� and ��� .

9. Declipped( ������������ ) means that the fluent � is initiated between �� and ��� .

Definition 3 We introduce a two argument Happens fluent to reason about events that start

and end at the same time point. For simplicity, we will use this version of the Happens

11



fluent hereafter.

Happens( ���	� ) ������� Happens( ���	���	� )

Example 3 Figure 2.1 shows that a fluent � holds at a time � � after it has been initiated but

not terminated.

Figure 2.1: Holding of fluents

Based on the language of SEC, the following axioms are defined [Shanahan, 2000]:

Axiom 1 HoldsAt( ���	� ) � Initially � ( � ) ��� Clipped( 	 �����	� )

0 t

HoldsAt(f, 0)

¬Clipped(0, f, t)

HoldsAt(f, t)

Figure 2.2: Axiom 1

As shown in Figure 2.2, all fluents that hold initially and are not terminated by any

event from time 	 to time � continue to hold at time � .
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Axiom 2 HoldsAt( ���	��� ) � Happens( ���	����	��� ) � Initiates( �������	�  ) � ( ��� � ��� ) � �

Clipped( ��������	��� )

t
2

Happens(a, t , t )1 2

¬HoldsAt(f, )t3

t
3

t
1

¬Clipped( , )t , f  t1 3

Domain Description:
Initiates(a, f, t )1

Figure 2.3: Axiom 2

As shown in Figure 2.3, after an event initiates a fluent, the fluent continues to hold if

no other event that can terminate it occurs at a later time. These two axioms capture the

fact that after a fluent begins to hold, an event that can terminate the fluent should occur in

order to put an end to the holding of that fluent.

Axiom 3 Clipped( ��������	��� ) � � ������� �	�����Happens( ���	��� �	��� ) � ( �  � ��� ) � ( ��� � ��� ) �
( �  � ��� ) � ( ��� � ��� ) �	�Terminates( �������	��� ) 
 Releases( �������	��� ) ���

t
2

Happens(a, t , t )2 3

t
3

Clipped( , )t , f  t1 4

Domain Description:
Terminates(a, f, t )2

t
1 t

4

Figure 2.4: Axiom 3
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Axiom 3 states that a fluent is said to be clipped if and only if an event occurs to

terminate or release it.

The following two axioms represent the duals of Axiom 1 and Axiom 2, respectively.

Axiom 4 � HoldsAt( ���	� ) � Initially � ( � ) � � Declipped( 	 �����	� )

0 t

¬HoldsAt(f, 0)

¬Declipped(0, f, t)

¬HoldsAt(f, t)

Figure 2.5: Axiom 4

Axiom 4 states that a fluent does not continue to hold, if initially it did not hold, and

there does not occur any event that initiates it. This axiom is illustrated in Figure 2.5.

Axiom 5 � HoldsAt( ���	��� ) � Happens( ���	�������� ) � Terminates( �������	�� ) � ( ��� � ��� ) � �

Declipped( ��������	��� )

t
2

Happens(a, t , t )1 2

¬HoldsAt(f, )t3

t
3

t
1

¬Declipped( , )t , f  t1 3

Domain Description:
Terminates(a, f, t )1

Figure 2.6: Axiom 5
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Following the same intuition, Axiom 5 states that if an event occurs and terminates

a fluent, and no other event occurs to initiate it, then the fluent continues not to hold, as

shown in Figure 2.6.

Axiom 6 Declipped( ��������	��� ) � � ���	��� �	�����Happens( ���	��� ����� ) � ( �  � ��� ) � ( ��� � ��� ) �
( �  � ��� ) � ( ��� � ��� ) �	� Initiates( �������	��� ) 
 Releases( �������	��� ) ���

t
2

Happens(a, t , t )2 3

t
3

Declipped( , )t , f  t1 4

Domain Description:
Initiates(a, f, t )2

t
1 t

4

Figure 2.7: Axiom 6

A fluent is said to be declipped in a time period if and only if there exists an event that

occurs and either initiates or releases the fluent in that time period. This axiom is illustrated

in Figure 2.7.

Axiom 7 Happens( ��������	��� ) � � �� ���

t
1

t
2

Happens(a, t , t )1 2

Figure 2.8: Axiom 7

Axiom 7 ensures that no event takes a negative amount of time.
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2.3 Finite State Machines

One of the most common methods of specifying network protocols is through the use of

the deterministic finite state machine (FSM) formalism. FSMs are also extensively used to

specify e-commerce protocols [USE, 1998].

Definition 4 A deterministic finite state machine is a five-tuple, (S, � , s � , Q, � ), where S is

the set of states, � is the input alphabet, s ����� is the start state, Q � S are the final states,

and �	� S 
���� S is the transition function.

An FSM can be represented graphically by a labeled directed graph, where nodes represent

the states and the arcs represent the transitions. In an e-commerce protocol specification,

the alphabet of the FSM is given by the set of possible actions. The transition function is a

means to coordinate the possible actions in the protocol.

1

23

45

67

C: Send
request

M: Send quote

M: Send goods

M: Send receipt

C: Send
accept

C: Send
EPO

Figure 2.9: FSM representation of the NetBill Protocol

Example 4 Figure 2.9 shows the simplified version of the NetBill payment protocol as an

FSM labeled with the actions of merchant agent M and customer agent C.
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Chapter 3

Commitment Machines

We define a commitment machine (CM) conceptually as an FSM whose states and alphabet

are given a semantic content that is defined in terms of commitments. A CM specifies the

possible states an executing protocol can be in, the actions that are used for transition from

one state to another, and the possible final states of the protocol. The meaning associated

with each state specifies which commitments are in force in that particular state, and the

meaning associated with each action defines how the commitments are affected by that

action (thereby leading to a state change).

Unlike an FSM, the representation of a CM does not specify a starting state. The

participants may start the protocol from a state where there are no commitments in force,

or by accepting the commitments that are in force in that state. Again, unlike FSMs, the

transitions between the states are not explicitly specified. The meanings of the states and

the actors are logically represented. Based on the intrinsic meaning of actions, the new state

that is reached by performing an action at a particular state can be logically inferred. Thus,

instead of specifying the sequences of actions that can be performed, we simply specify

meanings that can be reached and of these which are final (i.e., desirable).
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By specifying an e-commerce protocol using a CM, we emphasize that the aim of ex-

ecuting a protocol is not merely to perform sequences of actions, but to reach a state that

represents the result of performing these sequences of actions. With this in mind, we can

come up with different paths that accomplish the same goal as the original path. Thus,

a protocol can be reconfigured (enhanced or abbreviated) by finding alternative paths be-

tween states.

Example 5 We define the semantic content of each state in Figure 2.9 based on the partic-

ipants’ commitments:

� In state 3, having sent a quote to a customer, the merchant commits to de-

livering goods and sending a receipt afterwards, if the customer promises to

pay.

� In state 4, having sent an accept to a merchant, the customer agrees to pay,

but only if the merchant promises to send a receipt afterwards.

� In state 5, the merchant has fulfilled the first part of his promise by sending

the goods.

� In state 6, the customer has discharged his commitment of sending the EPO.

� In state 7, the merchant has discharged his commitment of sending the receipt.

The CM specification of a protocol can be applied in two main ways.

Run time. A CM specification of a protocol gives the states and the effects of performing

the various actions. Given a CM, an agent that can process logical formulae can compute

the transitions between states. In this respect, the choice of actions is a planning problem

for each agent. That is, from the possible final states, the agent first decides on the desired
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final state, and then logically infers a path that will take it from the current state to the

desired final state. Effectively, the agent interprets the CM directly at run time.

Compile time. To reduce the computation required at run time, a CM can be converted

into an FSM representation at compile time. This transformation is based on systematically

producing paths between pairs of meanings, and can be carried out in several ways using a

search algorithm or a planner. The meanings in CM map to states in the FSM. The transi-

tions between the states follow from the valid paths in the CM. The set of final states would

be all the states that satisfy the ending constraints of the CM, namely, the states where no

commitments are in force or where all metacommitments of a party have been honored.

The set of actions remains the same. An agent can then use this FSM representation to

execute the protocol at run time. We study compilation in detail below.

3.1 Formalization

Our formal language, � , is based on the language of propositional logic with the addition

of a commitment operator to represent commitments.

The following Backus-Naur Form (BNF) grammar with a distinguished start symbol

Protocol gives the syntax of � . In this grammar, slant typeface indicates nonterminals;

� � is a metasymbol of BNF specification; � and � delimit comments; � and � indicate

that the enclosed item is repeated 	 or more times; the remaining symbols are terminals.

� Protocol � � � Action ��� set of actions �
� Action � � Token: L � token is a label; L is the associated meaning �
� Commitment � � �	� (L) � simplified as explained below �
� L � � Commitment
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� L � � L � L � leads to, indicating a strict implication �
� L � � L � L � conjunction �
� L � � � L � negation �
� L � � Prop � atomic propositions �
Since in the simplified version of the NetBill protocol there are only two roles, customer

and merchant, we use a simplified notation to represent commitments. Here � � � means that

� (which can be the customer or the merchant) is committed to the other party to carry out � .

We also assume that the context group
�

is understood, so we don’t represent it explicitly.

Definition 5 The strict implication, ��� � , requires � to hold when � holds. Contrary to

regular implication (����� ) which is �	��
� when � is ����� ��� , the strict implication will be ����� ���
if � is ����� ��� .

Definition 6 A metacommitment is a commitment of the form � ��� ��� ��� . This expresses

the conditional commitment where if the proposition � becomes true, then the debtor � will

become committed to bringing about � .

Definition 7 The meaning of a state is given by any formula derivable from the nontermi-

nal L.

Definition 8 ����� means that � can be logically derived from � .

Definition 9 � ��� means that � and � are logically equivalent, that is, � �!� and �"� � .

A minimal set of meanings is one in which all meanings are logically distinct. A set of

final meanings is consistent if it is well-behaved with respect to logical consequence.

Definition 10 A set M of meanings is minimal if and only if the following conditions

hold:
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� (����� , ��� � M: ��� ����� � ���	�
��� )
� �	� 
� � M

Definition 11 A set of final meanings F is consistent with respect to a set of meanings M

if and only if any meaning that is stronger than a final meaning is also final. That is,

( ����� � F, ��� � M: ( ��� ������� ���� � F)

Definition 12 Actions are represented as a two-tuple, where the first element is the token

(name) of the action, and the second element is the effect of the action. Formally, � ������� is

an action, if � is the token and � is the effect of the action.

Definition 13 A CM is a three-tuple � ��� M, � , F � , where M is a minimal set of mean-

ings, � is a set of actions defined in terms of commitments, and F � M is a consistent set

of final meanings.

Definition 14 A meaning changes from meaning � to meaning � under action � ������� if and

only if after applying the effect � of action � on � , � can be logically derived. Formally,

���������� ��� � ��� � � � ��� � �

Thus, deriving the resulting meaning from a given meaning and action involves com-

puting the logical consequence (that is, the � relation). For the propositional part of the

language this is as usual. For commitments and metacommitments, we now present some

important rules for reasoning about their consequences. These rules capture the operational

semantics of our approach.

Reasoning Rule 1 A commitment � � � ceases to exist when the proposition � becomes

true.

21



Reasoning Rule 2 A metacommitment � ��� � � � � ceases to exist when the proposition �

becomes true, but a new base-level commitment � � � is created to capture the fact that �

has to satisfy the original metacommitment by bringing about the proposition � .

Reasoning Rule 3 A metacommitment � � � � � � � ceases to exist when the proposition �
holds (before � is initiated), and no additional commitments are created.

The following example illustrates the applicability of these reasoning rules.

Example 6 Consider the metacommitment ��� � ��� � � � � � � � � ��� , which denotes the com-

mitment that the merchant is willing to send a receipt if the customer pays. After the

creation of this metacommitment the following scenarios may take place:

� The customer pays, making the proposition ��� � true. In this case, the

metacommitment is terminated and a new commitment, ��� � � � � � � � , is cre-

ated. When the merchant actually sends the receipt, i.e., when the proposition

� � � � � � � becomes true, then the commitment ��� � � � � � � � is discharged.

� Before the customer pays, the merchant sends the receipt, making the propo-

sition � � � � � � � true. In this case, the metacommitment is terminated, but no

other commitment is created since the customer did not commit to paying in

the first place.

We now define the NetBill protocol formally as a CM.

Example 7 Following Example 5, the messages and the states can be given a content based

on the following definitions:

� Atomic Propositions
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� request: an atomic proposition meaning that the customer has re-

quested a quote.

� goods: an atomic proposition meaning that the merchant has deliv-

ered the goods.

� pay: an atomic proposition meaning that the customer has paid the

agreed amount.

� receipt: an atomic proposition meaning that the merchant has deliv-

ered the receipt.

� Abbreviations for the Metacommitments

� accept: an abbreviation for ��� � � ������� � ��� � � meaning that the cus-

tomer is willing to pay if he receives the goods.

� promiseGoods: an abbreviation for ��� � � � � � � � � � ������� � mean-

ing that the merchant is willing to send the goods if the customer

promises to pay.

� promiseReceipt: an abbreviation for ��� � ��� � � � � � � � � ��� meaning

that the merchant is willing to send the receipt if the customer pays.

� offer: an abbreviation for � � � � � � � � � ������� � � � � � � � �
	 � � � � � ���
For simplicity, we place the content of an action in the state that results from it, and

since each action can be performed by only one party, we do not specify the performers

explicitly.

� Meanings (M):

1. �	��
�

2. request � The customer has requested a quote. �

3. offer � The merchant has made an offer. �
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4. C � goods � accept � promiseReceipt � The customer has accepted the

merchant’s offer. �

5. goods � C � pay � promiseReceipt � The merchant has delivered the

goods, and therefore the customer is committed to paying and the mer-

chant is willing to send the receipt after the customer pays. �

6. goods � pay � C � receipt � The merchant has delivered the goods,

the customer has paid, and the merchant is committed to sending the

receipt. �

7. goods � pay � receipt � The merchant has delivered the goods and the

receipt, and the customer has paid. �
� Actions ( � ):

1. � sendRequest: request � � sending a request for quote �

2. � sendQuote: offer � � sending a quote �

3. � sendAccept: accept � � sending an accept �

4. � sendGoods: goods � promiseReceipt � � delivering the goods �

5. � sendEpo: pay � � sending an EPO �

6. � sendReceipt: receipt � � sending the receipt �
� Final meanings (F):

1. request

2. offer

3. goods � pay � receipt
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3.2 Compiling CMs to FSMs

We now study the requirements of compiling a CM into an FSM. For an agent to be able to

directly execute the resulting FSM, we seek an FSM that is deterministic and with no irrel-

evant transitions. Given a CM, the states of the FSM can be generated from the meanings

of the CM. However, the execution of the FSM follows the usual regime of state-transition-

state without regard to the formulas that exist in CM meanings on which the FSM states

are based.

To infer the valid transitions in the FSM, we consider the possible entailments between

the meanings. To ensure determinism and efficiency, we constrain the allowed transitions

with two major restrictions.

Restriction 1 � � � ����� ��� � � � entails that � ��������
If the source meaning already entails the content captured in the target meaning, no tran-

sition from the source to the target is necessary. Entailments of this form ensure that the

meaning that will be reached is not already captured at the current state, and that the FSM

has no transitions that do not add to the content.

Restriction 2 � � � ����� ��� � � � entails that ( ����� � M: � � � � � ��� ��� ��� � ��� ����� )
This is to ensure that if applying an action at a particular meaning entails several possible

meanings, then the transition will end in a state that contains the maximal information.

Later we will restrict our CMs so that a maximal meaning always exists.

Example 8 Let us assume that the meanings depicted in Figure 3.1 constitute the meaning

set M of a CM. Among these four meanings, F contains only � � . Let the action set �
contain two actions: sendaccept which initiates accept, and sendoffer which initiates offer.
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Figure 3.1: Example transition

We now look at some possible entailments and demonstrate which uf these entailments

result in a valid transition converting a CM to an FSM.

� � � � , sendoffer, �  � : �	��
� � ��� ��� ��� � � ��� offer

� � � , sendaccept, � � � : �	��
� � ��� ��� � � � � �
	�� accept

Since neither restriction applies to these entailments, both transitions are ac-

cepted.

� � �  , sendoffer, �  � :offer � ��� ��� ��� � � ��� offer
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� �  , sendaccept, �  � :offer � ��� ��� � � � � � 	�� offer

These two transitions will not be allowed due to Restriction 1, which does not

allow transitions where the starting state already entails the end state.

� �  , sendaccept, � � � :offer � ��� ��� � � � � � 	�� accept

� �  , sendaccept, � � � :offer � ��� ��� � � � � � 	�� (offer � accept)

Based on Restriction 2, only the latter transition will be allowed.

� � � � , sendaccept, � � � :accept � ��� ��� � � � � � 	�� accept

� � � , sendoffer, � � � :accept � ��� ��� � � � � ��� accept

Again, based on Restriction 1, these two transitions will not be allowed.

� � � , sendoffer, �  � :accept � ��� ��� � � � � ��� offer

� � � , sendoffer, � � � :accept � ��� ��� � � � � ��� (offer � accept)

The only transition that will be allowed will again be the latter, since it yields

more information then the former.

� � � � , sendaccept, � � � :(offer � accept) � ��� ��� � � � � �
	 � accept

� � � , sendaccept, � � � :(offer � accept) � ��� ��� � � � � �
	 � (offer � accept)

� � � , sendaccept, �  � :(offer � accept) � ��� ��� � � � � �
	 � offer

� � � , sendoffer, � � � :(offer � accept) � ��� ��� � � � � � 	�� accept

� � � , sendoffer, � � � :(offer � accept) � ��� ��� � � � � � 	�� (offer � accept)

� � � , sendoffer, �  � :(offer � accept) � ��� ��� � � � � � 	�� offer

It is easy to see that no transitions can start from � � , since � � already entails

all the meanings associated with the other states.

In Figure 3.1, the solid lines show the allowed transitions and the dashed lines show the

other possible entailments that are not allowed.
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3.2.1 Compilation Formalized

This section shows how a CM can be formally compiled into an FSM, and establishes

soundness and completeness results regarding our compilation procedure. The compilation

can be realized in an automatic tool. Recall that a CM allows multiple starting states,

whereas an FSM allows only one. In the compilation below, we show how an FSM can be

constructed after choosing a start state for the CM, namely, �	��
� .

Definition 15 Let
� � � M, � , F � be a CM, and � � � S, � � � � , Q, � � be an FSM.

�
is compiled into � if the following conditions hold.

� S = M

� � = � � � � ��� ��� � � �
� � � = �	� 
�
� Q = F

� � = � � ��� ����� ��� � : ��� , ����� M, � ������� � � and ( � � � ������� ��� ��� , � � �� ��� and

(����� � M: � � � � � � � � � ��� � ��� ����� )) �

Notice that the definition of � given above incorporates Restriction 1 and Restriction 2.

The correctness of a compilation must be based on the computations that can result from it.

Therefore, we formalize the notion of a computation, how a computation may be generated

by a CM, and how a computation may be realized by an FSM. There are two main aspects of

correctness. Soundness means that only allowed computations are realized. Completeness

means that all allowed computations can be realized.

Definition 16 � = � ��� ��� ��  �����	� ���� � � is a computation. Intuitively, the action labels,

� � ���  ����� � ���� , describe the externally visible part of the computation because these are the

action seen by other agents.
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Figure 3.2: A sample computation

For the following definitions and theorems, let I be the set of indices, � 	 ��� �����
���� � � �� � ,
and J be the set of indices, � 	 ��� ����������� � .

Definition 17 � = � ��� ���  ����� � � is generated by a CM
� � � M, � , F � if and only if

� � ��� , and ( � � � I : � � � M and � � � � ��� � � ��� � � � � : ��� � � � ��� � � � � �����  )).

Definition 18 � = � ��� � �  ���
� � � is realized by an FSM � � � S, � � � � , Q, � � if and only

if � � � � � , � � � Q, and � � � � I, � ��� ��� � � ���	�  � � � � .

Theorem 1 establishes that a compiled FSM can be directly executed by an agent with

a single thread.

Theorem 1 An FSM produced by compiling a CM is deterministic.

Proof. Let
� � � M, � , F � be a CM compiled into � � � S, � � � � , Q, � � and let

� ��� ����� ��� � � � and � ��� � ��� ��� � � � be two transitions of � . From Restriction 2, we

know � � ����� and ��� � ��� , that is, � � � ��� . Then, by Definition 10, ��� �
��� .

Theorem 2 establishes the soundness of our compilation method. Effectively, it states

that the compiled FSM won’t produce a computation that was not allowed by the original

CM.

Theorem 2 Let
� � � M, � , F � be compiled into � � � S, � � � � , Q, � � . Then any compu-

tation realized by � is generated by
�

.

Proof. Let � = � ��� ���  ����� � � be a computation generated by � . Since S = M,
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( � � � I, ��� � M), and � � � F by compilation of
�

into � . Consider the
�
th transition

in � , � ��� � � � � ���	�  � � � . This implies, � � � � � � � � ��� � � � � and ��� � ��� ��� � � � � ���	�  � .

Interestingly, with the general definition of a CM, our compilation is not complete.

For one, a computation that is generated by a CM may begin from any arbitrary meaning.

Also, there may be no transitions in the FSM corresponding to some transition in the CM.

Restriction 2 forces the transitions to yield a meaning that carries maximal information

among the possible meanings. It might be the case that a transition emanating from a source

state entails several meanings, none of which entails the rest. In this case, no meaning has

the maximal information, and the transition is not included in � . In order to enforce that

there is always a meaning with the most information, we need to ensure that the meaning

set M of the CM is closed under antecedence.

Definition 19 A complete CM is a CM whose meaning set M and final meaning set F are

closed under antecedence. Formally, � � 	 � M: � ��� � � 	 � � � ��� � M: ��� ����� � � �

Definition 20 A conjunctive CM is a CM whose meaning set M is closed under conjunc-

tion. Formally, ( � 	 � M: � � ��� � M: ��� ��� � ����� �������

Lemma 1 Every conjunctive CM is complete.

The main idea underlying a CM execution is that instead of specifying protocols in

terms of legal sequences of actions, a CM specifies them in terms of possible meanings to

reach. Thus, two computations may follow different sequences of actions but still achieve

the same meaning.

Definition 21 A computation � = � ��� ���  ����� � � is semantically equivalent to computa-

tion � � = � � � � ��� �  ���
� � � � if and only if � � � � � � and � � � � � � .
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Definition 22 A computation � � = � � � � ��� �  �
��� � � � is semantically superior to computation

� = � ��� ���  ����� � � if and only if ( � � � J: � �� ����� ).

Definition 23 A computation � � � � � � � � � �  ���
� � � � is the semantically strongest com-

putation on the action sequence � � ��� ��
�����
� � ���� if and only if for all computations � =

� ��� � �  ����� � � generated by
�

(that involve the given action sequence), � � is semantically

superior to � .

Procedure 1 Let � = � ��� ���  ����� � � be a computation generated by a complete CM
� � � M, � , F � . We construct the computation � � = � � � � � � � �  ����� � � � in which � � � � � �
and � ����  is the strongest state that follows � �� and � � � ��� � � . By the definition of complete

CM, we know that such an � ��	�  exists.

Lemma 2 Let
� � � M, � , F � be a complete CM and let � = � ��� � �  ���
� � � be a

computation generated by
�

. Then Procedure 1 on � yields a computation

� � �
� � � � � � � �  ����� � � � which is the semantically strongest computation on � ����� ����
����� � ���� .
Proof. In Procedure 1 after each action � � at state � �� , � � will move to a new state � ����  ,
such that � ��	�  is the strongest state. Since each � �� is the strongest state, � �� is the

strongest computation for the given sequence of actions.

Definition 24 The computations with no consecutively repeated states are called efficient

computations.

Procedure 2 Let � = � ��� � �  ���
� � � be a computation generated by CM
� � � M, � , F � .

We produce the computation � � = � � � � � � � �  ���
� � � � that does not have any equivalent consec-

utive states. That is, we start by copying � � to � � . Iteratively, we check whether applying

� � from state � � move the computation to a new meaning ���	�  . If that is the case we move

both � � and ���	�  to � � . Otherwise, we continue the iteration with � �	�  .
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Lemma 3 Procedure 2 preserves semantic equivalence of computations and provides

efficient computation.

Proof. Procedure 2 removes redundant transitions from a computation. Any transition that

results in a new meaning is kept. Thus, the semantic equivalence is preserved. Since

Procedure 2 removes consecutively repeated states, the computation is efficient.

Lemma 4 If the � given as input to Procedure 2 is semantically strongest, the � � produced

by Procedure 2 is also semantically strongest.

Lemma 5 Let
� � � M, � , F � be a complete CM compiled into an FSM

� � � S, � � � � , Q, � � . Let � = � ��� � �  ����� � � be a computation generated by
�

, such that

� is efficient, semantically strongest, and begins from �	��
� . Then � can be realized by � .

Proof. By compilation, � � = �	��
� . Since � is efficient, we know there are no consecutively

repeated states, thus no transition will be disallowed by Restriction 1. Also, since � is

semantically strongest, each state in � will be the strongest possible state. Recall that

Restriction 2 enforces this requirement on transitions of FSMs. Since Restriction 1 is

never exercised, and Restriction 2 does not cause deviation from the flow of � , � can be

realized by � .

Theorem 3 Let
� � � M, � , F � be a complete CM compiled into an FSM

� � � S, � � � � , Q, � � . Then for any computation that is generated by
�

and begins from

�	��
� , there exists an efficient, semantically strongest computation realized by � .

Proof. Let � = � ��� ���  ���
� � � be a computation generated by
�

. Let � � = � ��� ��� �  �
��� � � �

be a computation produced by Procedure 1 when given � as input. By Lemma 2, we know

� � is semantically strongest. Now, if we give � � as input to Procedure 2, this yields an ef-

ficient (Lemma 3) and the semantically strongest computation (Lemma 4), which can be

realized by � (Lemma 5).
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3.2.2 Configuration

One of the main advantages of specifying e-commerce protocols using CMs is their ease

of configuration. By adding new meanings to the meaning set, M, and appropriately, to the

final meaning set, F, the protocol can be enhanced to allow more computations. Similarly,

by reducing the meanings set M and F the possible computations can be restricted. The

following example depicts how an existing CM specification can be enhanced.

1
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45

67

C: Send
request

M: Send quote

M: Send goods

M: Send receipt

C: Send
accept

C: Send
EPO

8

9

M: Send
goods

M: Send
goods

C: Send
EPO

C: Send
accept

C: Send
accept

M: Send goods

M: Send
quote

Figure 3.3: Enhanced CM

Example 9 We now reconsider the shortcomings of Example 2. In order to remedy these

shortcomings, we introduce two new meanings, accept and (goods � promiseReceipt). The

first meaning denotes the state that the customer is accepting any price, and the second

meaning denotes the state where the merchant has delivered the goods and willing to send

the receipt if the customer pays. We now add these two new meanings to the meaning set,

M, and the final meaning set, F, of Example 7, the previous specification of our protocol.

Figure 3.3 shows the enhanced FSM that can be derived from the CM specification of the

NetBill protocol.
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� The merchant can now start the protocol by sending a quote to a customer.

As was the case in Example 7, by performing this action the merchant creates

a metacommitment in state 3, namely that he is willing to send the goods and

the receipt if the customer agrees to pay.

� By sending an accept message without prior conversation about the quote,

the customer commits to paying if the merchant makes an offer. Thus, we

move from a state where no commitments are made (state 1), to a state where

the customer is making an offer (state 9). If the merchant does not make an

offer, then the protocol ends at this point. On the other hand, if the merchant

makes an offer by sending the goods, then both parties have to carry out their

commitments, so the protocol moves to state 5.

� By sending the goods without an explicit accept message, the merchant makes

an offer to send the receipt if the customer agrees to pay. Thus, we move from

a state where no commitments are made (state 1), to a state where the merchant

is making an offer (state 8). If the customer does not accept the offer, then the

protocol ends at this point. Conversely, if the customer actually sends an accept

message, then both parties need to fulfill their commitments, so the protocol

moves to state 5.

Compared to the original version of the protocol in Figure 2.9, we have introduced two new

states, state 8 and state 9, for the new added meanings.

� State 8: goods � promiseReceipt

� State 9: accept

In addition to the above states, we have added new transitions from state 1 to states 3, 8,

and 9; from state 2 to states 8 and 9; from state 8 to state 6 and from state 9 to state 5. The

new transitions are shown with dashed lines in Figure 3.3.

34



3.3 Reasoning with CMs

Although the formal descriptions of CMs and FSMs are quite different from each other, we

can use the same pictorial representation for both. Thus, we use the graphical representation

in Figure 2.9 to reason about the CM specification.

We now address some of the inadequacies of the traditional approaches and show how

our approach handles these situations if used at run time.

3.3.1 Opportunism

Depending on the circumstances, a participant may choose to start a protocol from the

middle to take advantage of an opportunity. An opportunity in this context corresponds to

a commitment-based meaning of a state that provides some convenience to the participant.

By starting a protocol in this fashion, the agent accepts the commitments that are in force

in that particular state. Similarly, during the execution of a protocol an agent may be able

to jump across several steps at once.

3.3.2 Negotiation

During the execution of a protocol, exceptions can arise because a participant cannot fulfill

his commitment for whatever reason. It is often not feasible and sometimes impossible, to

predict these exceptions before they arise. Agents that are participating in a protocol should

be able to handle such exceptions successfully.

If an agent can not carry out one of its commitments, then the participants need to

negotiate and come to a new agreement. This may result in the ending conditions of the

protocol to be changed, forcing the agents to end a protocol at a different ending state than

initially identified.
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3.3.3 Composition

Protocols may be combined into larger protocols, as long as one protocol yields a commit-

ment state that another protocol can accommodate. In Section 1.2, we abstracted out the

banking procedures to simplify the NetBill protocol, although there is a convention used

between the merchant and the bank to deal with the EPO processing. The participants of a

protocol should be able to participate in side protocols, provided that they can return to the

point where they left off in the main protocol.

Example 10 If we consider the banking operations as a separate protocol, we can see that

the banking protocol may be combined with our protocol through state 6. Recall that at

state 6, the customer has discharged his commitment of sending an EPO, but the merchant

still has to send the receipt. The merchant at this state can participate in a side protocol

with a bank to verify that the EPO has actually cleared. After taking part in this side

protocol, the merchant will come back to state 6 to send the receipt to the customer. Since

the commitments of the main protocol are preserved in the side protocol, the composition

of the two protocols yields a valid protocol.

3.3.4 Factoring and Regrouping

A protocol can be thought of a composition of several subprotocols that are combined as

described in the last subsection. A subprotocol can be substituted for another subprotocol

if the substituted subprotocol can provide the same content as the replaced subprotocol,

that is, if the same commitments are in force at the start and at the end as in the origi-

nal subprotocol. The factoring of protocols provides a natural means to practice different

subprotocols for different operations in a protocol.
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Example 11 If we think about the steps of request-quote-accept as a subprotocol, we may

be able to use a more sophisticated negotiation protocol as a subprotocol. As long as both

subprotocols provide the same commitments with respect to the validity of the quoted price,

the factoring can be carried out.

A protocol specification that allows the above characteristics can drastically improve the

flexibility and thus the performance of the protocols. At this point, it is important to restate

what we mean by flexibility. Although we want the agents to practice a flexible proto-

col, we still want to preserve an ordering that will allow only meaningful conversations.

For example, a merchant should not send a quote after sending the goods, or the customer

should not start the conversation by sending an EPO. More importantly, flexibility can be

introduced only to the point where the intended meanings of the actions are not violated.

The interactions among the parties can be given a meaning based on their commitments to

each other. When we allow more flexible interactions, we need to ensure that the original

commitments are in force or that they are altered by mutual agreement. The execution

of a protocol is then minimally constrained only to satisfy those metacommitments. This

is a major advantage over low-level representations, which require specific execution se-

quences and provide no basis for deciding on the correct state independent of the execution

sequence.

37



Chapter 4

Commitments in Event Calculus

The event calculus provides a natural way to reason about commitments. Commitments, as

emphasized before, result from communicative actions. The event calculus is based on the

idea of events initiating and terminating properties in the world. Thus, if we represent com-

mitments as properties, the event calculus provides a foundation for modeling the creation

and manipulation of commitments as a result of performing actions. Further, by allowing

preconditions to be associated with the initiation and termination of properties, different

commitments can be associated with communicative acts to model the communications

among agents more concretely.

4.1 Representing Commitments in Event Calculus

The main difference between an obligation and a commitment is that commitments are

more flexible. Unlike an obligation, a commitment may be resolved even without bring-

ing about the action committed to. In what follows, we present a formal account of the

operations that can be performed to create and manipulate commitments.
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Commitments can be represented in simple event calculus (SEC) as a fluent. The oper-

ations on commitments that were defined conceptually in Section 2.1 can be formalized in

SEC as follows:

1. Create(x, c) establishes the commitment � .

Create(x, C(x, y, G, p)) :
�

e � Happens( � ��� ) � Initiates( � � � � � � ��� � � � ����� ) �

2. Discharge(x, c) resolves the commitment � .

Discharge(x, C(x, y, G, p)) :
�

e � Happens( � ��� ) � Initiates( � � � �	� ) �

3. Cancel(x, c) cancels the commitment � .

Cancel(x, C(x, y, G, p)) :
�

e � Happens( � �	� ) � Terminates( � � � � � � ��� � � � ����� ) �

4. Release(G, c) or Release(y, c) releases the debtor from the commitment � .

Release(y, C(x, y, G, p)) :
�

e � Happens( � ��� ) � Terminates( � � � � � � ��� � � � ���	� ) �

5. Assign(y, z, c) eliminates the commitment � , and creates a new commitment � � for

which � is appointed as the new creditor.

Assign(y, C(x, y, G, p)) :
�

e � Happens( � �	� ) � Terminates( � � � � � � � � � � � ���	� ) �
Initiates( � � � � � � � � � � � ���	� ) �

6. Delegate(x, z, c) eliminates the commitment � , and creates a new commitment � � in

which the role of the debtor is transferred to � .

Delegate(x, C(x, y, G, p)) :
�

e � Happens( � ��� ) � Terminates( � � � � � � ��� � � � ���	� ) �
Initiates( � � � � � � � � � � � ���	� ) �

These six operations are used in creating and manipulating commitments. Recall that

in Section 3.1 we described our reasoning rules informally. The following three postulates

formalize those reasoning rules.
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Postulate 1 formalizes Reasoning Rule 1, that is, a commitment is no longer in force if

the condition committed to holds.

Postulate 1 Terminates( � � � � � � ��� � � � ����� ) � HoldsAt( � � � � � � � � � ���	� ) � Happens( � �	� ) �
Initiates( � � � �	� )

For the condition � to hold, an event must occur to initiate it. In Postulate 1, when

the event � occurs at time � , it initiates the property � , and therefore the commitment

� � � � ��� � � � � can be terminated.

In order to represent metacommitments in SEC, we introduce a fluent meta(p, q) where

� may refer to other commitments. Recall that in Chapter 3, we introduced the strict im-

plication among meanings (� � � ). We use the fluent meta(p, q) for the same purpose.

Thus, the interpretation of meta(p, q) is the same as the interpretation of (��� � ), in that

it requires � to hold when � holds and the fluent itself to be ����� ��� if � is ����� ��� . Using this

fluent, we represent a metacommitment in SEC by C(x, y, G, meta(p, q)) meaning that the

debtor of � becomes committed to bring about � when � is true.

Postulates 2 and 3 represent Reasoning Rules 2 and 3, respectively.

Postulate 2 Initiates( � � � � � � ��� � � �����	� ) � Terminates( � � � � � � ��� � � � �
��� � � � � � ���	� ) �
HoldsAt( � � � � ��� � � � �
��� � � � � � ���	� ) � Happens( � �	� ) � Initiates( � � � ��� )

Recall that in Reasoning Rule 2, when � becomes true, then the original metacommit-

ment ceases to exist but a new base-level commitment is created, since the debtor � is now

committed to bring about � . In Postulate 2, when the event � occurs, it initiates � , which re-

sults in the termination of the original metacommitment, and the initiation of � � � � ��� � � ��� .

Postulate 3 Terminates( � � � � � � ��� � � � �
��� � � � � � ���	� ) � HoldsAt( � � � � ��� � � � �
��� � � � � � ���	� )
� Happens( � �	� ) � Initiates( � � � �	� )
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Postulate 3 follows Reasoning Rule 3. Thus, when an event � that can initiate � occurs,

� starts to hold and the original metacommitment is terminated. Since the creditor � has

not committed to anything, no additional commitments are created.

Having represented our reasoning mechanism about commitments, we now look at rep-

resentation of protocols in SEC.

4.2 Representing Protocols in Event Calculus

To represent a protocol in SEC, we need to represent the flow of execution within the pro-

tocol. In SEC, two predicates are used to specify how the execution can evolve: Initiates

and Terminates. In addition to defining which fluents they initiate or terminate, the required

preconditions for activating these predicates can be specified. Therefore, the possible tran-

sitions in a protocol can be specified in terms of a set of Initiates and Terminates clauses.

Definition 25 A protocol description is a set of Initiates and Terminates clauses that de-

fine the preconditions under which properties pertaining to the protocol are initiated and

terminated.

Given a protocol description, a computation that is generated by executing the protocol

constitutes a protocol run. In SEC, any computation is a result of execution of events at

different timepoints.

Definition 26 A protocol run is a set of Happens predicates along with an ordering of the

timepoints referred to in the predicates.

Definition 27 A protocol run is complete if all the base-level commitments that have been

created are resolved as formalized by Postulate 4.
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Postulate 4
� � � Happens( � �	� ) � Terminates( � � � � � � � � � � � ���	� ) � �

HoldsAt( � � � � ��� � � � ����� )
If a protocol run is not complete, that is, if there is an open base-level commitment after

the execution of the protocol, we know that a participant has not fulfilled its commitment.

This signals a violation of the protocol. Although we don’t investigate the issue of protocol

compliance by agents in this work, incomplete protocol runs provide evidence to identify

non-compliant agents.

To continue our treatment of the NetBill protocol, we first define the fluents used in that

protocol and then provide the protocol description.

Example 12 The actions (messages) of Figure 2.9 can be given a content based on the

following definitions.

� Roles and context:

� MR represents the merchant.

� CT represents the customer.

� NB represents the context group for the NetBill protocol.

� Domain-specific fluents:

� request(
�
): a fluent meaning that the customer has requested a quote

for item
�
.

� goods(
�
): a fluent meaning that the merchant has delivered the goods

�
.

� pay( � ): a fluent meaning that the customer has paid the agreed upon

amount � .

� receipt(
�
): a fluent meaning that the merchant has delivered the re-

ceipt for item
�
.

� Metacommitments:
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� accept(
� � � ): an abbreviation for C(CT, MR, NB, meta(goods(

�
),

pay(
�
))) meaning that the customer is willing to pay if he receives

the goods.

� promiseGoods(
� � � ): an abbreviation for C(MR, CT, NB,

meta(accept(
� � � ), goods(

�
))) meaning that the merchant is will-

ing to send the goods if the customer promises to pay the agreed

amount.

� promiseReceipt(
� � � ): an abbreviation for C(MR, CT, NB,

meta(pay( � ), receipt(
�
))) meaning that the merchant is willing to

send the receipt if the customer pays the agreed-upon amount.

� offer(
� � � ): an abbreviation for (promiseGoods(

� � � ) �
promiseReceipt(

� � � ))

� Definition of Initiates in the NetBill Protocol:

� Initiates(sendRequest(
�
), request(

�
), � )

� Initiates(sendQuote(
�
, � ), promiseGoods(

�
, � ), � )

� Initiates(sendQuote(
� � � ), promiseReceipt(

� � � ), � )
� Initiates(sendAccept(

� � � ), accept(
� � � ), � )

� Initiates(sendGoods(
� � � ), goods(

�
), � )

� Initiates(sendGoods(
� � � ), promiseReceipt(

� � � ), � ) �
� holdsAt(promiseReceipt(

� � � ), � )
� Initiates(sendEPO(

� � � ), pay( � ), � ) � HoldsAt(goods(
�
), � )

� Initiates(sendReceipt(
� � � ), receipt(

�
), � ) � HoldsAt(pay( � ), � )

� Definition of terminates:

� Terminates (sendQuote(
� � � ), request(

�
)) � HoldsAt(request(

�
), � )
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Having provided the protocol description, we now look at an example protocol run.

Example 13 The protocol run shown in Figure 1.4 can be formalized by the following

facts:

F1. Happens(sendGoods(
� � � ), �� )

F2. Happens(sendEPO( � ), ��� )

F3. Happens(sendReceipt(
�
), � � )

F4. �� � ���

F5. ��� � ���

Now we look at how the commitments among the participants evolve in the given pro-

tocol run.

1. HoldsAt(C(MR, CT, NB, meta(pay( � ), receipt(
�
))), �� ) � HoldsAt(goods(

�
), �� )

When the goods are sent at time �� , the fluent goods(
�
) is initiated. Furthermore,

following the protocol definition in Example 12, the metacommitment C(MR, CT,

NB, meta(pay( � ), receipt(
�
)) is created. So now, the goods have been delivered, and

the merchant is willing to send the receipt if the customer pays.

2. HoldsAt(C(MR, CT, NB, receipt(
�
)), ��� ) � HoldsAt(goods(

�
), ��� ) � HoldsAt(pay(

�
),

��� )
By sending the EPO at time ��� , the customer initiates the fluent pay( � ). By Postu-

late 2, this ends the metacommitment —sl C(MR, CT, NB, meta(pay( � ), receipt(
�
))

and creates the commitment C(MR, CT, NB, receipt(
�
). Since no event occurred to

terminate goods(
�
) it continues to hold.
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3. HoldsAt(goods(
�
), ��� ) � HoldsAt(pay(

�
), ��� ) � HoldsAt(receipt(

�
), ��� )

At time ��� the third fact is applicable, which initiates the fluent receipt(
�
). Following

Postulate 1, this terminates the commitment C(MR, CT, NB, receipt(
�
)). Thus, we

reach the state where the merchant has delivered the goods and the receipt, and the

customer has paid.

4.3 Planning

Planning is the construction of plans for automatic or semiautomatic execution by an agent.

We consider plans that would lead from an initial state to a final state. In planning, the

operators are defined to allow transitions between states. Traditionally, states are described

as lists of fluents, each interpreted as holding in the given state. Operators are specified in

a fashion where the precondition for an operator to be applied and the effect of applying

the operator are defined. The effect of an operator can be captured through the addition

and removal of fluents from the representation of the source state in which the operator is

applied; this is the well-known STRIPS approach.

Planning is carried out by either progression or regression planners. Progression plan-

ners start with the initial state and apply all possible operators until the goal state is reached;

such planners suffer from high branching factor. Regression planners, on the other hand,

start with the goal state and search backwards to get to the initial state [Russell and Norvig,

1995].
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4.3.1 Planning in Event Calculus

In the event calculus, the initial states are represented by conjunctive expressions consist-

ing of Initially � and Initially � clauses to represent which fluents hold or do not hold at

the beginning. The goal state is represented by conjunctive HoldsAt clauses. Operators

are the events in the domain. The domain definition containing Initiates and Terminates

clauses naturally specifies the preconditions and effects of the actions. Having the initial

states, the goal states and the domain description, an event calculus planner can generate a

narrative that contains Happens clauses, and an ordering of time points of the events that

occur [Shanahan, 2000].

The form of logical reasoning that is commonly used in building event calculus planners

is abduction. Abduction, unlike deduction, is based on an application of implications in

reverse. In other words, given two well-formed formulae, ��� � and � , � can be assumed

via abduction as long as it is consistent with the rest of the knowledge base [Rich and

Knight, 1991]. One such abductive event calculus planner is due to Shanahan [2000]; we

use it here to demonstrate how a protocol can be defined based on the preconditions and

the effects of actions, and how possible paths can be generated between an initial state and

a goal state.

4.3.2 Generating Paths

Given a protocol description, planning can be used to generate all possible runs of the

protocol. We now present a sample SEC program that can be successfully interpreted by

Shanahan’s SEC planner.

Figure 4.1 gives the clauses to set up the initial state of the protocol. As we have
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explained in Section 2.2, the initial state is represented with Initially � and Initially � predi-

cates, to denote the positive and negative fluents, respectively. In the planner, though, only

one predicate, Initially, has been implemented. In order to indicate negative fluents, a new

predicate neg has been introduced.

axiom(initially(neg(goods(I, D))),[]).
axiom(initially(neg(pay(M, D))),[]).
axiom(initially(neg(receipt(I, D))),[]).
axiom(initially(neg(c(receipt(I, D)))),[]).
axiom(initially(neg(c(goods(I)))),[]).
axiom(initially(neg(c(pay(M, D)))),[]).
axiom(initially(neg(accept(I, M, D))),[]).
axiom(initially(neg(request(I, D))),[]).
axiom(initially(neg(offer(I, M, D))),[]).
axiom(initially(neg(promisereceipt(I, M, D))),[]).

Figure 4.1: Description of an initial state

Figure 4.2 specifies the first part of the protocol description that is, the Initiates clauses.

The first argument to the axioms is the Initiates clause, and the second argument is the

set of preconditions needed for the Initiates clause to be applicable. The fluents used here

are the same as the ones used in Example 12, except here we add a transaction identifier

to each fluent as the last argument. This identifier is used to ensure that the participants

by bringing about properties, resolve commitments with the corresponding transaction ids.

The reasoning rules explained before are manually compiled here.

Figure 4.3 specifies the second part of the protocol description, that is, the Terminates

clauses. Again, the axioms have the same format as in Figure 4.2, where the first argument

is the Terminates clause and the second argument is the set of preconditions.

Figure 4.4 simply gives the set of actions in the program through the clause executable.

When the clauses of Figures 4.1, 4.2, 4.3, and 4.4 are appended, they form a complete

SEC program. We invoke the planner and this program from a Prolog interpreter. In order
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axiom(initiates(sendrequest(I, D),request(I, D),T),
[holds_at(neg(goods(I, D)), T),
holds_at(neg(request(I, D)), T)]).

axiom(initiates(sendquote(I, M, D),offer(I, M, D),T),
[holds_at(neg(goods(I, D)), T),
holds_at(neg(offer(I, M, D)), T),
holds_at(neg(accept(I, M, D)), T)]).

axiom(initiates(sendgoods(I, M, D),goods(I, D),T),
[holds_at(c(goods(I, D)), T),
holds_at(neg(goods(I, D)), T)]).

axiom(initiates(sendgoods(I, M, D),c(pay(M, D)),T),
[holds_at(accept(I, M, D), T),
holds_at(neg(goods(I, D)), T)]).

axiom(initiates(sendgoods(I, M, D),c(pay(M, D)),T),
[holds_at(c(goods(I, D)), T),
holds_at(neg(goods(I, D)), T)]).

axiom(initiates(sendgoods(I, M, D),goods(I, D),T),
[holds_at(accept(I, M, D), T),
holds_at(neg(goods(I, D)), T)]).

axiom(initiates(sendgoods(I, M, D),goods(I, D),T),
[holds_at(offer(I, M, D),T),
holds_at(neg(goods(I, D)), T)]).

axiom(initiates(sendgoods(I, M, D),goods(I, D),T),
[holds_at(neg(goods(I, D)), T)]).

axiom(initiates(sendgoods(I, M, D),
promisereceipt(I, M, D),T),

[holds_at(neg(goods(I, D)), T)]).
axiom(initiates(sendepo(M, D),pay(M, D),T),

[holds_at(goods(I, D), T), holds_at(neg(pay(M, D)), T)]).
axiom(initiates(sendepo(M, D), c(receipt(I, D)),T),

[holds_at(promisereceipt(I, M, D), T),
holds_at(neg(pay(M, D)), T)]).

axiom(initiates(sendaccept(I, M, D),c(goods(I, D)),T),
[holds_at(offer(I, M, D), T)]).

axiom(initiates(sendaccept(I, M, D),
promisereceipt(I, M, D),T),

[holds_at(offer(I, M, D), T)]).
axiom(initiates(sendaccept(I, M, D),accept(I, M, D),T),

[holds_at(neg(offer(I, M, D)), T)]).
axiom(initiates(sendreceipt(I, D),receipt(I, D),T),

[holds_at(pay(M, D), T)]).

Figure 4.2: Description of Initiates clauses
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axiom(terminates(sendgoods(I, M, D),c(goods(I, D)),T),
[holds_at(c(goods(I, D)), T)]).

axiom(terminates(sendepo(M, D),c(pay(M, D)),T),
[holds_at(c(pay(M, D)), T)]).

axiom(terminates(sendreceipt(I, D),c(receipt(I, D)),T),
[holds_at(c(receipt(I, D)), T)]).

axiom(terminates(sendepo(M, D),promisereceipt(I, M, D),T),
[holds_at(promisereceipt(I, M, D), T)]).

axiom(terminates(sendquote(I, M, D),request(I, D),T),[]).
axiom(terminates(sendgoods(I, M, D),accept(I, M, D),T),

[holds_at(accept(I, M, D), T)]).
axiom(terminates(sendaccept(I, M, D),offer(I, M, D),T),

[holds_at(offer(I, M, D), T)]).

Figure 4.3: Description of Terminates clauses

abducible(dummy).
executable(sendrequest(I, D)).
executable(sendquote(I, M, D)).
executable(sendgoods(I, M, D)).
executable(sendaccept(I, M, D)).
executable(sendepo(M, D)).
executable(sendreceipt(I, D)).

Figure 4.4: Description of executable events
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to interpret the code, we provide the description of the final state; Figure 4.5 shows such an

example. The final state depicted in Figure 4.5 means that goods (software) have been sent

with transaction identifier � � . This yields the result shown in Figure 4.6, where each R is

a possible protocol run starting from the initial state depicted in Figure 4.2, and ending in

the final state depicted in Figure 4.5.

abdemo([holds_at(goods(software, 51),t),
holds_at(c(pay(price, 51)),t)],R).

Figure 4.5: Description of a final state

As described before, each protocol run consists of Happens clauses and an ordering of

time points. The last argument in each Happens clause denotes a timepoint at which the

event happens. The ordering of these time points are then shown with the before clauses.

R =[[happens(sendquote(software,H816,51),t191),
happens(sendaccept(software,H816,51),t190),

happens(sendgoods(software,H601,51),t189)],
[before(t191,t),before(t191,t189),before(t191,t190),

before(t190,t),before(t190,t189),before(t189,t)]] ;

R = [[happens(sendaccept(software,H601,51),t193),
happens(sendgoods(software,H601,51),t192)],

[before(t193,t),before(t193,t192,before(t192,t)]] ;

Figure 4.6: Protocol runs
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Chapter 5

Conclusions

Given the open, dynamic nature of e-commerce, employing an agent-based approach to

model and enact the trading is natural. Agents can provide the autonomy and heterogeneity

required from participants in e-commerce settings. However, in order to fully exploit their

capabilities, agents should be provided with a communication framework that allows them

to interact flexibly. Thus, protocols they follow should be flexible enough to accommodate

the varying interactions that can take place among agents.

Traditionally, communication protocols are specified by defining the allowed orders in

which communicative acts may take place, but no more. This holds for protocol formalisms

such as FSMs, formal grammars, Petri Nets, and so on. Some of these formalisms are quite

powerful, but they are used only to specify allowed actions. The actions are just labels, and

the states, if explicit, do not capture the conceptual meaning of a protocol.

This research proposes a novel formalism, the CFSM, to specify and execute the pro-

tocols used in e-commerce. CFSMs provide flexibility by capturing the semantic content

of the actions in a protocol, rather than capturing only their sequencing. The meaning of

actions and states are represented via social commitments. By specifying communication

protocols using commitments, we can analyze the interactions among participants through
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the intrinsic meaning of those interactions. By walking through an example, we showed

how we can define a CFSM specification, and how we can reason about the protocols and

enhance them to achieve flexible execution. We also showed how this specification can

be applied at run time or compile time, depending on the computational borders or agent

architectures.

In adopting the language-as-action perspective, we can leverage the event calculus to

reason about actions and commitments. The event calculus provides an elegant way to rep-

resent the change of the world through the actions in a protocol. Using the event calculus,

we have shown how commitments and the operations to create and manipulate them can

be formalized. Further, we have formalized the reasoning rules associated with commit-

ments. Based on this formal grounding, e-commerce protocols can be specified rigorously

yet flexibly.

5.1 Literature

There is a substantial body of literature on agent communication languages (ACLs) and

their semantics. The Foundation for Intelligent Physical Agents (FIPA) has been standard-

izing an ACL along with a formal semantics based on a logic of beliefs and intentions. FIPA

also includes interaction protocols, which are characterized purely operationally. Labrou

and Finin [1998] describe a grammar for constructing conversations or protocols. This is

a formal grammar but it only describes the sequencing of tokens. Labrou and Finin also

give a belief and intention based semantics for Knowledge Query Manipulation Language

(KQML). There is thus a major disconnect between the FIPA ACL semantics and proto-

col operationalization, and Labrou and Finin’s ACL semantics and protocol execution. By

contrast, in our approach the semantics given to the messages is directly operationalized. In
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our approach, the tokens are chosen for each protocol. We don’t attempt to give a seman-

tics for tokens like inform that can apply in all possible protocols. More recently, Moore

[2000] has developed an ACL, FLBC, for business communication that attempts to remedy

the potential problems with KQML, but FLBC has not been applied as widely as KQML.

Commitments have been studied before [Castelfranchi, 1995, Gasser, 1998], but were

not used for protocol specification as we have done here. Verharen [1997] develops a

contract specification language, CoLa, to specify transactions and contracts. Verharen’s

approach benefits from commitments in expressing actions, but it treats commitments as

obligations, and does not allow manipulation of commitments as in our approach. Further,

Verharen only considers base-level commitments, without capturing conditional commit-

ments as we have done through metacommitments.

Barbuceanu and Fox [1995] develop a language, COOL, for describing coordination

among agents. Their approach is based on modelling conversations through FSMs, where

the states denote the possible states a conversation can be in, and the transitions represent

the flow of the conversation through message exchange. They try to handle exceptions

through error recovery rules. They allow interruption of conversations, which is similar to

our definition of composition of protocols. They give content to messages based on speech

acts, but they only allow pre-defined transitions, disallowing dynamic transitions based on

the meaning of messages.

Dignum and van Linder [1997] propose a framework for social agents based on dy-

namic logic, in which they distinguish messages based on speech acts. In addition to em-

ploying commitments, they use directions and declarations to denote the semantic content

of messages. Furthermore, they employ an authority relation between agents to decide on

the success of directions and declarations. In our work, we assumed peer-to-peer interac-

tions, in that we do not consider the interactions based on different authority among agents.
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But it would be a simple matter to handle various authority relations, e.g., to require that

requests from one agent are always honored by the other.

Enabling flexible communication among agents is a two-pronged issue. In one direc-

tion, the protocols used should be flexible enough to accommodate the dynamic nature of

interactions. This is what we have tried to develop in this research. The other direction

is to develop agent architectures that can benefit from the flexibility of such protocols. In

this direction, Haddadi [1998] develops a formal semantics based on beliefs, desires and

intentions of agents. She describes the means-ends reasoning process of agents, through

the concepts of chance, choice and commitment. Her description of chance is similar to our

description of opportunity, but her treatment of commitments varies from our treatment,

in that she focuses on formation of commitments whereas we deal with the utilization of

commitments.

Event calculus has been theoretically studied but has not been used for modelling com-

mitments and communication protocols as we have done here. Shanahan [1996] uses event

calculus in robotics for coordinating robot actions. We were able to adapt Shanahan’s plan-

ner to apply to reasoning about commitments. Cervesato et al. [1997] study event calculus

theory and have developed modal variants of the calculus.

5.2 Future Directions

The approach we develop here is based on the widely-used finite state machine formalism.

It would be worthwhile to incorporate commitments into other formalisms, such as Petri

Nets, to evaluate how much these formalisms would benefit from commitments.

In our current approach, the commitments that are associated with actions are specified
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manually. Another direction would be attempting to automate the definitions of commit-

ments in a given protocol.

Although we believe in the importance of context group in commitments, this study has

not investigated how commitments would be modified based on varying context group. Yet

another direction would be extending the reasoning rules we have developed here, to handle

the transformation of commitments as the context group changes. These are all interesting

topics, which we defer to future research.
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